
PHYSICAL REVIEW B VOLUiME 16, N UMBER 6 15 SEPTEMBER 1977
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The theory of the coherent electron-exciton pairing is generalized to describe the electron-exciton bound

states of molecular crystals which contain several molecules (atoms) in the unit cell. The excitation spectrum

for crystals like anthracene having two molecules per unit cell is discussed in detail. Expressions for the

absorption coefficient for the anthracene-like crystals are derived describing the optical transitions to four

electron-exciton bands. Two of the electron-exciton bands represent a modification of the two components of

the exciton doublet, while the other two bands are due entirely to the electron-exciton pairing. The electron-

exciton bands have the same polarization directions but different intensities and energies from those of the

corresponding exciton bands. The ground-state energy describing the electron-exciton binding energy is

calculated and discussed. Numerical estimates indicate that at high exciton densities, i.e., for exciton

concentrations 2 X 10"—10" cm ' and when the ratio of the average electron-exciton interaction to the

average kinetic energy is between 1 and 2 (strong-coupling limit), the energy gap due to the electron-exciton

pairing is in the range 50—320 cm ', the corresponding transition temperature is 40—260'K, while the

binding energy is 90—500 cm

I. INTRODUCTION

The collective electronic excitations of molecul. ar
crystals are usually described by Frenkel (mole-
cular or small-radius) excitons. ' They consist of
tightly bound electron-hole pairs that migrate
through the crystal with definite energy and wave
vector. It has been recently suggested' that at high
exciton densitites and low temperatures, an exciton
may interact with an excited electron' which is
located at an adjacent lattice site of a molecular
crystal to form a charge-transfer (CT) bound state.
Electrons (charge carries) can be produced in the
crystal either by the use of photoabsorption' or
photoinj ection techniques. '

The excitation spectrum and the electromagnetic
properties of the electron-exciton bound states have
been discussed in Ref. 2, hereafter referred to as
I. The effects of the electron spin have been also
included. ' It has been shown in Ref. 6, referred to
as II that singlet excitons as well as triplet excitons
may interact with electrons tof orm electron-sing-
let and electron-triplet CT complexes provided that
certain conditions prevail. The reader is referred
to I and II for details as well as for the literature
on the subject.

Most of the molecular crystals contain several
moiecuies (atoms) per unit cell; for example, the
monoclinic crystals such as anthracene, naphtha-
lene, etc. , which have a center of symmetry, con-
tain two identical molecules per unit cell. For
such crystals having two identical molecules in the
unit cell, the excitation spectrum consists of two
exciton bands, which have not only different ener-
gies but also different polarizations; the energy
splitting is usually referred to as the Davydov

TABLE I. Computed values for the gap function &+/&+,

transition temperature Tc/&+, binding energy Wo/&+,
and average kinetic energy +/o+ determined by Eqs.
(61)—(64), respectively.

n

(cm )

b,+ /O+ T+/O. + —W+O/O+ Cu+ /0+

p, U/~+ (cm ) ( K) (cm ') (crn )

2 x ]018

4 xlo&8

Gxlo 8

8 x 10'8

15 10
2.0 1.3
2.5 1.6
3.0 2.0

1.5 1.0
2.0 1.3
2.5 1.6
3.0 2.0

1.5 1 o
2.0 1.3
2.5 1.6
3.0 2.0

1.5 1.O
2.0 1.3
2.5 1.6
3.0 2.0

52
74
93

ill
83

117
146
167

109
154
193
231

132
187
234
281

43
61
76
91

68
96

120
13'7

89
126
158
189

108
153
192
230

96
121
146
174

152
191
232
277

200
250
304
363

242
303
369
440

37
37
37
37

59
59
59
59

77
77
77
77

93
93
93
93

1 x 10 1.5 1.0
2.0 1.3
2.5 1.6
3.0 2.0

153
217
271
326

125
188
222
267

281
352
428
511

108
108
108
108

splitting. ' The existence of the two components,
which have different energies and different polar-
izations, has made possible the observation of the

exciton bands in molecular crystals. ' The theory
in I and II has been restricted to crystals having
one molecule per unit cell; the purpose of the pres-
ent study is to generalize the theory of electron-

16 2863



2864 CON STANTINE MA VROYAN NIS

exciton bound states to be appropriate for organic
crystals that have several molecules in the unit

cell. Optical transitions to the electron-exciton
bands and computations of the parameters involved

in the strong-coupling limit are considered as
well.

The problem is formulated in Sec. II, where use
is made of the same model for a molecular crystal
as in I but the molecular Hamiltonian describes
crystals having several molecules per unit cell.
Using the same decoupling approximation as in I
and II, we derive a set of coupled equations for the
electron-exciton Green's functions. The excitation
spectrum is discussed in Sec. III, where expres-
sions for the energies of excitations and for the

energy-gap functions arising from the electron-
exciton pairing are derived for crystals like an-
thracene. Optical transitions to the electron-exci-

ton states are discussed in Sec. IV and the cor-
re sponding expre ssions for the absorption coeffici-
ent are obtained. The binding energy arising from
the electron-exciton pairing is calculated in Sec. V,
while the results of the numerical computation are
listed in Table I and discussed in Sec. VI.

II. FORMULATION OF THE PROBLEM

The Hamiltonian describing the electron and ex-
citon fields as well as electron-exciton interactions
for a two-level system of a molecular crystal hav-

ing one molecule (atom) per unit cell has been de-
rived in I and is given by Eq. (6) of I. This expres
sion can be generalized to describe the general
case when there are several molecules in the unit
cell of the crystal and it may take the form

X= const+ Z~B
novr B

+ —Q Z(no/,
1

V~~mK

u'. ,u~„8+ Q L,„(mv, nv)u'„~ u,„„+Q L~(mo, no)ur~8u„. ,„
B, y Br

mvy ~nvp, moy)(be, b +b--„b~„~)+—P Z(noj3, moy jnvp, mvy)(b-„, b- +br bt )

"'Rmn

The operators b&~, b&B and a&„B,o.&„B describe the
exciton and electron fields, respectively. P and y
()3, y=1, 2, . . . , s) enumerate the number of mole-
cules per unit cell, R-& = r- —r&, where r- and r;
are the position vectors for the electrons at the
lattice sites m and n respectively, and the prime in
the sum indicates that the term with R-& =0 should
be omitted. The notation as well as the coupling
functions in Eq. (I) are described in detail by Eqs.
(Va)-(Ve) and (8) of I, where the reader is referred

—=Z~„(n, m) .

Substituting Eq. (2) into Eq. (I) we have

(2)

to for details.
The coupling functions J(not), mvy ~nvP, moy) and

J(noP, mOy ~nvP, mvy) differ only by exchange
terms' and if such exchange contributions are neg-
lected for the exciton field then we may take

g(nOp, m» ~nv)3, mOy) =Z(nOp, mOy ~nvp, mvy)

K=const+g E„o~ur,-„~ut„~+ g L~„(rnv, nv)ut u&„„+ p L~„(rno, no)u r uz „

B r B, r

+ — z, Z~( , rr)mb (~r-b„, b+b&„~+bt„ab „„+br-„„bl„g--g U „(n,m)bz~„~br„ut„„u-„„.
v~ Rmif "~ Rma

Bir
Bpr

(3)

The term in Eq. (4) involving the operators
(bz„~b-„„+b&„„b~z„~),which describe the simultane-
ous annihilation and creation of two particle excita-
tions, has been discarded in I and II. This approx-

imation is valid provided that the inequality

Z(n, m) «E~ (4)

is satisfied. For most molecular crystals when v
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is the first excited state, ' E~-3 x 10' cm ' while

Z(n, m) —10' cm ' in which case the inequality (4) is
well satisfied. For molecular crystals for which

Z(K, m) —10' cm ', the term describing the two

particle excitations should be included in the cal-
culation. For the sake of convenience, we shall
consider the general case where the inequality {4)
is satisfied and, therefore the term proportional
to the operators (bz„~b- +bz'„~b& ) will be omitted
in the calculation. In Sec. VI, a discussion is given
on how this effect may be incorporated in the final
results whenever the inequality (4) is violated.

Using the Hamiltonian (3) we derive the equations
of motion for the operators e&„B and b-„B as

(
id I——E„,N ar„~= L~(mv, nv}a-
dt

y ~mm

Uz„(m, K)(b „~-ult„„a&„„)

Uz„(m, n)N„„b-„~
y "am

+ g U „(n, m)(b-„ut ) u „„, (8h)
y, Ritm

where N =(a~t aI „)=(b' b „,) .-The first terms
on the right-hand side of Eqs. (7)-(8b) describe
corrections to the electron (exciton) spectrum aris-
ing from the electron (exciton} density while the
last terms describe the pairing between an elec-
tron and an exciton located at different lattice
sites of the crystal. Substitution of Eqs. (t)-(8h)
units Eqs. (5) and (6) results

U~„(K, m)al„~bt„„b , , -(5)
id
dt u&„~ = P' L~(mv, Kv)a-„„

y ~ 0 g

— Q a~(K, m)b-„„, (9)

——E~B bmvB JBy, m)b~y 1- 2b-
y b „„)

"'~8m

U,„(m, K)b-„~~ a~„„. (6)

——E„pB bmuB By ~y )bpyy

y ~nm

a„*~(K,m) a~„„,

E ~=E, —g U(n, m)N„„,
yi ~mii

(10)

(11a)

In deriving Eqs. (5} and (6) we have followed I and
II and exciton-hole scattering effects have been
discarded. This approximation is applicable as
long as these kinds of processes produce very little
effect or not at all on the formation of electron-
exciton bound states.

Making use of the same decoupling approximation
as in I, i.e.,

U~„(K, m)(az„~b&„„b „„)-
y ~ma

U,„(K,m)N„„a~„~
y, R g

J~„(K,m) =7~„(K,m)(1 —2N„„),

a~„(K,m) = Q'U~(K, m)(ar„~b-' ) .

(Ilb)

(11c)

——(u;„8 a-„„8=Q L~„(k)af„„—Q a~(k)bf„„,
y ~B

(12)

—E;„~ b„-„~=Q Z~„(k)b~„- Q a„*B(k)a-„„„,
y &B

(13)

In the momentum representation Eqs. (9) and (10}
become

+ g' U~(K, m)(um„~b- ) b , (1)-
y, %my

where

~~a =E~s+ Lao(k» (14a)

Z~„(m, K)bz (1 —2b' b „„)
y "ma

J~„(m, n}(1—2N„„)b,.„„, (8a)
y Rem

L~(k) = g'Lz„(mv, nv) exp[i(k'R-I) j,
~ma

JB„(k)= g JB„(K,m) exp[i(k RI-)],
Rg

E „-„z
=Z ~~ +J~~(k),

(14b}

(14c)

(14d)
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Z„(k) = —g U,„(k —q)(a;,„b',), (15a) J„(k)=J„(k)=- J(k), J„(k)=J„(k)=J (k), (18a,)

L„(k)=L2, (k) =—L(k), L„(k)=L„(k)=L(k), (18b)

U&(k —q) = P U~(fl, m) exp[i(k —q) R-;],
+mB

(15b)
hence,

~kpl Igr2 kp ~ kvl kv2 kp' ' (18c)

where N is the number of unit cells in the crystal
volume V, and k and g are wave vectors in the first
Brillouin zone.

In Eqs. (12)-(15), (d;„2 and E~2 are the energies of
excitation for the free electron and exciton, re-
spectively, while the coupling functions L2„(k) and

J~(k) describe the transfer of electronic charge
and excitation energy, respectively, from the mole-
cule P into the molecule y within the unit cell of
the crystal. Eqs. (12), (13}, and (15) will be used
in Sec. III to discuss the excitation spectrum for the
electron- exciton interacting system.

III. EXCITATION SPECTRUM

To discuss the excitation spectrum we shall make
use of the retarded double-time Green's functions
defined by Eq. (19) of I, as well as the equation of
motion for the Green's functions given by Eq. (20)
of I. Then using Eqs. (12) and (13) we derive the
following expressions for the electron «a-„„2,a(&g&
and exciton-electron «b„-„a~ )) Green's functions

kvg

(~ —~;.2}(&a- „a'„-„)&
=

2, + p L~(k) &&a;.,; a'„;,&)

—g n,„(k)«b- „;a-'„„,)&, (16}

((v —E2„2)«b„-„2,a„". )) = Q J2„(k)«b„- „;af
g&

If we also take

~„(k)= ~,(k) = ~(k), n„(k) = ~„(k)-=n(k)

and make use of the following notation:

(d f~
= (d2v + L (k),

E2„,=E-„„+I(k)=E~+J—,(k),

J,(k) =J(k) +J(k),

n, (k) = s(k)+ s(k),

(19)

(20a)

(20b}

(20c)

(20d)

then for P, y= 1, 2 from Eqs. (16) and (17), we have

(e —u„-„,)«a„-„,+a-„„2;a „,))
=(I/2v) —n, (k)«b-„„,+b;~; at )),

(~ —E;„,)&&bf„, + b;~; aif„,&&

= —a,(k)((a„-„,s aS„2, af, ».

(21)

(22)

Similarly,

( —E-„,)((b-, + b-„„b ))-
= I/2v —n, (k)«a-„„,+ a2„2; bt~ )), (23)

((o —(o-„„,)«a„-„,+ a;„,;bt ))

= —6,(k)«bf„, +b-„„2;b„-,)) . (24)

Solving the coupled Eqs. (21) and (22) or (23) and
(24), we obtain

2
V

kvl lv2 &

kv+ k@+

—Q 6*„2(k)«a~„;atf g&. (17)

Similar expressions hold for the exciton «b„-„2;b( ))
and electron-exciton «a„-„2,b„- g&

Green s functions.
Equations(16) and(17) form a set of coupled alge-
braic equations the solution of which will deter-
mine the energies of excitation. If s is the number
of molecules simultaneously present in the unit
cell of the crystal then there will be 4s coupled
equations whose solutions will determine the energy
bands of the system under consideration.

For the sake of simplicity and as an illustration
let us consider monoclinic crystals such as an-
thracene, naphthalene, etc. , which have center of
symmetry and contain two identical molecules in
the unit cell. ' For the senses of the wave vector
k that are perpendicular or parallel to the plane of
symmetry of the crystal, we have'

2

+ Ski,~

~k.~+ &i .
«b2.|+b-.,2 a2.i» =«a2.i*a~2'b2„, &&

1 A, (k)
2 t|' 2E ~„ tv+ kva

1
~ -~i ~+ ~km~

2
~kv~

~- ~kv++~r ~

(( 2vl 2v2~ 2'&& 2v ~ Q kv+ kva

(25)

(26)

(27)



l6 THEORY OF CHARGE-TRANSFER ELECTRON-EXCITON BOUND. . . 2867

.-„„,= [-', (E„-„-;„,}'+
~
~,(k) ~']'&',

and the amplitudes uk„, and v„-„, are defined by

u-„„,= a [1+(E;„,—(uf„, )/ 2@I„,],
v~, =-,' [1—(E~,—(o; )/2e-„],

(28)

(29)

(30a)

(30b)

and u'-„+v„-„,= l. Using the Green's functions (25)-
(27) we derive the corresponding expressions for
the distributions functions" in the limit of zero
temperature as

&G (GI„~ k of„~)}=n

(bt (b-„,+ b-„„,)) = v-, ,

&b'- (n~.i + o' f.2» =&&',-„, (bf.i +bi,~)}

= a, (k)/2c„-„, .
From Eq. (31c) we have the relations

(31a)

(31b)

(31c)

1 ~,(k) ~ (k)
2 2e- 2e-kv+ kv-

(32a)

1 a, (k) n (k}
(32b)

Using Eqs. (15}, (19), (20), (32a), and (32b) we get

where the energies of excitation Ak-„, ~ ek„, are given

by

1 ~ U(k —q) L (q)
[( ~/2p )2+

~
~ (q) ~2]~&2

The reduced mass p,, is defined as

(38)

2 1 1 1
*

exc e

me m exc
m'

exc e
(39)

a,(k) p, sinh(1/p ) &1.
sinh(1/p, )

(43)

where the effective mass of the exciton m,'„,de-
pends on the direction of the exciton and takes neg-
ative and positive values for transverse and long-
itudinal exciton modes, respectively. ' The integral
equations (37) and (38) are similar to Eq. (38) of I
and Eqs. (31) and (32) of II. Therefore, we quote
here the final results for the gap functions a,(k).

n, (k) = ~,/sinh(1/p, ), (40)

& (k) = ~ /sinh(1/p ), (41)

where

(c&, = $'/2p, , $=(6 vN/V)' '=(6v'n)' ', (42a}

N, (0) =
2

' =, p, =U(k)N, (0) = —,(42b)V)p, ,

n =N/V being the exciton (electron) concentration.
Considering that for the effective masses we have

p, &p . Then the ratio

1 ~ U(k —q) s,(q)
2N

U(k q) 4 (q)

(33)

(34)

a,(k) =2ur e '~"
6 (k) =2&v e '~'-

(44a)

(44b)

In the weak coupling limit when p, &1, then Eqs.
(40) and (41) are reduced to

In deriving Eqs. (33) and (34), the coupling func-
tions have been taken to be

U»(k —q) = U»(k —q) = U»(k —q) = U(k —q) . (35)

Though the approximation U„(k —q) = U„(k —q) is
not always applicable, it facilitates the solution of
the problem because now the gap functions n. (k)
and n, (k) given by Eqs. (33) and (34) are independ-
ent of each other. If we define the exciton and elec-
tron effective masses m', „,and m'„respectively, '
as

K,Z', = 0.57~, ,

where K~ is Boltzmann's constant.

(45)

IV. ABSORPTION COEFFICIENT

The expression for the absorption coefficient
u(k, &u) is given by'

o.(k, u) =— 77(dp
2

~) p f,".p ~}tz;„,z-„.,)'"
vga,

and the transition temperatures T', may be deter-
mined by the relation

m'm exc

92 1
ak2 h", -„0

'
m,'

9'
(36)

Bk
elm«b~~;bt )), (46)

1 ~ U(k —q}6,(q)
2N ~ [(~q/2p, „)'+ I ~,(q) I']'~' ' (37)

then in the effective-mass approximation and using
Eqs. (37a)-(37c) of I, Eqs. (33) and (34) may take
the form

where c is the velocity of light in vacuum, q(k, v)
is the real part of the index of refraction of the
transverse light waves with wave vector k and fre-
quency e, bk„~=bk„~- b-, p and Z enumerate the
number of molecules per unit cell of the crystal,
co is the plasma frequency and Im refers to the
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(y (k ~) ——p (g~ /4cq

where

x Q E-„„[fo'„'(kX)Im((b-„„,+5-„~;5tf ))

Ay V

+f0„(k&)Im((b~, —51„2., b~„,))J,
(47}

imaginary par t of the Green 's function in question.
foa~(kX) is the oscillator strength for the allowed
electronic transition 0- v of the molecule P and
& (=1,2) represents the two possible values of

polarization perpendicular to the direction of prop-
agation k. In the optical region of frequencies
q(k, ~} varies slowly with ~ and may be taken as a
constant q(k, ~}=-q;.

When there are two identical molecules per unit

cell, P, p(=1, 2), then Eq. (46} takes the form

f,„(k&) and f o'„(k&) =f0'„(k&)=f,„(k&). For the an-
thracene crystal, which belongs to the monoclinic
system having two identical molecules in the unit
cell, we have'

fo"„'(kX) =fo„ll + 2 sin[k2(a+ b)]], (49)

where a, b, c are the three basis vectors of the base
crystal of which b coincides with the monoclinic
axis, X b=b c=0 and K c=accos125'.

Taking the imaginary part of Eq. (27) and its
complex conjugate, we obtain

-2m Im((5„-„,+5~2; bt ))

=u-„„,[b(e —Q;„,—e~,) + b(&u+Q„;, +&„-„,)J

+ v„-„,[~(~ —Q„"„,+ c-„„,}+&(~+Q; ) J (50)

Substitution of Eq. (50) into (47) yields

f,'„"(k&)=f,„(k&)+fo„(kA.) . (48)

In deriving Eq. (47) we have taken f,"„(kX)=f~~~(kX)

o (k, ur) = u, (k, v) + n (k, (u),

where

(51)

2

p fo"„'(k~)Et,„ Itu „„,[~(~-Q;„,——e;„,)+ b(&a+QI„, + e-„„,)]
Xy V

2
+&f„,[&(~-Q„-„,+ e-„,)+ b(&u+Q-„„,—ef„,)J). (52)

(d = k(Qf „+fP„) (53a)

(d = k(Qf„k f f,„), (53b)

respectively; positive and negative values of (d

refer to the physical processes of absorption and
emission, respectively. Thus the excitation spec-
trum consists of four energy bands wl ich have 6-
function distributions.

In the limit when n, (k) = 0, i.e. , in the absence of
electron-exciton coupling, then v~, =0, u» =1 and
u '"'(k, v) = a ',"'(k, &u) + n'*'(k, u), where

2

n,'"'(k, u) = g fo'„(kk)E„-„8c"gg(d

x[5(e —E„- )+ b(v+8„-„,)],
(54)

with the energies of excitation F.„-„,defined by Eq.
(20) describing the Davydov components of the ex-
citon states. ' Thus the excitation bands described

The expressions for the absorption coefficients
a,(k, &u) and a (k, &u) describe optical transitions for
which ~ satisfies the equations

by the expressions a, (k, u&) and o. (k, ~) will have
the same polarization directions as those of the
Davydov's components but different intensities and
energies of excitation. The amplitude u„-„, gives
a measure of the polarization;. atio between the
electron-exciton bands with energies Q~„,+ e~, and
the corresponding Davydov's components of the ex-
citon bands with energies E„-„„respectively. The
other two electron-exciton bands with energies
Q„-„,—&»-„, and scattering amplitudes v-„„, are due
entirely to the electron-exciton coupled system.
Considering that u~„,& v~„ the former two bands
are expected to dominate the latter ones. The

2 2
quantity u;„go~, is a measure of the ratio of the
intensities of the corresponding electron-exciton
bands. The corresponding energy splittings are
determined by 2ef„, given by Eq. (29).

V. GROUND-STATE ENERGY

The excitation spectrum given by the Green's
functions (25)-(27) may be represented by an ef-
fective Hamiltonian describing independent quasi-
particles in the form
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K„,= (K}+Q [(n~, + e„„,-) $f,„,$„-+(n-„„+e-„„})f„)f„ where

N, (0)&u', 3
tanh(1/p, ) 2 tanh(1/p, )

' (60b)

(55)

where the energies of excitation 9», + e-„„,are de-
termined by Eqs. (28), (29), (40), and (41). The
operators $-„„,and (-„„,describe the fields of the
quasiparticle with energies (n;„,+ e-„„,) and (n„-„,

&~„,), respectively, and satisfy Fermi-Dirac
statistics. 'The exciton b„-„„b-„„,and electron n-„„„
a-„„,operators are related with the new operators
(-„„,and $-„„,by the relations

At
bop, + bfv2 W2(uiIP+tQv++ Iv+i Ivk) t

ol vi + ol v2
= ~2(-'~ivi tiw~+ uiv~~-is~) ~

(56a)

(56b)

1
(levy [ kLN( ifVg kV2) kV+( kl g QV2)1,

v2
(57a.)

along with their complex conjugates. The inverse
transformation to Eqs. (56a) and (56b) are given by

$2
n, /o. =

4~~z

0.57$' '=4,.Z,

inh(1/p. ),

inh(1/p, ),

(61)

(62}

3 $2
W,'/o, = —— anh(1/p, ), (63)

Equation (60) is a generalization of Eq. (43) of I
for a crystal having two identical molecules per
unit cell. Eq. (60) indicates that there is a co-
herent electron-exciton state which has lower
energy than the normal exciton state provided that
there is an attractive electron-exciton interac-
tion.

To get an estimate for the gap function n. (k),
the transition temperature T', and the binding ener-
gy W,

' corresponding to the plus energy mode, we
rewrite Eqs. (40), (45), and (60) in the form

1
[»-„„,(b-„„,+ b-„„,)+ u„-„,(nk„, + n-„n)],

v2
(57b) ~,/o, = t'/4m, (64}

where the scattering amplitudes n»„, and v-„„, are
defined by Eqs. (30a) and (30b).

In Eq. (55), (X) represents the average energy of
system. To calculate (3C}, we average the Hamil-
tonian (1) for the case of a crystal having two iden-
tical molecules in the unit cell and then in the limit
of zero temperature and after making use of the
distribution functions given by Eqs. (30a)-(32b)
we obtain the following expression for the ground-
state energy:

4(E-„„.—~-„„.)'
Efv

4(E„„—(o-„„)' -I&, I' I& I'
(58)

m m

+i e ~~I exc
(65)

m being the free-electron mass and p, is deter-
mined by Eq. (42b). It is easily seen from Eq. (64)
that o, ~1 and in the absence of any experimental
data, a, will be taken as a parameter. Since we
are concerned with the region of high exciton con-
centrations we make use of the value of n= 2 x 10"
cm ' and upwards. The exciton concentration of
2 x 10" cm ' has been recently attained through op-
tical pumping in anthracene crystals. ' The com-
puted values of n, io„T', io„W',/o. , and ~,/o,
for different values of n and p, are listed in Table
I.

VI. DISCUSSION

w, =(z&, —g (n;„,+n„-„)

—,'(E~. —~~,)' 3E-„„—'~-„„}'
+

&kv. }v-

ig i2 ig p

U U (59)

To calculate Eq. (59), we make use of the same
approximations as those deriving Eqs. (40) and
(41), with the result

Wo = Wo+ Wo, (60a)

We are interested in the binding energy due to
the electron-exciton pairing, namely, in the ex-
pression W, .

We have extended the theory for the CT electron-
exciton bound states to be applicable to molecular
crystals having several molecules per unit cell.
Detailed expressions for the energies of excitation
are calculated for crystals like anthracene having
two identical molecules in the unit cell. The ex-
citation spectrum consists of four excitation bands,
two of which are modifications of the Davydov' s
doublet while the other two are caused entirely
by the electron-exciton pairing. Optical transitions
to the electron-exciton bands indicate that the elec-
tron-exciton states have the same polarization
directions but different intensities and energies
from those of the corresponding exciton bands.
The scattering amplitude u&„, describes the polari-
zation ratio, i.e., the ratio of the intensities of
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the two electron-exciton bands with energies Q-„„,
+ &„-„,and the corresponding components of the ex-
citon doublet with energies E-„„,respectively.
The polarization ratio of the electron-exciton bands
with energies Q„-„,+ a-„„, and those of 0„-„,—e~, is
given by u~, /v „„respectively.

In our calculation we have made the assumption
that the inequality (4) is satisfied and thus we have
omitted terms from the Hamiltonian (3) which de-
scribe the simultaneous creation and annihilation
of two excitations. In the case that the inequality (4)
is violated then our expressions remain again valid
provided that in all derived formulas the expression
for E"„„,given by Eq. (20b) must be replaced by
the expression E~[1~21,(k)/E~]'~', which takes
into account the fact the ratio J,(k)/'E„, is no longer
a small quantity.

The numerical results in Table I indicate that

for exciton concentrations m~ 2 x 10" cm ', the
energy-gap function is a measurable quantity pro-
vided that we are dealing with the strong-coupling
limit, i.e., when the average interaction energy is
equal or greater than the average kinetic energy
(U ~ &u, ). The last column in Table I gives the
values of ur, /o, for different exciton densities. The
values of &o,/a, indicate that the condition for the
strong coupling limit U ~ ~, can be fulfilledwitha
reasonable strength of the required interaction
U. The present experimental situation has been
outlined in II. With the improvement of the experi-
mental techniques there is the possibility of creat-
ing higher and higher exciton concentrations. The
results of the present study indicate that at exciton
densities n~2x 10" cm ', the observation of the
charge carrying electron-exciton states is feasible
in molecular organic solids.
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