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We present a general solution of a Bethe lattice with arbitrary coordination for a Hamiltonian with an
arbitrary number of degrees of freedom per site and an arbitrary number of interaction integrals. This
solution is used in conjunction with a realistic tight-binding Hamiltonian to study the effects of rings and
bond-angle fluctuations on the p-like region and gap region of the electronic density of states of amorphous
tetrahedrally bonded solids. It is shown that even for completely connected networks with no dangling bonds,
bond-angle fluctuations create well-defined localized states which lie predominantly at the top of the valence
band. These fluctuations also account for the steepening of the valence-band edge with disorder as observed
experimentally in photoemission measurements. It is shown that rings do not play a direct role in this effect.

I. INTRODUCTION

There are many important theoretical problems
in solid-state physics which remain conceptually
formidable owing to a lack of complete periodicity.
Surfaces and amorphous solids are two large fields
involving problems of this type. This is particular-
ly true in the study of amorphous solids where
Bloch’s theorem is no longer valid in any dimen-
sion and one is thus presented with a severe ob-
stacle in trying to formulate any realistic theory—
a realistic theory being one which can be compared
readily with experiment.

Recent studies of amorphous tetrahedral semi-
conductors have largely been concerned with the
structural nature of the amorphous phase and with
the effects of disorder on the electric and vibra-
tional density of states.! The density of states is a
useful theoretical tool because it is a simple well-
defined function, sensitive to both topology and
disorder.

There have been many theoretical methods de-
vised to calculate electronic state densities for
noncrystalline materials.! One very fruitful ap-
proach is the cluster-Bethe-lattice method?
(CBLM). Given a Hamiltonian, the CBLM allows
an exact solution of the state density of an infinite,
connected network of atoms in terms of the local
density of states of each atom at the center of a
small cluster of this system. The idea is the fol-
lowing. Consider any connected infinite network
of atoms with one atom chosen as a reference point.
A small cluster surrounding and including this
atom is removed from the system. A Bethe lat-
tice® is then attached to the dangling surface atoms
to simulate the effects of the original infinite sys-
tem. The Bethe lattice is an infinite aperiodic
system of atoms in the same coordination as the
original system but with no closed rings of bonds.
The reasons for using the Bethe lattice as a bound-
ary condition are simple. Mathematically, it al-
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lows, in principle, an exact solution of the local
Green’s function (hence the local density of states)
of the central atom. Physically, it maintains the
connectivity and coordination number of an infinite
system. Moreover the density of states of the
Bethe lattice is generally smooth and featureless;
consequently any structure found in the local den-
sity of states can be associated with the local
configuration of the central atom.

The procedure for attaching Bethe lattices to the
boundary of a cluster are straightforward. Thus,
the most difficult task in the CBLM is solving the
Bethe lattice itself. Until recently, Bethe lattices
have been solved only for the very simplest of
Hamiltonians, that is, simple nearest-neighbor
tight-binding Hamiltonians with one®~* or two®®
interaction parameters.

In this paper, we present a general method for
obtaining the solution of a Bethe lattice with arbi-
trary coordination for a “tight-binding-like” Ham-
iltonian with an arbitrary number of degrees of
freedom per site and an arbitrary number of in-
teraction integrals. This method is applied to
solving the Bethe lattice with arealistic six-param-
eter tight-binding Hamiltonian for a homopolar
tetrahedral solid.” This Bethe lattice is then used
in conjunction with the CBLM to study the effects
of disorder on the electronic density of states.

There are two regions of the density of states
that are of particular interest. These are the
regions of the complete filled valence band and
the region near the gap. Experimental information
about the filled valence-band region can be ob-
tained from ultraviolet® (UPS) and x-ray® (XPS)
photoemission measurements. These measure-
ments show the typical changes observed in Fig.
1(a) in going from a crystalline (dashed line) to
an amorphous (solid line) spectrum. It is con-
venient to subdivide and label some specific re-
gions in the valence states. The states at the
bottom of the valence band are mostly s-like in
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character and are thus labeled S in Fig. 1(a). The
uppermost states in the valence band are predomi-
nantly p-like (labeled P) and bonding in nature,
while the M region contains a “mixture” of s- and
p-like states. The tendency of the S and M regions
to smear in the amorphous phase is now fairly
well understood.! It is primarily caused by the
presence of five-, seven-, and eight-fold rings of
bonds in the amorphous phase. The explanation,
however, for the shifting of the P-region peak
towards E, remains unclear and controversial.’

In this paper, therefore, we shall specifically
concentrate on the p-like part of the density of
states and examine the effects of rings and bond-
angle fluctuations on the P region. Our results
will show that it is primarily the bond-angle fluc-
tuations and not the rings that can cause a sharper
P-region edge in the amorphous phase.

The region near the valence-conduction band gap
has again been studied recently with field-effect
measurements.'®:!! Typical results for amorphous
Ge or Si are sketched in Fig. 1(b). There is an
indication of localized states lying in the gap near
the valence- and conduction-band edges. How do
localized states arise? Assuming an intrinsic
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FIG. 1. (a) Sketch of the density of states of a homo-
polar tetrahedral solid as a function of energy. Amor-
phous (solid line) and crystalline (dashed line). (b)
Sketch of the logarithm of the density of states of an
amorphous tetrahedral solid in the gap region as a func-
tion of energy.
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sample, there are two possibilities: broken bonds
and fluctuations. The effects of the former are
easily understood. A broken bond creates states
which are half-occupied near the center of the gap.
With reconstructions these states can move up or
down or split into two groups. Assuming a behavior
that is similar to surfaces,'?"'® one group will re-
main near midgap while the other group will move
down and merge partially with the valence band.
The effects of fluctuations, however, are a bit more
subtle. Anderson'® was the first to show that lo-
calized states can exist in a solid by studying a
simple cubic metal with randomly fluctuating site
potentials. With the additional work of Mott,
Cohen, and others'’ it is currently generally ac-
cepted that disorder fluctuations will give rise to
localized states which are found near the band
edges of the density of states. These conclusions,
however, are only based on very generalized and
simple models. When applied to tetrahedral semi-
conductors, care must be taken. In this work, a
realistic and local study of disorder is presented.
It is shown that in amorphous tetrahedral homo-
polar solids localized states can exist without
dangling bonds, but that these states should lie
predominantly near the top of the valence band. A
discussion of the type of disorder responsible for
this is given.

The format of the paper is as follows. In Sec. II
we present a general solution to the Bethe lattice.
In Sec. III we introduce our Hamiltonian and apply
the results of Sec. II to solve the Bethe lattice.
Sections IV and V deal with the effects of ring
topologies and bond-angle variations, respectively,
on the density of states. Finally, in Sec. VI we
study how localized states can be created in con-
nected disordered tetrahedral systems.

Il. SOLUTION OF BETHE LATTICE

In this section, we present a method that reduces
the infinite, coupled equations of the Bethe-lattice
Green’s-function matrix elements to a finite small
set of equations involving the “effective” fields®
(or transfer matrices) for this Bethe lattice.
Although solutions to this finite set of equations
can be obtained in closed form for simple Hamil-
tonians, more complex Hamiltonians require nu-
merical techniques. These numerical techniques
however, are extremely simple.

We begin by assuming for simplicity that every
atom in the Bethe lattice is identical. (The solu-
tion can be straightforwardly extended to cases
where we have groups of atoms that are identical.)
We further assume each atom has N nearest neigh-
bors and »n degrees of freedom or orbitals. Fin-
ally, we assume that the interactions between the
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atoms are confined to nearest neighbors. (This
last restriction can be relaxed and treated in a
manner discussed at the end of this section.)

In Fig. 2(a) we show schematically a portion of
an infinite Bethe lattice for the case N =3. There
are no closed rings and each dot may be thought of
as an n-dimensional vector in the space of degrees
of freedom of orbitals for a given atom. (For the
case where groups of atoms are identical, each
dot would represent a group.) Alsowe adoptthe
convention that every dot is labeled by a Greek
leter @, 3,..., etc.

Now for the general case of N nearest-neighbor
dots the Green’s-function matrix-element equations
become

N
(E‘luu"Huu)Guu=1uu+Z:Hu)\G)\u; (1)

where E is the energy and H is the Hamiltonian for
the electrons. [It is easy to apply (1) to phonons by
taking E~Mw? and H —dynamical matrix.] Each
“matrix element” in (1) represents an (1 X n) matrix
and 1,, is an (#Xn) unit matrix for vy =y and an
(nxn) zero matrix for v+p.

This infinite system of equations (1) can be solved
by exploiting two important symmetries of the
Bethe-lattice structure: firstly, that every dot
can be transformed into any other dot by a fixed
set of transformation; secondly, that any two
nearest-neighbor dots are connected to each other
by only one self-avoiding path. This implies that
we can define an “effective” field (or transfer
matrix) ¢, for each inequivalent line (L) joining
any two nearest-neighbor dots that contains all
the information concerning the structure away
from this line. Thus, in Fig. 2(b) the N =3 Bethe
lattice is replaced by only one dot interacting with
three fields ¢,, ¢, and ¢.. The Green’s func-
tion G, , for this site should be identically equal
to the one with the entire Bethe lattice, by defini-

(b) (c)

FIG. 2. (a) Portion of a Bethe lattice for a threefold
coordinated system. Each dot represents an atom (or a
vector of orbitals per site. Only nearest-neighbor inter-
actions are considered. (b) The Bethe lattice repre-
sented by a single atom and three “effective” fields. (c)
The Bethe lattice represented by two atoms and four
“effective” fields.
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tion. Thus, we can write immediately for general
N,

Guu=(E-1y,=Hyy=-M)™", )
with
N
M=) Hudro s ©)
A

where L(\) =A, B,C, ..., etc.

Now this G, should be identically equal to the
one obtained by just taking two dots and replacing
the rest of the system by the corresponding fields.
In Fig. 2(c) this is shown for N =3 again. The
fields ¢, and ¢, are not always equal to ¢, and
¢g, respectively, because in general

(¢L’TL)$O! (4)

where T, transforms ¢, to ¢,. Thus we now ob-
tain

Guu=IE1yy=Hyy=M +Hy,¢p0) = Hyy
><(E'luu—Huu_}VI +H;11'uaL(u))-1H£u]-ly (5)
with

=35, fucr) - ®)
x
If we now compare Eqgs. (5) and (2), we obtain

CbL(u):(E' lvu—Huu—*W +H;11'u aL(u))-lHﬁu) (7)

and similarly

$L(u):(E'luu‘Huu'M+Huv¢L(v))-1Huv' (8)

We have now reduced the problem to the solution
of the fields ¢ and ¢ through Egs. (7) and (8).
Once the fields are known G, , and hence the local
density of states Di(E) for the pth atom in the ith
degree of freedom can be calculated from

D{(E) ==(1/m) ImG}}(E) , (9)

where G, is the (i,7) matrix element of the
(nxn)G,, matrix. In addition, the fields ¢ and ¢
may be used to attach this Bethe lattice to any
finite cluster of atoms.

In many cases Egs. (7) and (8) can be solved in
closed form. In general, however, they are easily
solved numerically by iteration.

Let us now return to the case where the interac-
tions between the atoms (or dots) is not confined
to nearest neighbors. As an example, we again
choose a system with N =3. The Bethe lattice in-
cluding second-nearest-neighbor interactions (as
dashed lines) is shown in Fig. 3(a). Note that now
the dashed and solid lines form rings of interac-
tion lines. To apply Egs. (7) and (8) to this system
we must transform this structure into a system of
groups of atoms interacting in such a way that
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FIG. 3. Transformation of a Bethe lattice of atoms
with more than first-neighbor interactions to a Bethe
lattice of groups of atoms with only first-neighbor
group interactions. (a) Structure of atoms with three
first-neighbor interactions (solid lines) and six second-
neighbor interactions (dashed lines). Note that the
presence of second-neighbor interactions introduces
rings of interaction lines and these destroy the Bethe-
lattice topology of the original system with only first-
neighbor interactions. (b) The structure in (a) may be
considered as being made up of groups of atoms as
shown here. This group can be represented as a bubble
which interacts only with its five nearest-neighbor
bubbles. (c) Bethe lattice of bubbles. Each interaction
line represents the first- and second-neighbor inter-
actions shown in (a) and (b). (d) Bubdle for the general
case of N first-neighbor interactions and some arbi-
trary number of Jth~neighbor interactions. For sim-
plicity only the first-neighbor interactions are shown.
The bubble is characterized by L= (N —~1)2/2 for |
even and L= (N—1)73/2 for I odd. (e) Bubbles in-
teract only with K+ 1= (N - 1)/+1 other first-neighbor
bubbles and form the Bethe lattice shown.

there is only one self-avoiding path between near-
est-neighbor groups (i.e., no rings of group-
group interactions). This is accomplished by
choosing the groups of atoms to be like the one
shown in Fig. 3(b). This group interacts with five
other groups and can thus be represented in terms
of bubbles as shown in Fig. 3(c). This new Bethe
lattice may now be solved using the techniques de-
scribed earlier.

This approach can be generalized to the case of
arbitrary N, and an arbitrary number of interac-
tion integrals over a range of I hops. The form
the bubble takes is shown in Fig. 3(d). The cor-
responding Bethe lattice is sketched in Fig. 3(e).

[II. APPLICATIONS TO TETRAHEDRALLY
BONDED SOLIDS

In order to study the electronic structure of
amorphous tetrahedrally bonded solids, we choose
a Hamiltonian that is simple enough to be tractable

withnonperiodic structures, yet realistic enough so
that it gives a good description of the valence elec-
trons. An excellent candidate for this is the tight-
binding Hamiltonian first discussed by Slater and
Koster.'® In this model, one s orbital (|s)) and
three p orbitals (|p,),|p,),[p.)) are placed on each
site. If only nearest-neighbor atom interactions
are included, one obtains six interaction integrals.
These may be parametrized and fit to crystalline
bulk band structures.'®*?® The results give (in eV)
for Ge

(slH|s)=E,=-6.3, (plHIp=E,=2.1,
(slH|sY=U==-1.7T, (pIH|p)=V=0.7, (10)
(plHIpp =T =17, (slH|p;)=X=1.4.

A portion of the Bethe lattice for this system is
shown in Fig. 4(a). Thus, N =4 and each dot rep-
resents the n =4 orbitals per site which are taken
to be a vector (p,,p,,p,,s). Every tetrahedron is
chosen to be in an eclipsed configuration with its
nearest neighbors and the four distinct bonds of
each atom are labeled A, B, C, and D. Thus,
there are eight effective fields for this system
which are shown in Fig. 4(b). Equation (2) for the
electronic Green’s function then becomes

Goo=(E +1gg=Hoo=M)™", (11)
where
M =H g, +H gz +H g30¢ +H 040 » (12)
with
E, 0 0 0
0 E, 0 0
Hep=\ 0 0 E, O (13)
0 0 0 E,
(a) (b)
T i
Sy B}{
= < ®

FIG. 4. (a) Portion of a Bethe lattice and choice of
coordinate system for a homopolar tetrahedral structure.
(b) This Bethe lattice may be presented as either atom 0
or atom 3 with the corresponding effective fields.
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and (a) Total
V -T -T =X )
[70)
-T v T X o
Ho = . (14) a
-T T V X
X =X =X U
. : b
It is easy to see that t}}e various Hy, s trans.form (5) Local—s j
into each other by making parity transformations on
two axes of the coordinate system. Thus, for ex- ”
ample, g
v = =y X = =X .
Hoy=Ho[" - =H02<g =etc. (15)
z - =z - =z
The fields ¢, are the unknown quantities in (11)
and can be taken to be of the form (¢) Local-p
%
a =B - -v 5
- a a
Pa(E) = A 8 > (16) /
_ﬁ B @ 14 /) 1 1 1 1 1
_,7 .)—/ 7 5 -12 -10 -8 -6 -4 -2 0 2 4

The various ¢, ,’s transform into each other in a
similar way as the corresponding H,,’s. Thus, for
example,

b =¢>A<'V N _”) =¢>B<x - ”) setc.  (17)
z - -z z =~ =z

The unknowns &, B8, v, ¥, and § are obtained by
solving (7) with the added symmetry condition

EL =T, ¢LT21: (18)

where T, is diagonal in the parity eigenvalues of
the orbitals. Equation (7) is then solved using the
numerical technique discussed in Sec. II. Equation
(11) then gives

LT, GoolE) =365 (E) + \G33(E) (19)
where

Ge™(E)=[E ~E, - 4aV+28T +7X)]*,  (20)

G(E) =[E —E, +4(3yX = 5U)]™ . (21)

The local densities of states (9) corresponding to
the local Green’s functions (19)—(21) are shown in
Fig. 5. The total density of states for the Bethe
lattice is shown at the top of the figure along with
a superimposed (dashed line) crystalline diamond
spectrum. The filled valence bands lie at negative
energies while a portion of the empty conduction
bands is shown at positive energies. The two peaks
near the bottom of the crystalline valence and con-
duction bands become smeared out in the Bethe
lattice. In addition, the gap becomes larger, but
the steep shoulder (near -2 eV) remains essential-
ly unchanged.

Energy (eV)

FIG. 5. Densities of states for the Bethe lattice using
the Hamiltonian described in the text. The filled valence
bands lie at negative energies. (a) Total density of
states with superimposed (dashed line) crystalline den-
sity of states. (b) Local density of states of the s orbi-
tals. (c) Local density of states of the p orbitals.

The local densities of states for the s orbitals
and p orbitals in the Bethe lattice are shown in
Figs. 5(b) and 5(c), respectively. As expected,
the lower-energy regions of the valence and con-
duction bands tend to be s-like “bonding” and
‘“antibonding,” respectively, while at larger ener-
gies one finds predominantly “bonding” and “anti-
bonding” p-like states, respectively.

All in all, the Bethe-lattice results tend to re-
produce most of the features observed in the ex-
perimental results in Fig. 1(a). In particular, the
smearing of states near the lower part of the den-
sity of states is now well understood and attributed
to the sensitivity of s-like electrons to topology.*
What is not reproduced, however, is the pro-
nounced shift of states in the p-like part of the
amorphous spectrum towards higher energies
which results in a steepening of the shoulder edge.
It is the effects of disorder on the p-like region,
then, that we wish to concentrate on in the next
sections.

IV. RING TOPOLOGIES

In this section, we examine the effects of ring
topologies on the local densities of states of atoms
situated on rings. For simplicity, we shall con-
centrate only on sixfold and fivefold rings. A dis-
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cussion of the results obtained will be given in N, =9AB§BD(§A +HoTpaZ apHp¥pa
Sec. IVC. - = - -
XTepHaMasZapHcZapHp) 5
A. Sixfold rings N =6p,Z4p(Hp +HcT4pZppH ¥ as
In Fig. 6 we show one sixfold ring in the diamond- XECDI_{-BABAEADHCEBDI'TA)’

structure configuration. To each dangling bond we
attach a Bethe lattice. We wish to calculate the

local density of states of atom 0. Equation (1) for Sou=eo=AL)Y,
the system then becomes

and

f:LM =(leo=AL)Y,

Goo=A" ' +H G 1o +H G 5o +AcpGoos Ay, = (100-230Hc_2—wl7c)'1 ,
G1o=HGoo +*HG 20 +AppGios Apa=(oo=ZapHcSspHe) ™",
Gzo=1ich +f—1_aGso+A_ADGzo’ (22) ¥pa =(log=Zop AahasZapHa) ")
G =HaCr 4Gt LenCs0, Tpa=(loo=Z4pHg¥paZcpHp) ™",
Gyo :I—i—AG 30 +I—1-cho + A_BDG4O ’ 0,5 = (1oo ~F o HeTaaZanHe) "
Gso=HpGoo *HcGao+ A apGsos
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(28)

(29)

It is easy to see that result (26) can be extended,

where simply, to the case where there is another simi-
- lar sixfold ring attached to bonds C and D of atom
A‘E'loo_Hoo’ (23) . . . .
0. Thus, atom O is at the intersection of two six-
Ha=A"YHo)=A""(Hy), fold rings and one can immediately write
Hy=a"Y(HE) =07 (HE), ) Goo=(log—H No=Hy Ny —HcNo —HpNp)'a™h,
(24

(30)

where N and N, are obtained from (27) and (28)
_ by letting A~C, B~D, C—~A, and D—~B. The ad-
Ho=A"YHE,) =AYHE), vantage of using (30) is that the effects of the rings

and become a bit more pronounced.

Apy=H Py +Hydy, (25)

_ - - — B. Fivefold rings
Apy=Hpdp +Hydy -

In Fig. 7 we show one fivefold ring in a flat con-
After some algebra, Eq. (22) gives figuration. It is very easy for a tetrahedral sys-

tem to form a ring like this because there is only

Goo=(loo=HaNa =Hj Ny =Acp) ™8™, (26) about a 1° difference between the ideal tetrahedral
where bond angle and the fivefold-ring bond angle. Each
atom in the ring is taken to have a similar coordi-

) nate system as atom 0 in Fig. 6. Thus, the Z di-

function equations then become

Goo =A™  +HG 1o +HG 45+ AcpGoo
G10=HG 3 +HG oo +AcpG o,

Gao=HG 3 +HG g+ AcpGao,

FIG. 6. Sixfold ring in the diamond-structure con- Gan=HG 4o +HG oo + A nnG
figuration. Bethe lattices are attached to the dangling 80 40 20 cps0r
bonds. Gy=HG 1 +HG 3+ AcpGag,

rections for each atom lie in the plane of the ring
and are directed radially outward, whereas the ¥
and ? directions lie 45° out of the plane and their
projections are shown in the figure as dashed lines.
Each atom in the ring is also bonded to two Bethe
lattices through bonds C and D which are not shown.
With this choice of coordinate systems every bond
’ in the ring is identical and labeled A. The Green’s-

(31)
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2 z"

FIG. 7. Flat fivefold ring. The z direction of the co-
ordinate system is chosen to lie in the plane of the ring.
The dashed arrows represent the projections of the x
and y components onto the plane of the ring. The primed
coordinate systems are rotated as discussed in the text.

where

H=H,S, H=A"YAH,S)", (32)
and

L(1+cosZn) Li(l-cos®m) (1N2)sinZy 0

L(1-cosZn) L(l+cosZn) -(12)sinir 0

S=
-(AN2)sinZn (1N2)sinn cosZn 0
0 0 0 1
(33)

S rotates the coordinate system of one atom into
the coordinate system of its nearest neighbor.
Equations (31) can be solved for G,, and give

Goo=(lgo=HN ~HN -Agp)~ A7, (34)
where
N=T(B +B¥BABB), (35)
N=T(B+BVBABB),
and
B=Z¢pH, §=ECD17,
A=(14,-BB)™', KX=(1,-BB)™", (36)

¥=(1,-BAB)™', ¥=(1,~-BAB)™",
r=(1,-B¥B)™', T=(1,,-B¥B)" .

Again, as for the sixfold ring, it is easy to ex-
tend result (34) to the case where atom 0 is bonded

to two flat fivefold rings lying perpendicular to each

other. The result is
Goo=14o = (HN +HN) = (H'N’ +H'N’)]*A"!, (37)

where

(H'N’ +/'N") =(HN +H N) <y”'y) . (38)
Va4

C. Results

The local p-like densities of states of an atom at
the intersection of two sixfold and two fivefold rings
(with Bethe lattices attached outside) are shown in
Figs. 8(a) and 8(b), respectively. These are ob-
tained by taking the trace over the p orbitals in
Egs. (30) and (37), respectively. The shape of the
bonding p-like region in Fig. 8(a) is rather remi-
niscent of the shape of the corresponding region
in the crystalline spectrum 5(a). This is under-
standable since the crystal is composed of sixfold
rings of exactly the same type as in Fig. 6. More-
over, it is interesting that only a small number of
rings are needed to reproduce this shape.

On the other hand, the spectrum in Fig. 8(b)
tends to have states concentrated near the center
of the bonding p-like bump. This, however, does
not shift states up to the top of the band and con-
sequently does not reproduce the steepening of the
amorphous spectrum edge. One obtains similar
results even with puckered fivefold rings. These
can be made as in Fig. 6 by removing atom 3 and
connecting atoms 2 and 4 directly. (This also sug-
gests therefore that the effects of dihedral angles
are not very important.) Since the shape of a den-

(a) Six-told rings
% .
o) PO
a ' Se--
! N
M \
'
) .
u 1= -~ oL 1
(b) Five-fold rings
)
o R
a ' " .
. AR A l'\\
' N '
! Rl T A S

I
-12 -10 -8 -6 -4 -2 o 2 4
Energy t(eVv)

FIG. 8. Local densities of states for an atom at the
intersection of two rings with Bethe lattices attached
outside. (a) Trace over p-like states (solid line} and
s-like states (dashed line) for sixfold rings. () Trace
over p-like states (solid line) and s-like states (dashed
line) for fivefold rings.
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sity-of-states spectrum depends mostly on the
smallest rings present, it seems reasonable to
suggest that higher-order rings would not be able
to account for the experimental observations either.

Finally, for completeness, the local s-like den-
sities of states are also shown in Fig. 8 (as dashed
lines). As expected, the sixfold-ring versus five-
fold-ring character of the spectra are clearly vis-
ible.!

V. BOND-ANGLE VARIATIONS

In this section, we examine variations of bond
angles from the ideal tetrahedral value and their
effects on the density of states. The procedure is
to pick an atom with a disordered configuration of
bonds as a reference atom and attach an ideal
Bethe lattice to each dangling bond. Since there
are no rings of bonds, the local density of states

J

of the reference atom contains information purely
about the effects of bond-angle disorder.

We take the reference atom to be at the origin of
our coordinate system. The four unit vectors cor-
responding to the four bond directions of the dis-
ordered tetrahedron are given by

ny =G, nbnt), i=1,2,3,4. (39)

To attach a Bethe lattice to a given bond of the
reference atom, we first rotate the coordinate
system so that the bond lies along the (111) direc-
tion, attach a Bethe lattice with interaction H, and
field ¢, [as in Fig. 4(a)] and then, rotate back to
the original position. Thus the local Green’s func-
tion G, of the reference atom is given by

Goo:<A—i:(U;lVi)Hoqu(Ui—lVi)T)-l’ (40)

i

where

1 1 1
U; = V3ni V3n Il ’ (41)
(0 =ni)/|sin6,| (i —ni)/|sing;| (o —ni)/|sing,|
(L//3)(@n +204 =) (1/V3)(@ni +2nb=ni) (1/V3) (@0 +205 =)
e ' ! 1 ; (42)
(n% =n})/ | sing,| (ni =ni)/|sing,| (n} =ni)/|sing;|
with now clearly be understood in terms of bond-angle
cosh, =1/V3 (n} + n; +ni). (43) variations.

Since H, and ¢, are known, G,, may be calculat-
ed for any disordered tetrahedron.

There are two well-known structural models for
amorphous tetrahedrally coordinated solids. These
are the Polk-Boudreaux®' and Connell-Temkin??
random-network models. There is also a crystal-
line high-pressure form (ST-12)! which contains
atoms in disordered tetrahedral arrangements. In
Fig. 9, we show the trace of G, over the p orbitals
for atoms at the center of the Polk-Boudreaux and
Conell-Temkin models, and for an atom of type II
in the ST-12 structure. Superimposed (as dashed
lines) are the ideal Bethe-lattice results. (The s-
like densities of states are not shown because they
give spectra which are virtually identical to those
of the Bethe lattice.) It is clear, that for all cases,
there is a net shift of states to higher energies and
a corresponding steepening of the valence-band
edge. This is particularly true for the ST-12 spec-
trum in Fig. 9(c). The large shift of states to the
top of the valence-band edge is precisely what is
observed for ST-12 using pseudopotentials.! It may

To get more insight into the effects of bond-angle
fluctuations, it is useful to have a way of treating
any disordered tetrahedron. To do this we “ex-
pand” a disordered tetrahedron into normal mode-
like configurations. Since the bond lengths  are
held fixed, one can envision a disordered tetra-
hedron with the interior atom at the center of a
sphere of radius b and its four nearest neighbors
constrained to lie somewhere on the surface of the
sphere. Out of the nine normal modes for a tetra-
hedron, only five can be generated to satisfy these
constraints. These modes would be composed of
two configurations of symmetry E and three of sym-
metry F,. Using Fig. 4(a) a typical E configuration
would correspond to a clockwise twisting about the
Z axis of bonds A and B and a counterclockwise
twisting of bonds C and D. A typical F, configur-
ation would have the A -B bond-angle decrease and
the C-D bond-angle increase.

The distortions from a perfect tetrahedron can
now be written in terms of these five configura-
tions. Indeed, if the distortions are small, one
may even write
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FIG. 9. Trace of p-like densities of states for an
atom at the center of a distorted tetrahedral unit with
Bethe lattices attached outside. (a) Atom in the con-
figuration of atom No. 234 in the Polk-Boudreaux ran-
dom-network model. (b) Atom in the configuration of
atom No. 1 in the Connell- Temkin randon-network
model. (c) Atom in the configuration of atom type II in
the ST-12 structure. The dashed lines represent the
results of an atom in an undistorted tetrahedron (i.e.,
Bethe lattice).

Do(E,T) =D,(E, 0)+ § 7 Scl:c;:[DO(E, C,)-D,(E,0)],
t=1 i=
(44)

where Dy(E,7) is the local density of states for

the central atom 0 when the four nearest neighbors
are at generalized coordinate positions T ={r,r,,
...,7r4 with respect to the ideal tetrahedron. The
vector E" ={C1,3C2ps++-,Cs,} represents the com-
ponents of a normal-mode configuration » along
the generalized coordinate axes. Thus, D(E, 6,,)
represents the local state density of atom O for a
tetrahedron in the nth normal-mode configuration.
Since Dy(E, C,) is identical for any mode of the
same symmetry, there are only two distinct state
density functions. These are shown in Fig. 10 for
the F, and F configurations. The F, spectrum cor-
responds to £20° changes in two bond angles. The
E spectrum is for a configuration with a net twist
of 20° Although the precise shape of D((E,C,)
depends on the amount of the distortion in a given
normal-mode configuration we are only interested

symmetry E. Twist of 20°. Bethe-lattice results shown
as dashed lines.

in observing trends. We note that both give simi-
lar results with a steepening of the p-like band
edge.

This fact along with (44) suggests that any small
bond angle distortions from the ideal tetrahedron
will steepen the p-like band edge. This can be
understood in terms of a weakening of the p-p’
bonding interaction and a shift of occupied p-like
states to lower binding energies. In fact, if the
distortions were large enough, one might even ex-
pect some states to pop out of the valence band in-
to the gap. Indeed, this is what occurs and is the
subject of Sec. VI.

VI. LOCALIZED STATES

Since the work of Anderson,’ it has been known
that fluctuations in disordered solids can give rise
to localized states which would generally lie near
the band edges. The character and precise loca-
tion of these states, however, would depend on the
nature of the fluctuations.

In amorphous tetrahedrally bonded solids, it is
known experimentally'” that the atoms retain their
fourfold coordination, apart from some small num-
ber of broken bonds. Moreover, the bond lengths
in the amorphous phase are virtually unchanged
from their crystalline values. The largest fluctu-
ations then in a completed connected structure
would arise from bond-angle variations which are
typically around 10 to £20°

In Sec. V the effects of these fluctuations were
studied explicitly in a nonstatistical fashion for
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infinite completely connected networks. The states
at the top of the valence bands in Figs. 9 and 10 are
localized near the disordered site for each system.
They are more “resonant-like” in nature, however,
since they are degenerate with the bulk Bethe-lat-
tice density-of-states spectrum. Nevertheless
bond-angle distortions can create “bonafide” lo-
calized states which exist in the gap, even for a
completely connected network of atoms. This de-
pends on the nature and amount of the distortion
from a perfect tetrahedron. In fact, it is the
amount of E character in the distortion that is of
crucial importance.

The E configuration tends to flatten out the dis-
torted tetrahedron and make it more “two dimen-
sional.” The set of basis orbitals on the central
atom, however, is explicitly three dimensional.
Consequently, the bonding interaction of one p
orbital can be severely reduced in such a struc-
ture. As an extreme example, consider the case
of an E configuration where the central atom and
its four nearest neighbors form a structure that
is completely flat. For simplicity, we also take
the bond angles in the plane to be 90°. The local
density of states of the central atom with non-
distorted Bethe lattices attached outside is shown
in Fig. 11(a). It is clear that the bonding part of
the p orbital perpendicular to the plane has moved
out of the valence band and merged with its anti-
bonding part at an energy near the free-atom p-
orbital energy E,=2.1 eV. With a more moderate
distortion it would be possible to have the bonding
part of this orbital lie in the gap. This is precisely
what happens for an atom with the same distortion
as type I atoms in the ST-12 structure. The local
state density is shown in Fig. 11(b). Type I atoms
exist naturally in a configuration which is mostly
of type E. The figure shows one localized state
which pops out of the filled valence band. In the
crystal, of course, these states would not exist in
the gap, but would form bands which would make up
the top of the crystalline valence band.

Thus, even for a completely connected system
with no bond-length variations, certain types of
bond-angle distortions can create localized states
which will be found near or in the gap. What is
interesting is that our model suggests that these
states will only exist near the fop of the valence
band.

Since the ST-12 structure exists in nature it
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FIG. 11. Trace of p-like densities of states for an
atom at the center of a distorted tetrahedral unit with
Bethe lattices attached outside. (a) Flat 90° bond-angle
configuration. The bonding and antibonding states cor-
responding to the perpendicular p orbital coalesce near
2.0 eV. (b) Configuration of atom type I in the ST-12
structure. A bona fide localized state produced by bond-
angle distortions is represented by a 6 function in the
density of states.

seems reasonable to assume that distortions simi-
lar to and larger than those of type I atoms can
also be found in the amorphous phase. These vari-
ous distorted atoms would then create a region of
localized states lying in the gap primarily near

the top of the valence band. The bottom of the con-
duction band and valence band are both s-like in
nature and are influenced primarily by the fluctu-
ations in second-nearest-neighbor interactions
caused by the bond-angle distortions. These in-
teractions have been neglected in this study be-
cause the localized nature of the electrons make
the effect of these second-neighbor fluctuations
less important.

The experimental situation is yet unclear and it
is rather difficult to say what is going on precisely
in Fig. 1(b). Nevertheless, mobility measurements
on hydrogenated amorphous!® Si (which should have
a negligible number of dangling bonds) show a
very low hole mobility. This would seem to be
consistent with the predictions of our model for
local trapping centers lying primarily at the top
of the valence band.
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