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Inelastic light scattering from non-zone-center phonons in the magnetic phases of the europium

chalcogenides is interpreted in terms of two-spin correlation functions. Calculations of the Raman line shape
in paramagnetic EuS are presented in addition to predictions of the temperature dependence of the centroid
and integrated intensities of the first-order Raman spectra of all four europium chalcogenides. In the critical
region, analytical expressions which relate the temperature dependence of the integrated intensity to the
correlation length v are derived. The calculations make use of a formalism which relates the Raman and
conductivity tensors. The symmetry operations of time reversal and spatial inversion are used to show that
the scattering tensor arising from a one-phonon —one-spin mechanism is symmetric under the interchange of
the incident and scattered photons. The results are compared with existing experiments and the temperature
dependence of the characteristic spin frequency in paramagnetic EuS is inferred.

Inelastic light scattering is a valuable tool for
studying the elementary excitations of the many-
body systems (e.g. , electrons, phonons, spins)
found in magnetic semiconductors. The dynamics
of the phonon system are better understood, at
least in principle, than those of the electronic and/
or spin systems, the latter being a subject of cur-
rent investigation. ' ' Most theories for the be-
havior of ferromagnetic spin systems have been
developed for the Heisenberg ferromagnet" of
which the magnetic semiconductors EuO and EuS
are the best known examples. Because the re-
maining europium ehalcogenides, EuSe and EuTe,
exhibit a variety of magnetic phases at various
values of temperature and external field, these
materials, which crystallize in the simple NaCl
structure, are useful for the study of the statics
and dynamics of spin systems. Recent experi-
mental studies of Raman scattering from phonons
in the europium chalcogenides have shown that the
Raman spectrum of these materials is magnetic-
phase dependent' "and that near resonance the
interactions of all three systems —the electrons,
phonons, and spins —must be considered in order
to understand the Raman spectra. '" In this paper,
we interpret the symmetrically polarized, off-
resonance Raman scattering from non-zone-center
phonons in these materials, in terms of the two-
spin correlation functions of EuO, EuS, Eu Te, and
EuSe.

Previous discussions of light-scattering experi-
ments in magnetic insulators and semiconductors
have been concerned with either the long-wave-
length components of the two-spin correlation
function (one-magnon scattering)"'" or with mea-
surements of the four-spin correlation function
(two-magnon scattering). " The latter quantity is

difficult to calculate and to relate simply to the
physical properties of the material. On the other
hand, the two-spin correlation function, which is
related to the response of the spins to a space-
and time-varying magnetic field, is simpler to
calculate and contains direct information about the
magnetic state. The two-spin correlation function
is shown to be related to the Raman process by a
mechanism involving one spin and one phonon,
through spin-orbit coupling.

Section I of this paper contains a review of the
quantum-mechanical treatment of low-energy
(~200 mV) inelastic light scattering from thermal
fluctuations in semiconductors and insulators, in
terms of scattering tensors and correlation func-
tions. "'" In order to analyze the symmetry of
the scattering, the expressions for the scattered
intensity are then related to the dielectric re-
sponse (conductivity) of the electrons (energy gap
~1 eV) which interact with the thermal subsystems
such as spins or phonons.

In Sec. II of the paper, we consider the scatter-
ing tensor for spin and/or phonon scattering in
centrosymmetric magnetic semiconductors. We
use the results of Sec. I to show that mechanisms
linear in the lattice displacement and in the spin,
give rise to a scattering tensor that is symmetric
under the interchange of the incident and scattered
photon polarizations. Selection rules for several
other spin-phonon mechanisms are also discussed.

This formalism is used in Sec. III, where the
properties of the symmetrically polarized Raman
scattering from non-zone-center phonons are
calculated and related to the two-spin correlation
function. At high temperatures (T» T, ), the first-
order Raman spectrum is calculated, with results
presented for EuS. The temperature dependence
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of the broadline integrated intensity and centroid
is calculated in the temperature range T =T, for
all four europium chalcogenides using mean-
field theory. The analytical results show that
the integrated intensity is related to the cor-
relation length. In addition, the sharp lines
observed in the ordered (T «T, ) magnetic'"
phases of these materials, where wave-vector-
independent Raman scattering is symmetry for-
bidden, are interpreted in terms of the elastic
"Bragg'* part of the two-spin correlation function,
suggesting a method for measuring the sublattice
magnetization in antif erromagnets. The relation
of these calculations to experiment is discussed
in Sec. IV, where the experimental data in EuS
are used to infer the temperature dependence of
the width of the spectral shape function. In addi-
tion, the relation of the present work to the cal-
culations of Suzuki" and Sakai and Tachiki" is
discussed.

I (r) = g (e/~nc) P„t&(r —r„) . (5)
n

electrons

In Eqs. (4) and (5), A( r) is the vector potential of

the radiation and P„ is the momentum operator of

the nth electron. The subscripts i and s stand for
the incident and scattered fields, respectively.
%e have neglected the A' term in the electron-
radiation interaction, since its contribution to
inelastic light scattering has been shown to be
small. "

The perturbation Hamiltonian H' neglects any
radiation-thermal-subsystem interactions, as well
as any intersubsystem couplings, and includes
only electron-radiation and electron-subsystem
terms. The latter interactions are taken to be
proportional to a subsystem field operator denoted

by Q„(r). For example, the spin-orbit interaction
couples the electron angular momentum to the
localized spins and Q„=5(r) where

I. INELASTIC LIGHT SCATTERING AND KUBO
CONDUCTIVITY FORMULA

S(r) = g 3,„r&(r —R(le)) . (6)

H=HO+ H',

HO=H, O+H;+H +H~+H~. . . ,

ef ee eA eB ' '

(I)

(2)

(3)

Here, H„ is the Hamiltonian of the electrons, in-
cluding all electron-electron interactions, but
neglecting any couplings to the photons or thermal
subsystems. Similarly, the Hamiltonians H„and
H~ describe fully the quantum-mechanical systems
A and B. For example, H„=H . might consist of
the Heisenberg Hamiltonian and the interaction
of the spins with an external magnetic field, while H~
= H»„would include the harmonic-oscillator
Hamiltonian describing the phonons. H,. and H,
are the Hamiltonians governing the incident and
scattered radiation fields, while H„and H„, in-
cluded in H', are given by

A. Scattering tensors and correlation functions

The quantum-mechanical treatment of inelastic
light scattering from thermal fluctuations utilizes
perturbation theory to calculate the transition
probability, which is proportional to the scattered
intensity. The system Hamiltonian (H, ) is the
sum of the Hamiltonians of the noninteracting pho-
tons, electrons, and thermal subsystems denoted
by A, B, etc. while the perturbation Hamiltonian
(H') describes the interactions of the electrons
with the radiation and with the thermal subsystems:

Similarly, the electron-phonon interaction is pro-
portional to the lattice displacement operator Q~
=U(r) where

x e' ~ ' 5(r —R(t~) }. (7)

g(p, &u)= (Q (-p, 0)Q (-p, t))e '"'dt

x [&tg ~ (k; —kK, (d;, &de) ~ (6)

The momentum and energy transfer p and ~, are
defined by

In Eqs. (6) and (7), a labels the vector components
of the polarization vector w, while j labels the
phonon branch, l the primitive unit cell, and a the
atom of mass M„within the primitive unit cell.
The normal coordinate, Q(q j), where q is the
wave vector defined in the first Brillouin zone,
can be written as a linear combination of phonon
creation and annihilation operators. "

Third-order perturbation theory yields the
transition probability for the excitation of one sub-
system in inelastic light scattering (e.g. , one-
phonon or one-magnon processes). The scatter-
ing cross section, for scattering a photon from a
state with energy (momentum) h &u, (8'k, ), to a
state with energy (momentum) Ace, (Irk, ), is pro-
portional to the dynamic structure factor

H„.&,&

= A,.&,&(r). j(r)dr,

where

(4) p=k,. -%,
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(d = (d —(dt S ' (10)

U~ k, O)Ug -k, t)

et&j (k )t e-i o j(k )t[,[k) ~ 1[+ ,[k)), [12[
)J (d )

where ~.(q) is the frequency of a phonon of branch
j and wave vector q, while n j{q) is the Bose oecu-

In the expression for S(p, &u), ( ) is a thermal
average, and Q~(p, t) is the Fourier transform of
the B-subsystem field operator in the Heisenberg
representation, where

Q (I) e[H~ Q ((})e- gt

For example, for the lattice displacement opera-
tors, ';.he correlation functions are"

pation factor. The tensor It, ,~ in Eq. (8) consists
of a ground-state expectation value (for kT «1 eV)
of electronic operators with symmetries given by
the product of the incident and scattered photon
polarization vectors 7,- and e., and the subsystem
operator Q~ of wave vector p. Explicit forms for
X for one-phonon and one-magnon scattering in
terms of electronic matrix elements are given by
Loudon. "'-"

Higher-order perturbation expansions for the
transition probability yield expressions describing
the excitation of two (or more) subsystems. If the
interference between the various orders can be
neglected (valid if one is weak or in a different
frequency range), the dynamic structure factor
describing the excitation of subsystems A and J3
can be written

8(p, ~) = p «e '"(Q', (-p+ q, 0)Q~(-p+ q, &))(Q,'(-q, 0}Q,(-q, &)) I X;.»(k; -&., q, ~;, ~~ ~,) I'.

Here, we have factored the correlation function in
accordance with the neglect of any direct A. -B in-
teractions. In the approximation that the sub-
system energies can be neglected relative to the
photon and electronic energies {valid away from
the resonance peaks), the scattering tensor is in-
dependent of the state of the subsystems, and in-
volves only the electronic and photon states. The
thermal properties of the scattering are then de-
scribed by the correlations functions, while the
symmetry of the scattering as well as its depen-
dence on incident photon energy is given by the

scattering tensor.
As an example, we consider the fourth-order

perturbation term using the spin-orbit and elec-
tron-phonon interactions in H', to obtain a term
describing the excitation of both the phonon and
spin systems by the radiation coupled to the elec-
trons which are coupled to these thermal subsys-
tems. " In the approximation that the spin and
phonon energies can be neglected relative to the
electronic energies involved, the dynamic struc-
ture factor [Eq. (13)J for Stokes scattering, can be
written

8(p, [d) = g [n, (q}+1J dte '[ &' "'I'(S, (p+q, 0}S,(-p —q, I)) [y~„., (p, q, ~,. )X,.„,(p, q, [[[,.)]/[[[,.(q) .
ja

Here, the first factor comes from the phonon crea, —

tion part of the phonon correlation function of Eq.
(12). S, (k, I) is the Fourier transform of the local-
ized spin operator (a =@,y, z) of Eq. (6) in the
Heisenberg representation. The scattering tensor
transforms as the direct product of the polar vec-
tors describing the incident and scattered electric
fields, the phonon polarization vector, and an
axial vector in the o direction. Although similar
expressions can be written for one-phonon-two-
spin processes, using a different physical mechan-
ism, ""the discussion of Sec. II will show that
the one-phonon-one-spin and the one-phonon-two-
spin mechanisms can be experimentally identified
by their polarization selection rules. Hence, the
two processes do not interfere in certain scatter-
ing geometries, enabling the direct comparison of
the one-phonon —one-spin calculation with experi-
ment.

8. Symmetry of the conductivity tensor

While the explicit expressions for the scattering
tensors derived from the perturbation Hamiltonians
can be used to analyze the symmetry of the scatter-
ing, it is physica, lly meaningful to obtain these
properties by relating the tensors to other, better
known, properties of the electronic system such
as the conductivity. By calculating the scattering
intensity for elastic scattering, where the thermal
subsystems are treated like classical, rigid poten-
tials, one can identify the inelastic scattering ten-
sors with terms in the expansion of the conduc-
tivity given by the Kubo formula. " The calculation
of the elastic scattering amplitude proceeds by
neglecting the time dependence of the subsystem
operators since the subsystem energies are much
smaller than both the electronic energy gaps in
insulators and semiconductors and the optical
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photon energies. The system Hamiltonian is then
taken to be

Ho=H +H]+H, ,

where H, includes the interaction of the electrons
with the "external fields" (thermal subsystems)
so that

He HeO+ HeA + eB + (16)

The interaction Hamiltonian H' consists of only
the electron-radiation interactions H„.+ H„, all
other interactions having been included in H, .
Since the thermal subsystems are assumed to be
time independent, low-energy scattering, where
the electrons remain in their ground state, is
elastic. The error involved in this approximation
is of the order of (see the Appendix)

wsuhsyssemy electron suhsysremy photon (17)

and is of the order of 0.01 for typical materials.
The changes in the photon polarization and momen-
tum are due to the fact that the electronic system
has lower symmetry when the electron-field (sub-
system) interactions are included in H, . The
elastic scattering amplitude is given by the con-
ductivity tensor

v, ,(k, , -k„&d,.)=
neo

e' s e ([j,(k, , 0),j,(-k„ t) J) dt

e' '
s(cky, , -tt„l)dt. (18)

o*,,$, , -k„ i) = o„.(k„-k;, I) . -(19)

The conductivity tensor is related to the dielectric
constant by e, ,= e',.", + (4vi/&u)c, , In Eq. (18),
j (k, t) is the n component of the Fourier trans-
form of the current operator for the electronic
system in Heisenberg picture, including all elec-
tron-"external field" (subsystem) interactions. "
(We have neglected the A' term in H„and H„).
The square brackets signify a commutator, while
the expectation value, which is only over the elec-
tron coordinates (the subsystems are treated like
classical fields), is equivalent to a ground-state
expectation value for k~r «1 eV. The conductivity
tensor of Eq. (18) represents the response at
wave vector%, and frequency u&,. of the electrons
(including all interactions with "external fields"
A, B.. . ) to an incident electric field with polar-
ization 2&, wave vector k, , and frequency ro,. in
the approximation that the subsystem energies
are neglected. By manipulation of the commutator
in Eq. (18) one can show that the symmetry of the
conductivity tensor under the interchange of the
incident and scattered photons is determined by
the relation

= g Q(0i)x;., (0 I) (20)

where the quantities are defined in Sec. I. The ten-
sor X,.„(0,t) corresponds to the temporal Fourier
transform of the Raman tensor in the treatment of
inelastic scattering given in Eq. (8). Since the
phonon normal coordinate and polarization vector
satisfy"

w„(lcgj) =w„*(K~ -kj),
(21)

and since the phonon polarization vector for % = 0
is invariant under time-reversal symmetry, one
sees that the application of Eq. (19) to this term
in the expansion implies that the one-phonon Ra-
man tensor is symmetric under the interchange of
the incident and scattered polarizations (symmet-
rically polarized). Using the antisymmetry of the
spin operator under time reversal, one can simi-
larly prove that one-magnon Raman scattering is

II. SYMMETRY OF SPIN-PHONON SCATTERING

A. Scattering and conductivity tensors

In the approximation that the subsystem energies
can be neglected, the inelastic scattering tensors
of Eqs. (8) and (13) can be identified with terms in
the perturbation expansion of the conductivity that
are linear in Q~ and QA Q~, respectively. The con-
ductivity tensor, as defined, is the linear response
to the radiation field, but is exact to all orders in
the electron-subsystem eouplings in the approxi-
mation that the subsystem energies are neglected.
Consequently, o, , can be expanded using perturba-
tion theory to evaluate the commutator of Eq. (18).
However, if the exact matrix elements are un-
known, one can still write a phenomenological
expansion of o, , in powers of the field operators
Q„, etc. Since the terms of this expansion are
written as the products of external fields and ten-
sors (which can be evaluated as phenomenological
representations of the matrix elements) which de-
pend only on the state of the ba.re IH„of Eq. (2) J
electronic system, Eq. (19) is applicable to each
term in the expansion with the constraint that the
electron-thermal-subsystem interaction Hamil-
tonian be Hermitian.

A simple example of the use of Eq. (19) to deter-
mine the symmetry of the scattering under the
interchange of the incident and scattered polariza-
tions is its application to phonon scattering. In the
dipole (k,. =k, = 0) approximation, the term in the
conductivity tensor proportional to U(r) is

o, ,(t) = P wo(h(0j)Q(0j)X, e„(R(IK), I)



THEORY OF SPIN-DISORDER RAMAN SCATTERING IN. . . 2753

antisymmetric under the interchange of the incident
and scattered polarizations. These selection rules
have been predicted theoretically"'" and verified
experimentally. " They are approximate selection
rules that are valid away from sharp resonance
peaks in accordance with the assumptions neces-
sary to relate the inelastic scattering tensor to the
conductivity.

B. Application to spin-phonon scattering

y, „,(q, f)= g exp{i' ~ [R(l'0) —R(l g I )
Ke

xw (Kl-qj)x, ,„,(R(f'0) —R(lp, t) . (23)

In this expression se„ is the a component of the
polarization vector w defined above, while l and l'
label the primitive unit cell, and ~ the type of
atom within it, with the magnetic atom at ~=0.
Maradudin et cl."prove that for crystals with

every ion at a center of inversion

w ( xlqj) = w (v I-q j) . (24)

+ S.(q.)Q(q. j)X;...(-q. , ~), (22)

where we have included "waves" of both ~, in ac-
cordance with the requirement of the Hermiticity
of the interaction Hamiltonians (equivalent to re-
quiring the spin and phonon fields be real). In Eq.
(22), g;„,(q„ f) can be identified with the Fourier
transform of the scattering tensor of Eq. (14) for
the one-phonon-one-spin process, in the approxi-
mation that the spin and phonon energies are neg-
lected. The scattering tensor can then be written

Another implication of Eq. (19) is the imposition
of symmetry requirements on spin-phonon scatter-
ing in materials with one magnetic ion per unit
cell and with a center of inversion at each atomic
site. In particular, in such materials, in the limit
k,. =k, =0, mechanisms linear or quadratic in both
the lattice displacements and spins yield symmet-
ric scattering tensors, while those linear in the
spin (lattice displacement) and quadratic in the lat-
tice displacement (spin) are antisymmetric under
the interchange of the incident and scattered polar-
izations. Wave-vector-dependent processes, lin-
ear in p=k, -R„have the opposite selection rules,
while spin and wave-vector-independent two-pho-
non scattering is symmetric. These selection
rules, which are related to those given by Portigal
and Burstein" for magnetospatial effects, enable
the separation of one-phonon-one-spin spectra
from the one-phonon-two-spin spectra by their
polarization.

As an example of the utility of Eq. (19) in deter-
mining the symmetry of the scattering, we con-
sider the derivation of the symmetry of the one-
phonon-one-spin terms in the expansion of the con-
ductivity in the dipole approximation. Since the
properties of the scattering tensor are independent
of the state of the spin or phonon systems, we con-
sider a term in the expansion of 0,.„ involving the
interaction of the electrons with a phonon "field"
of wave vector q, and branch j and with a spin
"field" of wave vector -q, (translational symme-
try dictates that the phonon and spin wave vectors
be equal and opposite). For this case

o;,(&) = &.(q.)Q(-q. j)X;...(q. , t)

Using this property, Eq. (21), and the property
that

S.(q) = S.*(-q), (25)

one can show that the invariance of the scattering
tensor under inversion symmetry and the imposi-
tion of Eq. (19) requires

Xgsjg= Xsg~o ~ (26)

demonstrating the symmetry of the one-phonon-
one-spin scattering tensor. A similar proof can
be applied to the other cases mentioned above to
derive the symmetries summarized in Table I.
These results can also be derived from explicit
considerations of the matrix elements as shown
in the Appendix.

III. APPLICATION TO RAMAN SCATTERING IN THE
EU ROPIUM CHALCOGEN IDES

TABLE I. Symmetry of inelastic light scattering in
centrosymmetric magnetic insulators and semiconduc-
tors in dipole approximation.

Single
excitation one-spin two-spin

Single excitation
1. phonon
2 phonon

A
S
A

S
A
S

S, symmetric polarization pis=psc

A, antisymmetric polarization y; = —y;, y; =0 if i=s

~ Wave-vector-dependent scatter ing, l inca r in p = k; —k~
has opposite selection rules for spin-phonon processes.
For the range of validity of these selection rules, see the
Appendix.

A. Evaluation of dynamic structure factor

Symmetric (7,

llew,

) spin-dependent "broadline"
scattering has been observed in the NaCl-struc-
ture europium chalcogenides where first-order
wave-vector-independent Raman scattering is sym-
metry forbidden. ' " Since wave-vector-dependent
(k, , k, WO) LO-phonon scattering depends on reso-
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nant enhancement, " it can be separated from the
broadline process, involving the entire LO branch,
by tuning the incident frequency off resonance.
The wave-vector-independent symmetrically
polarized broadline scattering can be analyzed
using Eq. (14), while the antisymmetrically polar-
ized scattering requires the use of the one-phonon-
two-spin mechanism and the evaluation of a four-
spin correlation function. For Stokes scattering
from the LQ branch in the dipole approximation,
the dynamic structure factor for wave-vector-
independent one-phonon-one-spin scattering is

S(01 (u) = Q
o,o'
i= LO

dt exp[-i[(u —(u, (q) ji'I

x &S.(-q, o)S. (q, i))

x [n((u,.(q))+ 1]f,.„.(q, (u, ) . (27)

In Eq. (27), f is a form factor given by the quotient
of the square of the Raman tensor and the phonon

frequency where

f,....= Ix;...(q, ~;) I'/~;(q) (28)

The temperature dependence of the scattering at
low temperatures where n(&o„o(q)}=0, is thus
governed by the Fourier transform of the spin-
spin correlation function.

To evaluate Eq. (27), we use a Fourier expan-
sion for the Raman tensors and phonon frequency
spectrum, "treating the LO branch as nondegener-
ate. This approximation, valid away from the I"

point (qr = 0) in the NaC1 structure, is justified
since inversion symmetry dicatates that the Ra-
man tensor of Eq. (27) goes to zero as q goes to
zero. In addition, we assume that the LO polar-
ization vectors transform as components of polar
vectors in the direction of q. Using these approxi-
mations, we find that the Raman tensor for scat-
tering with the incident and scattered radiation
polarized along the crystal axis (i = s =x, y, z) is
given by

X„.,(q, ~,. ) = (I/q)[(oq, 6, ,+ Pq, 6, ,) sin-,' q, a

—(p q, 6, , + oq„6, ,) sin-, q, a

+ y(q, 6, , —q, 6, „)sin-,'q, a]. (29a)

electronic matrix elements and energies, and co,

The expansion takes as its origin the magnetic
ion and is truncated at the nearest neighbor —the
chalcogenide ion. Symmetry dictates that the
zeroth-order term vanishes, implying that the
first nonvanishing contribution to q-dependent
phonon scattering in these materials is due to the
spin-electron-phonon couplings involving the
europium ion and its nearest neighbor. The stan-
dard Fourier expansion for the phonon frequency,
calculated with the EuX molecule at the origin
and truncated at the first lattice vector, yields

&u', o(q) = uP(L) + —,'[~'(F) —&u'(L) J

x [cos-,'q, a cos-,' q, a + coszq a cos q a

+ coszq, a cos-,'q„aj .

The constants in this expression are evaluated
from the experimental data of Ref. 25 for the 1
point LO frequency. The L point [aqua

= n(1, 1, 1)J
has been assigned to the peak of the broadline, '
consistent with both our calculations and the ex-
perimental evidence of Ref. 8. The parameters
used in our calculations are listed in Table II.
From Eq. (29a), it is evident that for zz polariza-
tion, the Raman tensor vanished along the [100]
and [110]axes, while the contributions from the
[111J, [011], and [101]axes result in the same
combination of the constants, P+ u. For xy polar-
ization, there is a contribution from the [100] and
[010]directions in addition to the ones contributing
to the zz spectrum, but with different constants.
The sum over q is calculated by the numerical
method of Gilat and Bohlin. "

In addition to the Raman tensor, the scattering
intensity depends on the two-spin correlation func-
tion. In general, the two-spin correlation function
can be written'

(S,(-q, 0)S,.(q, (u))

S(S+ 1) h&uP X, (q)

+ Z &S. (q)&(s.(-q)) (&I)
6((u)

TABLE II. Experimental parameters for spin and
phonon systems in europium chalcogenides.

Similarly, the tensor for symmetric xy polariza-
tion (e"t c,'+ e,'c",} is
X„„.,(q, &u, ) = (I/q)[(Aq„6, ,+Bq, 6, ,) sin-,'q, a

—(/tq, 6,+Bq, 6, „) sin-, q, a

+ C(q, 6, , —q, o, ,) sin-, q, a].

EUO

EUS
EuSe
EuTe

435
267
182
142

411
240
153
131c

b

0.606
0.236
0.167
0.100

b

0.119
-0.118
-0.158
—0.213

(29b)

Here, a is the cubic-lattice constant while A, B,
C, n, P, and y are constants which depend on the

~(q) is LO phonon frequency in cm, see Ref. 25.
b

Jg and J& are nearest-neighbor and next-nearest-
neighbor exchanges in K, see Ref. 1.

c See Ref. 38.
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(32)

Here Z(q) is the qth Fourier component of the ex-
change between a spin located at the origin, and
one located at a distance R. The final factor in
the first term of Eq. (31) is the spectral shape
function, which describes the dynamic response of
the spin system to a time-varying magnetic field.
The temporal Fourier transform of F(q, &u) is the
ratio of the time-dependent relaxation function4
to its value at t = 0, which leads directly to the
identity,

F(q, co)des=1. (33)

At low temperatures this function, which gives the
neutron scattering line shape, consists of two
peaks centered at &u~ &u (q) corresponding to the
creation and destruction of magnons of wave vec-
tor q and energy her (q).'

Using these results for the spin-spin correlation
function, and Eqs. (29a) and (30) for the form fac-
tor and the phonon frequency, we have investigated
the one-phonon-one-spin, symmetrically polarized
contribution to inelastic light scattering in the
europium chalcogenides. Ne present the results
of our calculations for the high- (T» T,), inter-
mediate- (T = T,), and low- (T «T, ) temperature
regimes, where T, is the transition temperature
for all the magnetic phases.

The first term of Eq. (31) represents the contribu-
tion to the inelastic, diffuse scattering due to short-
range order, while the second term of Eq. (31),
proportional to the square of the sublattice magnet-
ization, is a measure of the long-range order in
the temperature region below T„and is hence
termed the magnetic Bragg scattering. In Eq.
(31), S is the dimensionless magnitude of the z

component of the spin, and /=1/kzT Th. e second
factor in the first term of this equation is a de-
tailed balance factor, which is approximately
equal to one at sufficiently high temperatures
(T» h(u/kz), while X(q)/y, is the ratio of the wave-
vector-dependent susceptibility to the Curie sus-
ceptibility, and is a function of the temperature
and the exchange constants. For Heisenberg fer-
romagnets near the critical temperature T„, mean-
field theory yields (T& T,)

(32) is approximately equal to 5„. The tempera-
ture dependence of the scattering is governed by

the phonon population factor, with the spectrum
being composed of the sum of contributions from
Lo phonons from the entire zone. Each contribu-
tion is weighted by the product of the form factor
and the phonon population factor, each weighing
the zone-boundary phonons heavily. The dynamic
structure factor for scattering from the LO branch
with zz polarization (off resonance) is

3 (0, &u) = Q f„,„(q, (u)[,n(u)(,q. )) +1 ]
4 I&
j= LO

xF(q, ~ —~j(q)). (34)

1 4l
(q )

[2 F ( )J» p 2Q ( )
' (35)

In Eq. (35), F"'(q) is the second moment of the
spectral shape function and is given by"

F"~(q) = ~ S(S+ 1) P [J(R)] ' (1 —e' ~ '
~) . (36)

Figure 1 shows the results of a numerical inte-

„(L)
[ 0I. (d (K)

Z

Z 0.5'

EuS
x(zz)x

At these high temperatures the system can be
thought of as being spatially amorphous, allowing
scattering from all q vectors in the zone. Al-
though the statics of the spins play no role in this
temperature regime (all q vectors are weighted
equally by the susceptibility as T —~), the nature
of the spin dynamics does influence the spectrum
through the spectral shape function F(q, &o —u,.(q)).
This function is not a. 5 function in u —u,.(q)
even in the limit of infinite temperatures,
due to the nonuniform temporal response of
the spins to a time-varying magnetic field,
even at T- ~. Although exact analytical forms
of F(q, u) are unknown even at high tempera-
tures, a useful first approximation for ferromag-
nets (especially valid at large wave vector) is the
Gaussian"

B. Spin-dependent Raman spectra

1. High temperatures(T)) T, )

0L
220 240 260

FREQUENCY (cfT) )

At high temperatures (T» T,), the spins are
spatially uncorrelated and there is no ordering to
distinguish the longitudinal and transverse com-
ponents of y„.(q). Consequently It„(q)/It, of Eq.

FIG. 1. Raman line shape for zz-polarized, one-spin-
one-phonon mechanism in the paramagnetic phase of
EuS at 266 K. The broadening of each contribution is
due only to the interactions with the dynamic spin system,
any anharmonic phonon broadening has been neglected.
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gration of Eq. (34) (with +=0, /=@=1) using the
method described above for EuS at 16T,= 266 K. The
high-temperature broadline is peaked at (&u„o}
= 240 cm ', corresponding to the L-point LO-
phonon frequency where the Raman tensor is a
maximum. The width of each contribution is cal-
culated using Eqs. (35) and (36) for the spectral
shape function. Thus, even neglecting broadening
due to finite phonon lifetimes (resulting from an-
harmonic decay"), the contribution from each
phonon is broadened due to dynamic spin disorder.
Calculation of the symmetric .iy polarized spec-
trum yields lines that are approximately the same
as the zz polarized spectra.

2. Critical region (T = T, )

At intermediate temperatures, T = T„but
T«h &u„o/ks, the phonon population factor is tem-
perature independent. The temperature dependence
of the spectrum is determined by the q-space
average of the dynamic spin-spin correlation func-
tion, weighted by the form factor f.

Since analytic expressions for F(q, ~) in the full
range of q and T are unknown at this time, we have
chosen to calculate the moments of S(0, u&) which
depend only on the static response of the spins
through X„„(q}/y,. The zeroth moment of S(0, ur)

gives the integrated intensity i(T), while the first
moment yields the centroid of the spectrum, (tu),
which is roughly related to the peak intensity. We
therefore define

X(q) (T/T. ) l
a'+ ~,'g(q) '

where, for the fcc ferromagnets EuO and EuS,

I, (q) = [j(0) —j(q) J/j(0),

(ag, }'= (12j, + 6j,)/(j, +j.,) .

(40)

(41)

(42)

Here J, and J, are the first- and second-nearest-
neighbor exchanges, and j(q) =j,(q)+ j,(q). For
the two sublattice antiferromagnets, with spins in
(111) planes aligned, as in EuTe and EuSe (see
Table Ill), the susceptibility X(k) is defined in
terms of k=q~ —q. In addition, for these systems,
in an angle average,

(aKo) = 6 (43)

In the expressions for the susceptibility, K is the
inverse correlation length and is a measure of the
distance over which spins are correlated. In gen-
eral, the inverse correlation length is determined
by

(~,)r= Q [~,(q)f(T, q)J. (39)

We have evaluated Eqs. (38) and (39) for the in-
tegrated intensity and centroid of the spectrum due
to zz -polarized, one-LQ-phonon-one-spin scatter-
ing in the europium chalcogenides using a small
wave-vector expansion for the form factor of Eq.
(28). Using mean-field theory, the susceptibility
is rewritten in the form

j=LO

(37) T-T, "
K =Ko, T+T0

C

(44)

so that the integrated intensity is given by

f(T) = g &(T, q) . (38)
&(

The centroid of the spectrum is similarly given by

Mean-field theory yields the exponent v= —,', while
recent experiments' indicate that v= 0.7 for the
three-dimensional Heisenberg model near T„ in
good agreement with renormalization-group calcu-
lations for v.

TABLE III. Spin ordering and Raman-active sharpline (Bragg) phonons in europium chalco-
genides (single-spin mechanism). qp is the wave vector describing magnetic ordering where
(S(qp)) is nonzero below 7; or T~.

Material Order Phonons

EuO

EuS

EuSe

Eu Te

Fe r romagne tie

Ferromagnetic

Four-sublattice

Three-sublattice

Two-sublattice

Two-sublattice

1;=69.3 K

Tc = 16.6 K

lg —— 4.6 K

1~—— 2.8 K

T~= 1.8 K

TN= 9.6 K

qp= 0

c)p
——0

qp

qp =ql

qp=q

I,o '(r), TO'(r)

Lo'(r), TO'(I )

All branches zqI

All branches ~q&

LO(L), TO(L)
LA (L), TA (L)

LO(L), TO(L)
LA'(L), rA'(L)

Forbidden in dipole approximation —allowed only through wave-vector-dependent processes.
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~K
0 (2CiC() Q Clg

Vp o
K" +~(

(45)

The wave-vector-dependent susceptibility is
evaluated using the exchange constants of Ref. 1,
listed in Table II. The divergence in the suscep-
tibility at k=0 (q=j ) is antiferromagnetic EuTe,
is indicative of critical fluctuations near the tran-
sition (v=0). In other europium chalcogenides,
X(q) shows divergences near q = 0 for ferromag-
netic EuO and EuS and at q=0, ~q~, ~q~, and q~
for EuSe, corresponding to the different magnetic
phases (see Table III).

In order to obtain an analytic expression for
I(T}, we note that for fi"«» ksT the temperature
dependence of the spectrum is governed mainly
by the susceptibility, which has large variations
with temperature for q = 0 for the ferromagnets
and k= 0 for the antiferromagnets. We, therefore,
expand the integrand of Eq. (38) around these wave
vectors. The integrals over q and k are then ev-
aluated using a spherical zone centered at I"

and I. for the ferromagnet and antiferromagnet,
respectively. To examine the dependence of the
intensity on the correlation length, we define l(z)
=I(T)/(T/T, ) For T&. T„ in the small wave-vec-
tor approximation,

linearly with K. The results of the integration of
Eqs. (45) and (46), valid for the entire tempera-
ture range above T„ in the small wave-vector ap-
proximation, are for the antiferromagnet,

1(K) =I(0) S ——ta
k

(47)

and for the ferromagnet
3

I(K) =I(0) 1 —3 — +3 — tan '~ . (48)
&o C/p K

For T&T„but(T, —T)/T, small, one can use
the cubic symmetry to write the integrated inten-
sity in this region, I'(T), as

I'(T)=P f;....(q &;)

1 X i) (q) 2 X (q) S{S+1)
(49)

x.(q} T/r,
x. g(q)

' (50a)

where ~( and j are taken relative to the direction
of the spontaneous magnetization. In this tempera-
ture region,

for the ferromagnet and

K2 A'o 2d

Vo o K+Cg
(46}

x, , (q) (T/T. )~,'
x. ~"+ "('q):0 '

where

(50b)

for the two-sublattice antiferromagnet. In Eqs.
(45) and (46), I~ and I~ are constants which are
proportional to (P+y~'defined in Eq. (29a), while
v, gs the volume of the first Brillouin zone for the
fcc lattice. The momentum cutoff in the integrals,
q, (ferroma. gnet) and kp (antiferromagnet) corres-
ponds to the radius of a sphere with volume v, and

4vp for the ferromagnet and antiferromagnet, re-
spectively. The extra factor of q-' in the expres-
sion for the ferromagnet is due to the vanishing of
the Raman tensor at the I' point. This factor re-
sults in a weaker temperature dependence of I(T)
for the ferromagnet than for the antiferromagnet,
where the Raman tensor is a maximum in the re-
gion of large fluctuations.

Even though the integrated intensity does not
diverge at T, due to the phase-space and Raman-
tensor factors, one ean see that the small-wave-
length (small k for the antiferromagnet) fluctuations
are responsible for the temperature dependence
of I(T) if one differentiates Eqs. (45) and (46) with
respect to x. For the ferromagnet, SI(~)/SK ap-
proaches 0 as K-O, indicating that very near
T„ I(0) I(w) varies q-uadratically with a, while
for the antiferromagnet, sl(K)/sg-constant as
K-0, implying that near T„ I(0) -I(K) varies

2 2K2 c

C

(51)

Mean-field theory gives v' = —;. Similar expres-
sions apply to the antiferrornagnet, with q being
replaced by k = q~ —q and with Kp defined by Eq.
(43). Applying the small-wave-vector integration
scheme to these expressions yields

I'(~') =-,'1(~')+ —,I(0),
where I(a') is obtained from Eqs. (47) and (48) with
K replaced by K'

~

The analytic expressions for the broadline in-
tensity show that the integrated intensity is param-
etrized by the ratio of the two basic lengths in
the problem: K ', which is the distance over which
the spins are correlated, and q, " (or k, ' for the
antiferromagnet) which describes the range of
wave vectors participating in the phonon-spin pro-
cess. In a first approximation, qp or kp can be
taken as the radius of a sphere surrounding the
integration volume. However, since the small
wave-vector approximation overestimates the
Raman tensor for both the ferromagnetic and anti-
ferromagnetic cases, one should adjust qp and k,
to compensate for these errors. One therefore
allows qp and kp to be adjustable parameters, de-
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scribing the effective radius of the integration
sphere, in order to enhance the validity of the
small-wave-vector approximation away from ~ = 0.

We have determined q, and k, by comparing
I(T,)/I(~) using both the analytical expres-
sions presented here and the same quantity cal-
culated using the numerical integration scheme
described above. Comparison of the numerical
and analytical results suggest that we use the
values

q, /( ,'v, /—rr)"'= 0.65, 0.73

for EuO and EuS, respectively, and

(52a)

(52b)

for antiferromagnet EuTe. Using these values in

Eqs. (47) and (48), along with v = v' = -,', we ob-
tain results differing from those obtained by the
numerical integration by &3/g. Figure 2 shows
our results for I(T)/l(~) calculated using Eqs. (47),
(48), and (52). Since the critical scattering is
linear in a near T, for Eu Te, the temperature
derivative of I(T) diverges like (T —T,)' ', yielding
the correlation length exponent v. In all the ma-
terials the integrated intensity is a maximum at
7, due to the critical fluctuations. EuTe and EuSe,
which exhibit two sublattice antiferromagnetic
phases, show large increases in the integrated in-
tensity near T, due to the heavy weighting of the
large fluctuations of y(q ) in I(T) On the ot.her
hand, EuO and EuS show only slight increases in
the integrated intensity near T„corresponding to
the small phase space and form-factor weighting
of the small-q fluctuations which go critical in
these materials. In EuS there is an additional con-

tribution to the scattering from y(q ) which in-
creases near T, due to the next-nearest-neighbor
antiferromagnetic coupling in this material.

In addition to the temperature dependence of the
integrated intensity, we have calculated the tem-
perature dependence of the centroid of the spec-
trum (&u,»r using the numerical integration scheme
described above and Eq. (39). Figure 3 shows the
results of these calculations in a plot of (&u„o)r/
(~«) vsT/T„where kT«k~„o. For EuS and

EuO (&u«)r shows a small increase near T, due to
the increasing importance of the small-q phonons.
On the other hand, there is a dramatic shift in

(&u, gr r for EuSe where critical scattering at
H = 0 is associated with —;q~, implying an increase
in (&o„gr. In all cases, away from T„(&u~ )ois
within 1% of the assumed L-point frequency, in
accordance with the experiments of Ref. 8.

3 Low temperatures (T (& T )

At low temperatures (T «T, ), the broadline scat-
tering can be interpreted in terms of one-phonon-
one-magnon scattering. Although the broadline
is quenched as T is lowered below the transition
temperature due to increasing spin order, there is
residual broadline scattering even at 7 = 0 due to the
scattering from creation of one phonon and one mag-
non. [For ksT«k&u, „ the ratio l(0)/I(~) is
1/(S+1).] ln addition, the second term of Eq. (31), the
"Bragg peaks, "begin to dominate the spectrum,
yielding sharplines at the phonon frequency corres-
ponding to the q vector which describes the magnetic
order. Table III lists the types of ordering and
the one-phonon-one-spin "Bragg reflected, "
dipole allowed phonons in all the europium chalco-

I.O I 3

2.5

—2.0
8

5

~s I.OIO

O

3
V

0

V

I.O05

0.6 I.O l.4
T/Tc

1.8

FIG. 2. Integrated intensity for zz-polarized one-pho-
non —one-spin Raman spectrum of europium chalcogenides
as a function of T/T, . The curves for each material
are indicated in the figure.

0.6 I.O I.4 t.8
T/ Tc

FIG. 3. Normalized centroid (co)z/(co)„of zz-polarized
Lo one-phonon —one-spin spectrum of europium chalcogen-
ides as a function of T/T, . The variation of the cen-
troid in EuTe was less than 0.1Q and is thus not shown.
At T = T~, (co)z /(cu)„=1.026 for EuSe. Brillouin-zone
integrations of Eq. (39) show that for T &&T, but T
«SwLo/kz, (~to) (in cm ) is 413, 242, 155, and 132
for EuO, EuS, EuSe, and EuTe, respectively, using the
values of Table II.
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genides. " The contribution of the Bragg term of
Eq. (31), nonzero for a single u«(q) value in each
magnetic phases, and which is elastic in co —coLp(q),
results in the sharplines observed in the low-tem-
perature, ordered phases of these materials. '"
These lines, previously interpreted in terms of
zone folding, "ean also be understood in terms of

Bragg reflections of phonons by the spin systems,
with the scattering intensities proportional to the
square of the sublattiee magnetization. ' The as-
signment of the critical scattering above T~, and
the sharplines observed below T„, observed in the
four-sublattice phase of EuSe, to midzone (-,'q~)
phonons, " is consistent with Bragg scattering due
to one-phonon-one-spin mechanism in this ma-
terial. A mechanism quadratic in the spin, would
result in sharpline scattering at the I.-point
phonons as well, which is not experimentally ob-
served. " In addition, both broadline and sharp-
line scattering have been observed in symmetric
polarizations, "consistent with the theory outlined
above. An investigation of the field and tempera-
ture dependence of the broadline should yield in-
formation about the diffuse part of the two-spin
correlation function, while a similar study of the
sharpline scattering (off-resonance, symmetric
polarization) can be used to measure the field and
temperature dependence of the subLattice magnet-
ization. However, sharpline scattering from the
zone-center optic phonons is forbidden in the di-
pole approximation. The intensity of these lines
depends on resonant enhancement" which decreases
the convergence of the perturbation expansion in
powers of the spin.

IV. DISCUSSION

A. Comparison with experiment

Although several discussions of the experimental
data have suggested spin-disorder mechanisms,
our analysis shows that both static and dynamic
spin disorder must be considered in our evaluation
of Eq. (27). The Raman line shape cannot be sim-
ply related to the one-phonon density of states,
since the (full) width of the spectral weight function
for EuS is approximately 10 cm ' near q~, at high
temperatures. The total broadline width calcula-
ted here is about 15 cm ', while the experimental
results for EuS indicate a linewidth of about 30
cm '." The full width of the broadline obtained
from a 5 function approximation for E(q, ra) is less
than 5 cm ', indicating the importance of including
the q and exchange-dependent spectral weight func-
tion. The 15 cm ' width calculated using Eq. (35),
is a function of the simplified Raman-tensor pa-
rameters used in our calculations. A different
choice of the parameters would allow more pho-

nons to contribute and hence broaden the line. We
have therefore presented the results for the tem-
perature dependence (near T, ) of the moments of
the spectrum, which are less sensitive to the as-
sumed phonon dispersion, and which depend only
on the static properties of the spins for
(a)~o && k~T/5.

However, in order to make contact with the
existing experimental data, ""we have considered
the temperature dependence of the broadline peak.
For zz polarization, we have shown that the 6
axis does not contribute to the spin-phonon spec-
trum, and that the peak of the broadline is near
u(q~), (see Fig. 3) consistent with the experiment-
al results of Ref. 8. Assuming this peak to be
dominated by the contribution of q~ implies that
we can write the dynamic structure factor at the
peak [u) = (uL„(q~)] a.s

3+, ~«(qz)) "+(qi 0)x(qz)/X .. (53)

Since E(q, u&) has unit area [see Eq. (33)J, the peak
of the spectral shape function can be approximated
by the inverse of its width or characteristic fre-
quency"' '" which determines the linewidth in a
neutron scattering experiment. By using the ex-
perimental values of the broadline peak intensity
for S(0, u„o(qz)), and using the known temperature
dependence of the susceptibility [in mean-field
theory as in Eq. (32)], we can infer the tempera-
ture dependence of the characteristic frequency
at q~. Figure 4 shows the unpolarized experiment-
al data of Ref. 30 for the peak intensity of the
broadline of EuS, along with mean-field calcula-
tions of y(q)/y, and the inferred characteristic
frequency F(q~) at the L point normalized to its
value at T, . Although spin-diffusion theory, valid at
small values of q and &u, indicates that F(q~), which
is proportional to the diffusion constant, vanishes as
the critical temperature is approached correspond-
ing to the critical slowing down of fluctuations, ""'
the detailed calculations of Hubbard' for the dynam-
ics of spins in a simple cubic ferromagnetic show that
the characteristic frequency or width increases as
T- T,'for large wave vectors. This is shown in Fig. 4
where Hubbard's results for the width [5-„ in the
notation of Ref. 3] are plotted. The increase in
F(qz) as T —T,', indicated by our comparison of
the experiments with Eq. (53), is also consistent
with an extrapolation to large q of the predictions
of dynamical scaling. """These arguments pre-
dict an increase in the Linewidth in the region q& ~,
where ~ is the inverse correlation Length (see
Fig. 4). This prediction is corroborated by the
neutron scattering results of Ref. 1, which have
been fit to the (small-q) calculations of Resibois
and Piette" for the width. These calculations
show a minimum in the width [&u„(q)J as a function
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„(qL) (Resibois 8 Piette)
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FIG. 4. Experimental results of Ref. 30 for the broadline peak intensity as a function of T//T~. Using this data and
Eq. (40), we have inferred the temperature dependence of the width of the spectral shape function 1(qz). In addition to
I (qL), we have also plotted the theoretical results of Ref. 32 for v„(qL), the width of E(q&, ~), as a function of the
correlation length ~, defined in Eq. (54). The dashed line represents the results of Hubbard (Ref. 3) for the halfwidthat
q = 2q~. All the widths have been normalized to their values at T, .

of ~ at q/g= 1. Figure 4 presents the results for
ru„(q), extrapolated to q=q~. For EuS, the neu-
tron experiments indicate that K is given by

a~= 3.30[(T —T, )/T, j", (54)

so that for EuS, K/q~ = 1 at about 50 K. Thus, the
Raman experiments performed below this tem-
perature are in the so-called critical regime, ""
where the hydrodynamic prediction of critical
slowing down of fluctuations is invalid. Even
though the inference of the temperature depen-
dence of I'(q~) is based on unpolarized experi-
mental data, it indicates how the one-phonon-one-
spin Raman spectrum~ is sensitive to the spin
dynamics in the europium chalcogenides.

Although our assignments of the broadline peak
and the sharplines in EuSe are consistent with ex-
periment, ""more detailed measurements of the
scattering (integrated) intensity as a function of tem-
perature should further substantiate the theory pre-
sented here. We note that due to critical scattering at
—,'q~ in the two-sublattice antif erromagnets Eu Te and
EuSe, and at ~ j in the four-sublattice phase of
EuSe, the quenching of the broadline might not
always be apparent since in the former cases the

sharpline emerges at the same frequency as the
broadline peak. In addition, in EuO, the combin-
ation of broadline scattering centered at the I,
point, and wave-vector-dependent resonant Ra-
man scattering centered at the I. point" might be
difficult to separate" due to relatively flat disper-
sion along the [111] axis in this material. '

B. Comparison with other calculations

The results presented here indicate that at tem-
peratures h ~Lo o k~7 the temperature dependence
of the Raman spectra is determined by the two-
spin correlation function, which also governs the
results of neutron scattering experiments. The
similarity between Eq. (27) and the Van Hove
formula [Eqs. (1) and (2) of Ref. 33] for neutron
scattering suggests an analogy between the two
spectra. In both cases, the cross section is pro-
portional to the product of a form factor, describ-
ing the symmetry of the scattering, and the (q, u)
Fourier transform of the spin-spin correlation
function. In the case of neutron scattering, the
form factor for momentum transfer K is"
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[where E(K) is the atomic form factor], while for
spin-dependent Raman scattering from phonons of
wave vector q, it is J,„„(q,&u, ) defined in Eq. (28).
However, in neutron scattering from localized
spins, the observed spectrum results from the
direct dipole-dipole interaction of the neutron and

atomic spins. The one-phonon-one-spin scatter-
ing discussed here, utilized an indirect coupling
of the phonons and the spins through the electrons
which are excited by radiation. In addition, the
observed broadline spectrum consists of the sum
of lines from q vectors from the entire zone. A

line centered at a particular q vector has the same
behavior as a function of temperature as would a
line arising from a neutron scattering experiment
where a neutron of momentum loss of q is used to
probe a spin excitation. The similarity of the two

spectra suggests an interesting physical interpre-
tation of the spin-phonon scattering. The many-
body phonon system, originally in a net zero-mo-
mentum state, is indirectly excited by the radia-
tion to a superposition of excited states. The ex-
cited phonons in each of these states with momen-
tum q can be viewed as probes of spin excitations
of wave vector -q, with the complication that
phonons of all momenta, (and all branches) are ex-
cited simultaneously in contrast to the selective
excitation possible with neutrons.

The interpretation of the symmetrically polar-
ized Raman scattering in the europium chalco-
genides in terms of two-spin correlation func-
tions, and the analogy with neutron scattering
differs from the results obtained by Suzuki and
Sakai and Tach&i in their treatments of broadline
scattering in EuS."'" Suzuki, arguing that the ob-
served scattering has a symmetric component,
rejects the one-phonon-one-spin mechanism on
the grounds that it yields antisymmetric scattering.
He thus interprets the broadline in terms of a four-
spin correlation function. The complexity of this
function leads to its evaluation by Suzuki in the
infinite-temperature limit in the paramagnetic
phases in contrast to our analysis of the q and T
dependence of the two-spin correlation function
for all the europium chalcogenides. Although
Sakai and Tachiki do consider the one-phonon-
one-spin process, they related only the antisym-
metric component of the scattering to this process.
The one-phonon-one-spin scattering can be seen
to be symmetric if one considers the time-rever-
sal properties of the spins, electric fields, and
the non-zone-center phonons. When this is done,
the selection rules listed in Table I are obtained,
enabling the interpretation of both the parallel and
perpendicularly polarized scattering in terms of
two-spin correlation functions. In addition, the
physical mechanism responsible for the one-

phonon-one-spin process is spin-orbit coupling in
the excited 4f'5d configuration. This coupling is
large (= 0.6 eV) in these materials, '4'" resulting
in a spin-dependent magnetoreflectivity spec-
trum. '""" Qn the other hand, the one-phonon-
two-spin mechanism discussed by Suzuki is esti-
mated to be weaker (= 0.05 eV) than the spin-orbit
energy. "'" Furthermore, any antisymmetric
scattering process is reduced, off resonance, by
a factor related to time reversal" [see Eq. (A8) J.

C. Conclusion

In conclusion, we have derived a general method
for determining the symmetry of the light scatter-
ing tensor under the interchange of the incident
and scattered photon polarizations. This method
has been applied to spin-phonon Raman scattering
in the europium chalcogenides, where the fortuitous
combination of inversion symmetry and large ex-
cited-state spin-orbit coupling enables the inter-
pretation of the spectra in terms of the two-spin
correlation function. At high temperatures (T
»T, ), where there is complete static spin dis-
order, the broadline spectrum has been calculated
assuming a. Gaussian form describing the dynami-
cal spin disorder. In the critical region (T = T,),
mean-field calculations of the wave-vector-depen-
dent susceptibility have been used to calculate the
temperature dependence of the broadline integrated
intensity, related to static spin disorder. Our ana-
lytical results show how the integrated intensity
can be used to study the temperature dependence
of the correlation length. The sharplines observed
in the ordered magnetic phases of the europium
chalcogenides have been interpreted in terms of
the elastic "Bragg" part of the two-spin correla-
tion function. This unified analysis of the scatter-
ing in all the magnetic phases shcald stimulate
further experiments in this area with an emphasis
on using the excited phonons as probes to measure
the static and dynamic properties of the model
magnetic systems found in these materials.

Note added in proof. Calculations of the Raman
integrated intensity using normalized Ornstein-
Zernicke and renormalization-group forms for
II(q) indicate that I(T) decreases near T, for EuO
and EuS. Th's is in contrast to the peaks pre-
dicted by mean-fieldtheory as in Fig. 2. [S.
Safran, Ph. D. Thesis (M. I.T. 1978) (unpublished)J.
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APPENDIX

In this Appendix, we present an alternate deriva-
tion of the results of Sec. IIB by explicit consider-
ation of the matrix elements involved in one-
phonon-one-spin scattering. Neglecting the spin
energies (~ 10 cm ') relative to the phonon ener-
gies, the Raman tensor for the one-phonon-one-
spin process [Eq. (14)J, can be written in the di-
pole approximation as"

x (~ ~u q}= Z [hf o,~(0, 0, (u„q)
a8)

+M,"., & (0, sr~, &u&, q)+ ~ ~ ~ J. (Al)

The dots in Eq. (Al) represent the contributions
of the remaining terms in the perturbation expan-
sion. The two terms shown are the largest and
are written in terms of matrix elements as

The antisymmetric (symmetric) part of the scatter-
ing is given by

x"'=-'-[x;„.(~;, ~»q)+x.;,.(~;, ~„q)] . (A6)

The minus sign is for X". From Eqs. (A3) and

(A4) we have the results that

g M,".„&(0, 0, &u~, q) = M„.,t (&o~, 0, 0, q)

(A6a)

Ms & (0, (o, a~, q} = p M,"~,& {(up, (u~, 0, q) .

(A6b)

We can therefore write the antisymmetric part of
the scattering as

(0 li, lr&&7 ll', (q) I(~)&(i IL.(-q) l~&&~ li; Io&

(u —~, + u, )(&u8 —&u; + &u, ) (&u~ —&u; + ~,)

Q M~„& (0, 0, (u~, q) = —Q M,~„&(0, 0, (u~, -q) .
nBy fx8y

{A3)

Time-reversal symmetry of each matrix element
dictates that

M,".„.~ (0, 0, (u~, q) = hP„8 ((o„o,0, -q) . — .(A4)

In Eq. (A2) we have used the notation of Sec. I.
We define h co~ as the phonon energy and V,.( j) as
the electron operator corresponding to the linear
interaction of the electrons with a phonon Q(q j)
through the deformation potential or Frohlich in-
teracti:ons. The Fourier transform of the g com-
ponent of the electron angular momentum operator
L, (-q} enters Eq. {A2) through spin-orbit coupling.
The electronic states are represented by lo'&, lP),
ly&, with state l f& having energy 0 ~,. and with the
ground state l0), taken as the zero of energy. The
full expression for the Raman tensor in fourth-
order perturbation theory consists of 24 terms.
The terms shown in Eq. (Al) are the largest for
photon energies in the range of the 4f '-4f '5d
transition (=2 eV). However, the symmetry con-
siderations presented here apply to all the terms
in the Raman tensor. For those other terms, the
factor ~~/(u&, —~, ) in Eq. (AS) should be replaced
by ~~/(tu, + &u, ) leading to an even smaller ratio
of antisymmetric to symmetric scattering.

Equation (24) and the invariance of the ground-
state expectation values under inversion symmetry
imply that for centrosymmetric materials (each
atom at a center of inversion):

X"= —g [M~„/ (0, 0, &u&, q) + M, , & (0, m~, u&, q)2 fx8y

—M,",.8,~ ((u~, 0, 0, q) —M, ,~.~ ((u~, (u~, 0, q) J .
(A7)

x~ goes to zero as ~~ goes to zero. x" is also
zero if we limit ourselves to the most resonant
term, where lu& = lp) = ly&. The first nonzero term
in an expansion around ~~= 0 is, in the approxi-
mation cu

xA =- [M,"..',.~(o, o, o, q)
n y

-M,". ,'&(0, 0, 0, )]
0 i

(AS)

The symmetric scattering is nonzero even in the
limit +~-0, and is given by

(MP„,» (0, 0, O, q)+M,",,~(0, 0, 0,q)J .
Q

(A9)

y~ is thus larger than y" by at least a factor of
&u~/(ru, —ur, ). Since in the paramagnetic phase of
the europium chalcogenides the 4f'5d level can be
modeled by a distribution of levels with a width of
about 0.8 eV,"we estimate that the symmetric
scattering intensity is at least two orders of mag-
nitude greater than that of the antisymmetric scat-
tering from the one-phonon-one-spin mechanism
even at the peak of the broad absorption band.
Furthermore, even in the ordered phases where
the broad absorption band becomes a multipeaked
structure with a typical peak width of 0.1 eV, '4 the
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first factor of Eq. (A8) further reduces the scatter-
ing intensity of the antisymmetric term. For the

most resonant case, )n) = (P) = (w), the contribution
to X" from the largest terms in the Raman tensor

is zero.
Similar considerations can be applied to the

other spin-phonon processes to derive the selection
rules of Table I.
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