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Screened donor impurities in many-valley semiconductors with anisotropic masses
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The binding energy of a conduction electron bound to a donor impurity in a doped semiconductor, using a
Lindhard dielectric function, is calculated as a function of the free-carrier concentration, taking into full

account the effects of the nonisotropic mass of the bound electron on both the kinetic energy and the screened

Coulomb potential. A variational approach is adopted in which the trial wave function is chosen with a form

similar to the solution of the problem of an electron bound in the Hulthen potential. The wave function is

appropriately warped to account for the asymmetry caused by the nonisotropic masses. This calculation, in the

limit of zero carrier concentration, is equivalent to work of earlier authors (Kohn and Luttinger and others)
where a hydrogenic trial wave function was used. The method thus obtained is specifically applied to silicon

and germanium and the results are compared to calculations done in the isotropic-mass approximation. The
electron density where the Mott transition takes place is found to be lowered by introducing the nonisotropy.
For germanium where the mass ratio is approximately 20, this effect is quite large. A similar calculation using

the simpler Thomas-Fermi dielectric function is included for completeness.

There has been a great deal of interest, both
theoretical and experimental, in the properties
of shallow impurity states (acceptors and donors}
in semiconductor materials in recent years. Much
of this work has been reviewed by Kohn' and more
recently by Bassani et al.'

For the case of very low impurity concentration,
it is well known that each impurity site can be
treated as an isolated center. Then, within the
effective-mass approximation, the effective inter-
action potential between the conduction electron
and the central ion of the impurity atom is taken
to be Coulombic in nature. Kohn and Luttinger'
and several other authors4 have solved the im-
purity Hamiltonian in this approximation using a
hydrogenic trial wave function in a variational cal-
culation. These calculations take into account the
effect of the nonisotropic electron masses one
finds in multivalley semiconductors.

In the case of semiconductors with moderately
high impurity concentrations, one finds significant
overlap between the electronic wave functions of
neighboring impurity atoms. This overlap en-
hances the probability of an electron moving from
one impurity site to another as the impurity con-
centration increases, thus allowing an appreciable
fraction of these electrons to become relatively
mobile. The presence of these free carriers will
act to modify the simple Coulombic electron-ion
interaction —in effect a form of screening. Earlier
calculations, again within the effective-mass ap-
proximation, take the basic interaction to be
Coulombic but screened by a Thomas-Fermi, "'
Lindhard, "or Hubbard-Sham' dielectric con-
stant. One finds that the binding energy of the
electron bound to the impurity ion decreases as

a function of the free-carrier concentration 1V

until at a critical density A, the electron is no
longer bound. This last effect is commonly known
as the Mott transition. The effect of the multi-
valley structure of indirect-gap semiconductor:
on the screening functions has been taken into
account, yet to date all of these screened cal-
culations have been done assuming an isotropic
electron mass.

In this paper a calculation of the ground-state
energy of an electron bound in a Coulomb potential
screened by the Lindhard dielectric function taking
into full account the effect of the electron-mass
anisotropy on the kinetic energy and screened
potential is presented. Similar to the isotropic
case, the Lindhard dielectric function is derived
within the random-phase approximation for a sea
of electrons with anisotropic masses interacting
via a Coulomb potential. For simplicity a varia-
tional approach is adopted. For the trial wave
function a modified form of a wave function origi-
nally derived by Hulthen" is used, suitably changed
to reflect the cylindrical symmetry of the problem.
The binding energy is calculated for the particular
cases of germanium and silicon where the mass
anisotropy is appreciable and accurately mea-
sured. The critical Mott transition density is
noted and the results are compared with those of
other authors who have used an isotropic-mass
approximation.

DIELECTRIC FUNCTION

The static density-density response function for
a noninteracting gas of electrons with anisotropic
mass can be written as
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x(i)=Q E"
where f-„.; is the Fermi occupation function,
which is a functional of the energy,

1
1+exp[ —P(E-„—e„)]

Here p is the inverse temperature and eF is the

Fermi energy. The energy E„- is given by

k„k', + k',

2,%1,} 2M ~
(3)

If one makes the following substitutions for q and

k,

VARIATIONAL APPROACH

Within the effective-mass approximation, the
Hamiltonian for our system can be written

]
2 M ex M ~y

g2+, + V(r),
1VI ~ Bg2

where the Fourier transform of the potential is
given by

4me2
V(q) =

~q22(q)
' (12)

k =(M„/M+)'"S„,

k, =(M /M+)'"S

k, =(M /M*)'t'S

one readily finds

x( e) = x( q„, q„q,)

q, = (M „ /M ")' t

q =(M~/M+) ~
t2

q, = (M, /M*)' t, ,

(4)

Since the eigenvalues of the Hamiltonian cannot
be obtained in closed form, and indeed, the poten-
tial-energy term V(r) has no known analytic form,
a variation approach will be adopted.

For the case of isotropic masses, Hulthen found

that if the potential V(r) is approximated by a
simple analytic form,

e - )tr)t

V(r) = (13)

where X'(q) is the static density-density response
function for a noninteracting gas of electrons with
isotropic mass 141~,

M+-=(M„M', )'" .

At zero temperature this has the familiar form,

2( )
3N 1 4k2~ —q2 2k~+ q

2&F 2 8kFq 2k, —q

where kF is the Fermi momentum,

k = (3w2N/v)' t2

N is the total free-electron carrier density, and
v is the number of valleys.

Within the random-phase approximation, the
dielectric function can be obtained from the rela-
tion

4me2
2(q) = 1 — , X(q),

Kq

where K is the static dielectric constant of the
host crystal. In this case we have

4me2
~(q) =1-

Kq

the Hamiltonian could be solved in closed form.
The wave function for the ground state is given by

ekr/2 e- Xr l2 4 y2 1/2
p(r)=e (14)

To solve the problem of an electron bound in a
screened Coulomb potential —screened by, say, a
Lindhard or Thomas-Fermi dielectric function—
this wave function has been used as a trial wave
function by earlier authors, where X is used as
a variation parameter to minimize the energy.
This approach was first used by Lam and Varsani
for the Thomas-Fermi dielectric function. More-
recent calculations with the dielectric function
using this approach are in excellent agreement
with the more-complicated approach of Rogers
et al. ' and Martino et a/. who do a direct numeri-
cal integration of the corresponding Schrodinger
equation. The great success of this method in
treating the isotropic-mass case leads one to ex-
pect similarly good results in the case of aniso-
tropic masses with a suitably modified wave func-
tion.

Since the problem is no longer spherically sym-
metric, yet one wishes to keep the mathematics
somewhat simple, a trial wave function of the
following form will be adopted.

e-u(e+ uu 12 e- uu /2) 4 p
2 I l2

(10)

where

p=(le, (0,(X +M20gy +M20gZ )
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chosen by earlier authors to solve this problem in
the absence of screening.

The units of distance and energy in this calcula-
tion are the effective Bohr radius,
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FIG. i. Binding energy of a conduction electron bound

to a donor impurity in germanium, calculated using the
Lindhard dielectric function, in both isotropic- and

anisotropic-mass approximations.

g = Kh2/31*e

and the effective rydberg,

6t* —= Al*e4/2v'h'

In this set of units the expectation value of the
kinetic energy is easily calculated giving,

(T) =-,'(a„+2a, )8(4 —u') .

(20)

(21)

(22)

(V) = —8m
~'q F(q)

Q fq
(22)

The expectation value of the potential energy is
much more complicated and cannotbe accomplished
in closed form, indeed there is no known analytic
form for the potential V(r) for a Lindhard screened
Coulomb potential. However, this difficulty can
be circumvented, following the method used by
Krieger and Nightingale, ' by taking the Fourier
transform of the particle density, II*(r)g(r), and
then obtaining the expectation value through an
equivalent calculation in momentum space, one
finds

a =P&'~'

a, =P/~'" .
(17)

(18)

where F(q) is the Fourier transform of the particle
density, p*(r) p(r) This tra. nsform is given by

F(Z) = F(q„,q„q,) =F'(q, /Za, q, /va„q. /Ma, ),
(24)

The three parameters p. , P, and a are variational
parameters chosen to minimize the energy,

where

E—= P*x Hgx d3x'.

Note if P -=c = 1, this wave function is equivalent
to the Hulthen wave-function equation. Similarly
if P =—1 and we take the p, =0 limit, this trial wave
function becomes hydrogenic, similar to those

-1 Q 1—2tan '
2

(25)

One then has after an appropriate change of vari-
ables

(26)

This integral can be somewhat simplified for
numerical computation, yet cannot be done in
closed form, even for the Thomas-Fermi dielec-
tric function.

For each value of the total free-electron carrier
density, the total energy

~=&»+(V& (27)

is evaluated numerically and minimized on a three-

dimensional space consisting of P, p. , and a.. This
is done for silicon and germanium at several den-
sities between zero and the critical density where
the system becomes unbound, the Mott transition.

One notes here that to do this for the Thomas-
Fermi dielectric function, one defines the response
function by taking the following limit:

x„(a)-=»mx(a), (28)
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TABLE I. Binding energy of a conduction electron bound to a donor impurity in silicon and

germanium in both isotropic- and anisotropic-mass approximations using the Lindhard and

Thomas-Fermi dielectric functions for different carrier concentrations.

TF
Germanium

TF
Silicon

0.0
0.0001
0.0005
0.001
0.005
0.01
0.05
0.1

0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

1.0
0.938
0.866
0.815
0.620
0.496
0.141
0.0211
0.0053

0.772
0.711
0.641
0.591
0.413
0.306
0.0455

1.0
0.996
0 ~ 987
0.979
0 ~ 929
0.880
0.605
0.364
0.287
0.219
0.160
0.1 10
0.0684
0.0361
0.0136
0.0018

0.772
0.768
0.761
0.753
0.709
0.664
0.421
0.218
0.156
0.104
0.0619
0.0300
0.0091
0.0002

1.0
0.930
0.848
0.790
0.575
0.441
0.0862
0.0013

0.921
0.851
0.770
0.713
0.504
0.377
0.0578

1.0
0.996
0.987
0.979
0.929
0.880
0.607
0.367
0.290
0.222
0.162
0.111
0.0677
0.0341
O.of.08
0.0002

0.921
0.917
0.909
0.901
0.805
0.543
0.315
0.243
0.180
0.125
0.0798
0.0434
0.0289
0.0170
0.0023

keeping only the lowest order in q —a constant
dependent only on angle. Then one has

~„(a) =-1 —(4~e'l~')X„(i) . (29)

The rest of the calculation proceeds as before.

RESULTS

As a prime example of an indirect-gap semi-
conductor with a large electron-mass anisotropy,
a graph of the binding energy of a donor in
germanium versus the cube root of the free car-
rier density is given in Fig. 1. For germanium
the mass anisotropy is taken from experimentally
accepted values, ' i.e.,

M„/M =19.68 .

The binding energy is given as a fraction of the
impurity Rydberg defined earlier. Note that in
this approximation the binding energy is ap-
preciably lowered at all densities and the Mott
transition occurs at a lower density. The effect
is particularly pronounced in germanium.

In Table I the binding energies for germanium
and silicon (with a mass silicon anisotropy of 5.16)
are tabulated for various densities. For complete-
ness values for the Thomas-Fermi as well as
Lindhard dielectric functions are included. Table
II summarizes the values of the Mott-transition
densities for the two materials. The isotropic-
mass approximation is calculated by setting all
masses to the isotropic average, and is complete-
ly equivalent to those obtained earlier. ' ' In the

TABLE II. Critical value for N' for germanium and silicon, in the isotropic- and
anisotropic-mass approximations for both Lindhard and Thomas-Fermi dielectric functions.

Germanium Silicon

Isotropic
Thomas-Fermi, hydrogenic trial function
Lindhard, hydrogenic trial function
Thomas-Fermi, Hulthen trial function"
Lindhard, Hulthen trial function

Anisotropic
Thomas-Fermi, present work
Lindhard, present work

0. f.0
0.23
0.142
0.271

0.10
0.22

0.08
0.23
O. 108
0.263

0.10
0.25

Krieger and Nightingale (Ref. 7). Greene et al. (Ref. 8).
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limit of zero screening carrier density one finds
the expected agreement with earlier calculations"
with hydrogenic trial wave functions for isolated
impurities.

While these theoretical binding-energy curves
show considerable difference between the isotropic
and anisotropic approximations, at present this
has little effect on the theoretical agreement with
experiment. The random distribution of the donor
impurities in the semiconductor crystal cause the
Mott transition to be somewhat spread out, leading
to some uncertainty in the value of 1V,. This
randomness is not taken into account in this cal-
culation. A direct comparison of theory and ex-
periment may not be completely reliable; how-
ever, the experimentally suggested value of the
Mott critical density, in germanium, for example,
N, =0.22,"is in good agreement with the present
calculation.

CONCLUSION

The binding energy of a conduction electron
bound to a posit'. ve ion of a substitutional impurity
atom in an indirect-band-gap semiconductor has
been calculated using a Coulomb potential screened
by the Lindhard dielectric function. The electron-
mass anisotropy caused by the multivalley struc-
ture modifies both the kinetic energy and the in-
teraction potential (through the dielectric function).
A variational approach has been adopted using a
modified form of a wave function originally pro-
posed by Hulthen. Explicit calculations for
germanium and silicon show the mass anisotropy
has a significant effect on the binding energy over
the whole range of free-carrier densities, from
zero to the Mott-transition value. The Mott-tran-
sition density is found to occur at a significantly
lower density.

'W. Kohn, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic, New York, 1957), Vol. 5, pp.
257—320.

F. Bassani, G. Iadonisi, and B. Preziosi, Rep. Prog.
Phys. 37, 1210 (1974).

W. Kohn and J. M. Luttinger, Phys. Rev. 97, 1721
(1955); 98, 915 (1955).

4C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488
(1954); M. Lampert, ibid. 97, 352 (1955); W. Kleiner,
ibid. 97, 1722 (1955).

N. F. Mott, Proc. Phys. Soc. Lond. 62, 416 (1949);
C. S. Lam and Y. P. Varshni, Phys. Rev. A 4, 1875

(1971).
6F. J. Rogers, H. C. Graboske, Jr. , and D. H. Harwood,

Phys. Rev. A 1, 1577 (1970).
J. B. Krieger and M. Nightingale, Phys. Rev. B 4, 1266
(1971).

SR. L. Greene, C. Aldrich, and K. K. Bajaj, Phys. Rev.
B (to be published).

F. Martino, G. Limdell, and V. F. Berggren, Phys.
Rev. B 8, 6030 (1973).

' L. Hulthen, Ark. Mat. Astrom. Fys. A 28, No. 5 (1942).
"M. N. Alexander and D. F. Holcomb, Rev. Mod. Phys.

40, 815 (1968).


