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Thomas-Fermi (TF) screening in metals has been widely studied in the literature many years ago. It is

shown in this paper that the same TF equation can be handled with different boundary conditions to describe

screening in semiconductors. Explicit results for the wave-number-dependent dielectric function &(k) and for

the spatial dielectric function Z(r) are obtained in simple analytical form. A detailed comparison is done with

the existing literature for diamond, Si, and Ge. TF dielectric functions are found to be in excellent

agreement with either Penn model and random-phase approximation dielectric functions.

I. INTRODUCT1ON

A great deal of work has been devoted in the

past to the wave-vector-dependent dielectric func-

tion e(k) and to the spatial dielectric function c(r)
in semiconductors. The literature on the subject
has become very extensive. The first model di-
electric function has been proposed by Callaway',
this same model has been later refined by Tosatti
and Pastori-Parravicini. ' Another model dielec-
tric function has been proposed by Penn' and eval-
uated more accurately by Srinivasan. ' The Penn
model has become very popular, and forms the
basis of the Phillips-Van Vechten theory of ionici-
ty in solids. ' Refinements and modifications of the
Penn model have been proposed, "as well as
random-phase-approximation (RPA)' dielectric
functions based on realistic band-structure cal-
culations. ' " In this latter case, results have
been found in excellent agreement with the simple
Penn isotropic Inodel.

e(k) and e(r) have many applications. They can
be used to calculate vibrational spectra, " screened
pseudopotential form factors, "electron-hole in-
teraction in exciton problems" and impurity po-
tentials. " It must be noted that even in the Penn
model (and despite its conceptual simplicity) cal-
culation of dielectric functions involves no little
labor. ' Simple analytical. interpolation formulas
[at least for e(k)] have been proposed in the litera-
ture, ""in order to make applications easier.

We develop in this paper the Thomas-Fermi
(TF) theory" of dielectric screening in semicon-
ductors. The TF equation for impurity screening
in metals was formulated long ago by Mott" and
widely studied in the literature. "" The new re-
sult of the present paper is that the same equation
can be used to describe dielectric screening in
semiconductors, by a suitable choice of boundary
conditions.

The TF model dielectric functions e(k) and Z(r)

we propose in this paper are numerically found to
be extremely close to Srinivasan's4 Penn-model
calculations. This is not surprising, since the TF
degenerate- electron- gas approximation and the

Penn model (nearly-free-electron gas with an ener-
gy gap) are conceptually very similar. The start-
ing ingredients are also the same in our theory as
in Penn's model, namely the static dielectric con-
stant e(0) and the Fermi momentum kr.

There is however an important difference be-
tween the Penn model and the theory of the present
paper. While calculation of Penn-model dielectric
functions involves cumbersome integrations in k

space, ' TF-model dielectric functions e(k) and e(r}
have a very simple analytical form, even simpler
than the interpolation formulas proposed so far in
the literature. ' '

In Sec. II we derive the TF equation for dielec-
tric screening, following Mott. "" In Sec. III the
boundary conditions for semiconductor screening
are discussed, in a framework suitable for any
local-density scheme. In Sec. IV the TF equation
is solved and the analytic expressions for the TF
spatial dielectric function e(r) and wave-vector-
dependent dielectric function e(k) are derived. In

Sec. V results for diamond, Si, and Ge are ex-
plicitly shown and discussed by comparison with
the existing literature.

II. TF EQUATION FOR POINT-CHARGE SCREENED

POTENTIAL

We use throughout this paper atomic units h= 1,
e'= 1, m, = 1. The whole theory we are going to
develop is isotropie, and we drop the vector no-
tations, since all quantities are functions of ~r

~

=r
and of ~k~ =k. The model semiconductor is treated
in the electron gas approximation, in the frame-
work of TF theory. In the unperturbed solid of
density n, = constant the electron momentum is uni-
formly distributed in k-space within the Fermi
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sphere k (k~, where

k, = (3v'n, )'".
When a point-charge impurity potential

V, (r) = +Z/x (2)

-~'V(~}= 4v[n(r} —n, ],
and the final TF equation is

&'V(-r) = (2' ~'/3rr}([E~+ A —V(r)]'~' —E~~').

(8)

is introduced in the electron gas, the charge den-
sity rearranges to screen Vp Electrons are al-
lowed to have higher kinetic energy where po-
tential energy is lower and vice-versa. Classical
condition of motion gives a relation between maxi-
mum momentum k (r) and self-consistent
screened impurity potential V(r), whichwewriteas

2~k' (r)+ V(r) = 2k], +A, (3)

where A is a constant. The behavior of k (r) is
schematically shown in Fig. 1. From the figure
we also note that for repulsive V(r} additional
complications arise near x= 0, since k (r) can-
not be negative. This difficulty can be over-
come, "'"but for the sake of simplicity we con-
sider in the following an attractive point-charge
impurity, whose unscreened potential is

V, (r}= Z/r, Z&O.

The TF equation for self-consistent screened
potential V(r} is easily established. ""At point
x, maximum allowed momentum is related to
local density, as in (1).

k,„(r)= (3v'n(r)}'~'.

From (5) and (3), and putting E~ = 2k~

(4)

n(r)= (2' '/3v')[Ez+A —V(r)]' '. (8)

Now the displaced electron density can be related
to the screened potential by Poisson equation

%0~0~0~0~0
~ ~

~ ~ ~ Screening

rldiul

FIG. 1. Electron momentum distribution (schematic
plot in arbitrary units). Dashed-dotted line: unperturbed
solid; Solid line: point-charge, attractive impurity;
Dotted line: point-charge repulsive impurity.

III. NATURE OF BOUNDARY CONDITIONS

IN LOCAL-DENSITY THEORIES

In TF theory boundary conditions must be as-
sociated with Eq. (8) or (9). The first one is trivi-
al: for either metals or semiconductors, V(r)
becomes unscreened for r —0, and the condition
is

lim rV(r) = lim rV„(r) = -Z. (1O)
r O r p

The boundary condition at x=~ has, as we will
show, deeper significance, and is related to the
value of A in (8) or (9). The asymptotic behavior
of V(r} for r-~ is related, by means of the Gauss
theorem, to the total screening charge. 'The same
happens in ordinary TF theory of atoms and ions,
where the constraint is equivalent to assignment
of ionic charge.

The constraint on the total number of particles
which always arises in TF theories can be regarded
from a more general point of view. If we con-
sider, in fact, a, system of interacting electrons
in an external potential, total energy can be writ-
ten within the TF approximation as a functional of
local density. The Euler equation obtained by
variation of this functional is in fact equivalent to
the TF equation, and a constant like A in Eq. (8)
and (9) is essentially the Lagrange multiplier re-
lated to the constraint on the total number of par-
ticles.

Equations (8) and (9) have been used so far to
describe impurity screening in metals. The boun-
dary condition at r=~ is in this case equivalent
to assign the total number of displaced electrons
equal to Z. The solution of this problem is A =0
and, for the linear case (9)"

V(r) = -(Z/r)e '" = Vo(r)e '".

As far as we are concerned with linear screening
effects, Eq. (8) is linearized to

V'V(r) = q'[V(r) -A], q = (4k+/7r)'~'. (9)

Equations (8} and (9) have been first established
40 years ago by Mott" and widely investigated
later in the literature either in the linear and non-
linear form, "'"with the use of boundary conditions
related to complete dielectric screening in metals.

The new result of the present paper is that, with
the use of appropriate boundary conditions, these
same equations are able to describe incomplete
dielectric screening in semiconductors.
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We note here that TF screening in a metal extends
over the whole crystal. In other words, the screen-
ing radius R of Fig. 1 is infinite.

Boundary condition at r =~ as given for a semi-
conductor yields a different result. It will be
shown in Sec. IV that the incomplete screening
charge in a semiconductor has finite radius R.
We thus establish in this paper a complete analogy
with the usual 'TF theory of atoms and ions. " It
is well known, in fact, that in a TF atom the
charge density extends over the whole space,
while solutions of the same TF equation with bound-
ary conditions as given for positive ions yield
finite ionic radii.

We conclude this section noting that the above
discussion on boundary conditions has a much more
general validity than the 'TF approximation. The
classical Hohenberg-Kohn theorem" states in
fact that even in the exact many-body case the
ground state energy can in principle be found by
constrainted minimization of a (unique) functional
of local density. The exact form of this functional
is of course unknown, and TF scheme gives the
simplest approximation to it. In the literature,
accurate many-body results for the electron gas
have been parametrized'4 to obtain local density
functionals suitable for calculations. " A local
density formalism has been very recently applied
to the problem of point-charge screening in elec-
tron gas by Almbladth et al." The boundary con-
ditions used by these authors are, once more, re-
lated to complete screening in metals.

IV. SOLUTION OF THE TF EQUATION

FOR LINEAR DIELECTRIC SCREENING

In the following of this paper we will refer only
to linear screening and to the Iinearized Eq. (9).
The boundary of the screening charge is defined
through (see Fig. 1)

Z sinhq(R —r) Z
r sinhqR &(0)R '

'The screening radius R is found by imposing
continuity of electric field at ~=R. Taking the
derivatives of (14) and (16) and equating we obtain

sinhqR/qR = e(0) .

This equation yields a finite solution for R for any

c(0)&1. The metallic case formally corresponds
to e(0) = ~, and we obtain in this case R = ~, in
agreement with expression (11).

If we introduce the spatial dielectric function

e(r), defined by

V(r) = Z/r&-(r),

the results (14) and (16) are rewritten as

(18)

e(0)qR/[sinhq(R —r)+ qr J„r~R
e r)=

e(0), r R.
(19)

The spatial dielectric function e(r), which is de-
fined in (18) following the current usage in litera-
ture'"'" is useful only in the very special case
of a point-charge external disturbance. 'The linear
response to an arbitrary external probe is in fact
nonlocal, and must be expressed in terms of a
convolution integral.

On the other hand, the linear response of a
homogeneous system is local in k space. The
wave-vector-dependent dielectric function is de-
fined through the Fourier transforms of the
screened and unscreened potentials

I/E(k) = V(k)/Vo(k), (20)

and the same e(k) applies to any external potential
V, (k). We actually know the linear response to a
point-charge probe, so that e(k) can be determined
from (20), taking the transforms of (4) and (14), (16).
'This can be performed exactly, and the final result
is

which gives for A, from (6), the relation

V(R) =A.

(12)

(13)

TABLE I. Summary of relevant figures for diamond,
Si, and Ge.

Diamond Silicon Germanium

Beyond the screening radius R, the screened po-
tential V(r) of a point charge is given by

Nearest-neighbor
distance (a.u. ) 2.91 4.44 4.63

V(r) = -Z/e(0)r, r~ R, (14)

V(r) = -(Z/r)(ae'"+ Pe ")+A, t &R. (15)

By imposing continuity at r=R, and using (10) and
(13), Eq. (15) is finally rewritten

where e(0) is the static dielectric constant. Inside
the screening radius the potential is described
by Eq. (9), whose general solution we write as

Valence Fermi
momentum k~- (a.u. )

q= (4k /m)

Static dielectric
constant e. (0)

1.46

1.36

5.7

Screening radius R
(a.u.), from Eq. (17) 2.76

0.96

1.10

11.94

4.28

0.92

1 ~ 08

16.0

4.7 1
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FIG. 2. Wave-vector-dependent dielectric function in
diamond. Solid line: this work (TF); Dotted line: Ref.
4 (isotropic Penn model) ~

(21)

~ ~

e(k) =
[q'(e(0)]sinkR/kR+ k'

The TF dielectric functions we propose in the
present paper are easily obtainable for any semi-
conductor. The only input data needed are the
static dielectric constant e(0) and the valence
Fermi momentum k~, as in Penn model. "R is
found by solution of (17) and the final results have

the quite simple analytical expressions (19) and

(21). It should be noted that the TF theory of the
present paper gives an r-space model dielectric
screening, while Penn model is essentially a k-
space model theory. Although conceptually the
two models are very close, the amount of com-
putation needed is quite different. The final re-

~ ~ ~ ~
« ~ ~ ~ ~ ~

0.2 0.4 0.6 0.$ 1.0 1.2

k(a. u.)

FIG. 4. Wave-vector-dependent dielectric function
in Ge. Solid line: this work (TF); Dotted line: Ref. 4
(isotropic Penn model); Dashed line: Ref. 11 [RPA
along (1,0, 0)].

suits, on the other side, are quite similar. A
detailed comparison is done for diamond, Si,
and Ge in Sec. V.

V. RESULTS FOR DIAMOND, SILICON, AND GERMANIUM

A number of different calculations of the wave-
vector-dependent dielectric function e(k) exists
in the literature for Si and Ge. ' "" These cal-
culations in most cases closely match Sriniva-
san's' Penn-model results.

The TF wave-vector-dependent dielectric func-
tions c(k) for diamond, Si, and Ge have been eval-

5.7

~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~

SiaDle

henri-leeDth

~ ~ ~ ~ ~ ~ ~ ~ ~ « ~ ~ ~ ~

DIAIIDHD

TF

I I

0 0.2 0.4 0.6 0.I &.0 l.2
k(a.s.)

FIG. 3. Wave-vector-dependent dielectric function in
Si. Solid line: this work (TF); Dotted line: Ref. 4
(isotropic Penn model); Dashed line: Ref. 11 tRPA
along (1,0, 0)].

~ ~ ~ ~ ~ Srirtiveeell

r (a.il.)

FIG. 5. Spatial dielectric function in diamond. Solid
line: this work; Dotted line: Ref. 4.
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FIG. 6. Spatial dielectric function in Si. Solid line:
this work; Dotted line: Ref. 4.

uated from expression (21). The values of the
static dielectric constants a(0) and of the valence
Fermi momentum k~ used are shown in Table I.
The values of screening radii R, defined by equa-
tion (1I}, are also reported in the table. The re-
sulting g(k) are shown in Figs. 2-4, together with
isotropic Penn-model results of Srinivasan4 and
RPA results of Walter and Cohen" along the direc-
tion (1,0, 0). ;t is easily seen that the agreement
is excellent, despite the extreme simplicity of the
analytic expression (21).

A remark should be made about the low-wave-
number behavior of e(k). The TF dielectric func-
tion of the present paper is monotonically decreas-
ing, while Srinivasan's calculation shows a maxi-
mum at k =0.05k~. In the framework of Penn's
model, the low-k behavior results from a delicate
cancellation of "normal" and "umklapp" terms, 4

so that no physical meaning should be attached to
these maxima. As a matter of fact, the accurate
pseudopotential RPA calculation of Walter and
Cohen" in Si and Ge yields nearly isotropic e(k),
which is (over a given direction) monotonical and
numerically quite close to the present TF results.

The TF spatial dielectric functions &(r) for dia-
mond, Si, and Ge evaluated from expression (19)
are reported in Figs. 5-7. As shown in the pre-

Yf
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FIG. 7. Spatial dielectric function in Ge. Solid line:

this work; Dotted line: Ref. 4.

ceding section, the spatial screening charge has
finite range R. Numerical values for R obtained
from Eq. (1'I) are very close to the nearest-neigh-
bor distance in the crystal, as reported in Table
I and in the figures.

As already noted, dielectric screening in semi-
conductors is evaluated by the authors quoted
above' ""in k space, and then is sometimes
transformed to r spa, ce,""'"while in the TF the-
ory of the present paper one first finds e(r) and
then &(k}. A study of &(r} in diamond, Si, and Ge
has been performed by Srinivasan, ' with the aid
of an interpolation formula for &(k). These results
are also shown in Figs. 5-7; they are, as expected,
close to ours.

In particular, Srinivasan obtains that e(r} is
approximately equal to e(0) beyond a distance
close to the single-bond length, while in the theory
of the present paper a(r) = e(0) exactly for r ~ R.
The overshoot in &(r) over e(0) for large r is prob-
ably a numerical artifact, as already noted by
the same author' and by Vinsome and Richardson. "
'The TF theory is probably better than the Penn
model. in this respect.
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