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Two-spin light scattering in the disordered phase of Heisenberg antiferromagnets is investigated by means
of a modified'Markoffian approximation for the continued-fraction representation of the shape function. The
necessary frequency moments are evaluated: they are found to be dominated by the contribution of zone-

boundary wave vectors. The predicted spectral shapes are in good agreement with the experimental spectra in

RbMnF, and KNiF, both at high temperatures and in the neighborhood of the Neel point.

I. INTRODUCTION

Raman scattering experiments in Heisenberg
antiferromagnets show an intense band due to two-
spin excitations": the associated inelastic peak
persists also above the Noel temperature T„, up
to T-1.4T„and the spectrum becomes symmetri-
cally centered about zero-frequency shift only in
the limit of very high temperatures. ' The shapes
of the spectra and their relevant features like the
frequency peak and the width have been satisfac-
torily accounted for through most part of the or-
dered region' ' where the scattering process
turns out to be dominated by a couple of well-de-
fined magnetic excitations with wave vector % in
the antiferromagnetic zone-boundary region. In
the paramagnetic phase the quantitative inter-
pretation of the spectral shape is less clear: the
magnon concept becomes less meaningful even at
high k and this is reflected in the increasing over-
damping of the inelastic peaks. Neutron inelastic
scattering on single high-% excitations exhibits a
quite similar behavior, as shown by the well-
known three-peaked structure of the spectra. "
Owing to this situation, for T & T~ the usual many-
body approach (e.g. , Green's function formalism)
appears much less powerful than other methods
used in the statistical theories of the line shape.
One of these approaches' is based on a continued-
fraction expansion of the Kubo relaxation function
for the scattering process: in the following we
shall adopt this method.

The plan of the present work is the following.
After an introduction (Sec. ff) to the continued-
fraction approach to two-spin Raman scattering,
we discuss in Sec. III the limits of the previous
approximations and present a modified Markof-
fian scheme which should work better for the in-
volved f requency range. The necessary frequency
moments for the light-scattering relaxation func-
tion are approximately evaluated in Sec. IV.
Finally, in Sec. V the resulting theoretical cross
section is compared with the experimental spee-

tra of RbMnF, and KNiF, at various tempera-
tures in the paramagnetic phase.

II. CONTINUED-FRACTION APPROACH FOR
THE RAMAN CROSS SECTION

In the following we deal with Heisenberg anti-
ferromagnets with Hamiltonian

where the exchange integral 8 (&0) is limited to
the r nearest-neighbor spine in the positions 5
around a given site ~ . Simple cubic perovskites
like RbMnF, (S = 2) and KNiF, (S =1}are well des-
cribed by this magnetic Hamiltonian.

Introducing space Fourier transforms of spin
operators

the Hamiltonian (1) becomes

where

y„- =- exp(f%. 5)
1

for simple cubic lattices with spacing a takes the
form

yg =-', (cosk„a +cosk„a +cosk, a) .

The two-spin light-scattering mechanism is
ruled by a spin transition operator"

(4)

where for the sc case

4g = cosk„a —cosh„a .
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The quantity C k satisfies the relation

4g S], . S g =0.
k

The Raman cross section is then proportional to
the time Fourier transform of the correlation
function (MM(t)), i.e., to

& ((s-„, s -„.)(s-„s -„) (t)),

where cu &0 for Stokes scattering. Instead of S(&u)

it is more convenient to deal with the normalized
relaxation shape function f,(~):

where

R(t)= J dX(e Me M(())
0

is the Kubo relaxation function for our problem,
and P =(kzT) '. The quantity S((()) is related to
f.(~) by

S((u) =It (t = 0) (~/(1- e 6 )]f,((u) .
Here and in the following we use units k =1.

Mori' has derived a method for calculating the
shape function f,(v). More precisely, his theory
is in terms of f,(z), the Laplace transform of

f, (t) =R(t)/A(0): the shape function f,(ur) is simply
given by

f,(&a) =(I/7() Re f,(z =i&a).

mation schemes for a termination of the continued
fraction.

df„(t)
fl+ 1 f„„(t—r)f„(r)dr, (13)

where f„„(t)plays the role of a generalized mem-
ory function. In particular cases one can find
from Eq. (13}the approximate behavior of f„(t)
without a detailed knowledge of f„„(t). Let us call
r„and r„„the typical decay times of f„(t) and

f„„(t)respectively. Then Eq. (13) can be approxi-
mately solved in the following limiting cases:

(i) t Sr„«r„,, In this small time approximation,
one can safely put f„,,(t —7)=f„,,(t = 0) = 1. in Eq.
(13}. This yields

III. STATISTICAL TERMINATION OF THE CONTINUED

FRACTION

Typical truncation schemes of the continued
fraction depend both on the magnitude of the avail-
able A„and on the frequency region of the spectra
which is relevant to the particular physical prob-
lem.

In the paramagnetic phase the absence of any
preferred direction simplifies the explicit calcula-
tion of the moments. Of course the continued-
fraction approach has validity also in the antiferro-
magnetic phase where the longitudinal and trans-
verse relaxation functions must be separately
treated. However until T -0.8 T~ the magnetic
system can be described in terms of interacting
bosons. For Stokes scattering the continued frac-
tion can be stopped at the first stage by means of
a Markoffian approximation recovering the results
of the Green's-function formalism. '

In the time-domain Eq. (11)takes the form

Then Mori proves the following continued-frac-
tion representation for f,(z): f„„(t) = cos [(6„„)'~'t],

f, (z) =[ z+ a,f, (z)] ',
where

f„( )~ =z[z+ 6„,,f„„(z)].

(10)
i.e., an undamped oscillatory behavior. This solu-
tion corresponds to the so-called "wing approxi-
mation" for the frequency spectrum, which turns
out to be composed of many 6-like spikes.

(ii) r„=r„,, [actually, f„(t)=f„,, (t)]. T—his yields

In Eqs. (10) and (11) the quantities A„are con-
nected with the even frequency moments (tl'") of
the shape function f,(e). In particular, the first
three ~„are given by i.e., a damped oscillatory behavior.

(iii) r„,, «r„t. ~In this long-time limit Eq.
(13) can be approximately written

The continued-f raction representation (10) and

(11) is formally exact. In practice, however, only
very few of the first h„can be theoretically eval-
uated, 'and one must resort to definite approxi-

where the upper integration limit can be taken as
infinite since for t» r„, , f„,,(t ) is negligibly
small. Therefore one finds an exponential decay
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f„(t)=exp( ——,'~„,,t') . (17)

This Gaussian termination (essentially, the first
term of a cumulant expansion") can give good re-
sults for the high-frequency part of the spectral
shape. It has been also used for n=1," and
n =2, ' to explain the spectral shapes in inelastic
neutron scattering spectra at various wave vec-
tors in the paramagnetic region, but has met only
a partial success, especially at low tempera-
tures and high %. In particular, both terminations
are not able to account for the experimental peak
frequencies.

The more interesting features of two-spin Haman
spectra and of high-k neutron spectra for T &T„
appear in a rather small frequency range around
co =0. From this point of view, along-time ap-
proximation for the behavior of a particular f„(t)
should be a good termination for the continued
fraction. Indeed, taking into account the three-
peaked structure of high-k neutron spectra, a
three-pole approximation [case (iii) for n = 2] has
been worked out. " However, there is no guaran-
tee that really in the whole temperature range
T & T„ the memory function f,(t) decays much
faster than f,(t), or in other words that f,(t) has a
purely Markoffian behavior. As a matter of fact,
this approximation does not give good results at
very high temperatures, just where the theoretical
starting point is better since the maximum number
of frequency moments is exactly known.

We have recently worked out a modified long-
time approximation" ("pseudo-three-pole approx

00

f (t )„=ex' — 6„,, f„,, (v)dv) ) . ()5)

in the frequency domain this means that f„„(z)
=f„,,(z =0) in the continued fraction (11). All the

procedure yields the so-called (n+1)-pole approxi-
mation for the frequency spectrum.

However, in general, the time constants T„and v.„„
are unknown. The quantities which may be known (for
low n) are the coefficients of a small-time ex-
pansion of f„(t);
f„(t)= 1 —(1/2! )6„t '+ (1/4! )b.„(t),„+h„, , )t

' —~ ~ ~,

(18)

so that a quantity of the order of 1/))A„can be a
reasonable estimate for the initial time decay of
f„(t). It is clear that this estimate may be very
rough if one is interested in the whole detailed
time behavior of f„(t).

A compromise between all these tendencies,
which has the correct small-time behavior and
satisfies the condition limf„(t ) =0 as t-~ is
given by

a, ((o)=a,(0), b, ((d) =b,'(0)u),

with

(19)

00 ~0

a, (0) = f,(t) dt, b,'(0) = tf, (t )dt.
0 0

(2o)

Higher-order terms like —', a,"(0) (d2 in the first of
Eqs. (19) are neglected: for our problem, they
yield a negligible contribution to the spectral
shape (see Sec. V). The three-pole approxima-
tion is recovered in the limit b,'(0) —= 0: the time
constant: I/w of Ref 14 i.s simply b.,a, (0).

Using the approximation (19) in the continued
fraction (10) and (11), the spectral shape function
is found to be

1 s,a,a,(u))
7( ((o[(~ t).,b, ((u)—J —t). ,] '+ [(et).,a, ((u)I'

(21)
with

t),a,(0)[1-a,b,'(0)] '
(() +(A,a,(0)/ [1-t),,b,'(0)]].2 '

(a[I-a,b,'(0)] '

uP +(t),a,(0)/[1- ~,b,'(0)]]'

Equations (21) and (23) are expected to give a rea-
sonable approximation for the spectrum in a range
of frequencies around (d =0 smaller than the in-
verse of the time decay 7., of f,(t}. They are not
expected to hold in the less interesting high-fre-
quency region where any long-time approximation
breaks down. Equations (22} and (23) imply

(23)

f(l)=(1—a,.),'(0)] 'exp( — ' ', —t) (24)

Therefore, not only the time-constant of the ex-
ponential decay is modified with respect to the
three-pole-approximation result, "but there is
also an amplitude factor different from unity. The
presence of this factor is a direct consequence of
the requirement of a better description of f,(t} at
long times and therefore of the low-frequency part
of the spectrum. Of course, for this purpose it is
not relevant that the predicted short-time be-
havior of f,(t) is not correct: this is a general
consequence of all long-time approximations.

imation" }which does not rely so heavily on an
arbitrary Markoffian behavior of f, (t). For n=2,
z =i&a, Eq. (11}becomes

i ~f,(z = i &u ) —1 = -a,f,(z = i &u)f,(z =i &u) . (18)

If f,(t) decays faster (but not necessarily much
faster} than f,(t), a good approximate solution to
Eq. (18) can be found expanding around ~ =0 the
slowly varying function f, (z = i e). Letting f„(z
=i &u) =a„((u) —ib„((d), we obtain
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IV. FREQUENCY MOMENTS

In order to evaluate the spectral shape as given
by Eq. (21) it is necessary to know ~, and b., and
to have a reasonable estimate for the higher-or-
der quantities A,a,(0) and ~,b,'(0). In this section
an approach to get 6, and 6, in the whole tempera-
ture region for the light-scattering case is dis-
cussed.

The frequency moments (0'"& can be in principle
calculated by means of 2n —1 commutators with
the Hamiltonian

1
R(t =0)

xg 4-„cp([[ .[sg s -„xJ,xJ,
xS), i S q, J&. (25)

Of course, at arbitrary temperatures this is a
formidable expression even for n =1, 2. In order
to bypass this difficulty in the simplest way, one
can decouple the dynamic four-spin correlation
function into all possible products of two-spin cor-
relation functions, i.e.,

((S-„'S t,.)(RX S %)(t})=-',(8-„~ S g(f}&'(6g.T, +6-„, -„).
(26)

This decoupling approximation can be rough for the
whole dynamics, but its use for the calculation of
the first moments is reasonable. Static two-spin
correlation can be calculated by means of the
spherical model

(&r, & u& =(Pl&I~} '(u '+a~} ',
where p.

' is determined by the sum rule

(5), S ),) =MS(S+1) .
k

(27)

By means of Eq. (26) the moments (fI'& and (0'&
can be expressed in terms of the moments (&u-'&

k
and (&A& of the two-spin relaxation shape function
co rresponding to

(28}

Therefore we straightforwardly obtain

(n') =2(Ec* (&T, & i)'
k

x (((u&&+3((u')') QC' (8-„~ 8 -„)'.
k k

(30}

(n3&=2 QC'&5g 5 -)'(~'& QC'(Sg. S -)'
k k k

(29)

Here, in order to connect the correlation and the
relaxation functions, we have used a high-tempera-
ture approximation which is consistent with the
spherical model. The moments (&u'"& are exactly
known at infinite temperature up to n = 3,"at fin-
ite temperatures (m) and (co-'& are also approxi-

k -k
mately known 'a '8

At infinite temperature, taking into account the
identities

Z~-'„=~, Z~'-m=0, Z~'r'= —'„(»}
k k k

and letting O', = 3J'rS—(S+1), the second moment
(0') =n. , evaluated from Eq. (29) turns out to be
20'„ i.e., the same value that comes from an ex-
act calculation. ' It must be noted that this value
is exactly twice the antiferromagnetic zone-bound-
ary value of (uP ). Therefore at infinite tempera-
ture (0'& is wholly determined by zone-boundary
wave vectors. It is interesting to examine whether
this feature is verified also at finite tempera-
tures, or in other words whether the ratio G
= (0'&/2 (uP) is nearly 1 through all the para-
magnetic region. Since a finite temperature cal-
culation of (0 & is difficult even using Eq. (29), we
have estimated the quantity G in an approximate
way. An expansion of Eq. (27) in the quantity
yq/p, ' for r = 6 gives

G =[1+ .u(1+V}J/(I+!u') . (32)

Such a procedure yields exact results in the high-
temperature limit. Typical values of the param-
eter G obtained in this way are 0.958 and 0.933 at
T = 1.5 T„and T = T~, respectively. Therefore
one can conclude that within some percent (0'&
can be satisfactorily replaced by its "zone bound-
arized" value Az)~ = 2 (&u-'„) through all the para-
magnetic region.

At infinite temperature the same statement can
be approximately made also for the fourth mo-
ment (0'& and the related quantity b, . As a. matter
of fact, using Eqs. (30}and (31) and the known
value of (&u-'„& at T-~,"6, turns out to be 4.5270',
to be compared with the value 6, = 4.1520', ob-
tained using the zone-boundary expressions for
(~-'& and (~-'&. These figures actually refer to
S = z (the case of HbMnF, ), but the corrections for
different S are very small; for KNiF, (S =1) one
ob ging A~ = . Qo and A~ =4.104o franz e
temperatures only approximate results for (~'&

kare available. Since the quantity

6, ),
= (~-'„& /(~-'„& —(~-'„& (33

appears to be much less dependent on % than 6, ),
= (&A& through all the paramagnetic region, even
here it can be a good approximation to replace ~,
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with A . Form Eqs. (29) and (30) with (&o'& =(&u&&z~ and (e-'„& =(e-'„&z~ one therefore obtains

(34)

Using the recipe (26) it is also straightforward to derive an approximate expression for the sixth
moment (Q'& which turns out to be

(&'& =2 Q @'-'„(S), S ) &'(( ~&+15( '&(~'&)
k

k k

(35)

Unfortunately, the sixth moment (u&'& is known"
k

only in the T -~ limit: at finite temperatures
even an approximate expression for (v'& does not
exist. Nonetheless, even here, at T=~ the re-
lated quantity 6, does not differ substantially from
its "zone boundarized" value 6, (for S = ~ one
finds 6.960', and 6.7250'„respectively).

V. MODIFIED MARKOFFIAN THEORY VERSUS
EXPERIMENT

b, a (0) =(6 /&, ) [a,(0)]

1-~,b,'(0) = (a,/a, [a,(0)]']

&&(1/~, —[,(0)] '+5,'(0)j,

(38)

where the stepping procedure has been pursued
down to the second, first and zeroth stage, re-
spectively. The quantities a, (0) and f),'(0) are
given by

A. High temperatures (Ref. 19)
a&(0) ff&)t)c=hc)(0)= j, tf(c)ct

0 0
(39)

b. ,a, (0) = 1/a, (0),

1 —&P,'(0) = I .'(0)/[a, (0)1', (36)

The first test to be made on the modified Ma, rk-
offian theory discussed in Sec. III is based on the
comparison with the Raman scattering data in
RbMnF, at room temperature' (T = 3.55T„). Here
the experimental spectrum has a nearly Gaussian
shape and is practically symmetrical around
(d =0. Therefore these data are a convenient test
for the theoretical f,(&u) in the high-temperature
limit: the small detailed-balance factor +[1
—exp(- Pe)] ' in Eq. (9) accounts for the slight
asymmetry of the spectrum. Moreover, the test
of the various theories is particularly significant
in this T-~ limit because of the better knowledge
of the frequency moments and consequently of the
quantities 6„A„A3.

According to their definition (20), the param-
eters a, (0) and I),'(0) are determined by the time
behavior of f, (t). As the knowledge of this high-
order memory function is very poor, it is more
convenient to express ~,a,(0} and A, b,'(0) by
means of a small-frequency expansion of the
lower-order memory functions, i.e., by a sys-
tematic stepping down of the continued fraction
(10) and (11). In such a way one obtains

In the high-temperature linzit the simplest ap-
proximation for h,a, (0) and b., I),'(0) can be based
on the nearly Gaussian shape of the experimental
spectrum. This implies a nearly Gaussian f,(t).
Therefore, just for an estimate of b.,a, (0} and
b, ,b,'(0) one can assume

f,(t) = exp(- 2a, t '), — (40)

which also has the correct short-time behavior
(16}. Then Eq. (38) yields

s,a, (0) =a, (2/7)a, )'~',

1- b, ,b,'(0) = (4/m —1)h,/6, . (41)

Therefore all the parameters entering the modi-
fied-Markoffian result (21)-(23) can be evaluated
in terms of 6, and ~,. The result has been plotted
in Fig. 1 (dotted curve) and is in good agreement
with the experimental data. In order to probe the
substantial validity of this estimate of b, ,a,(0) and

A,f),'(0), one can take advantage of the mathemati-
cal fact" that the higher-order memory functions
f„(t) of a purely Gaussian f,(t) show a more and

more increasing oscillatory behavior. as n is in-
creased, eventually giving a limiting function of
the Bessel type J)(x}/x. Therefore an alternative
estimate of the parameters can be done at the next
stage [Eq. (37)] taking

f,(t) = (1 —C t ')e (42)

a,a, (0) = b.,a, (0),

1-~,b,'(0) = b, ,~)[a)(0)]2 —b((0)].,
(37)

which has a negative undershoot. The constant
C =,h', (1-b,,/2A, ) has been evaluated requiring
that f,(t) has the correct short-time behavior up to
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FIG. 1. Two-spin Stokes spectrum in RbMnF3 at room
temperature (T = 3.55T&). The long dashed line is the
result of the purely Markoffian approximation which
implies 63b3 (0) =0. The other curves refer to the mod-
ified Markoffian theory with the parameters Asa3(0) and

D3 b 3(0) estimated stepping down the continued fraction at
various stages (see text). Dotted, full, and short
dashed lines refer to the stepping down at zeroth, first,
and second stages, respectively. They yield 6&a3(0)
=2.55, 2.51, 2.64 (in units of 00), and hsb3(0) =0.38,
0.45, 0.50, respectively. The circles are the experi-
mental data (Ref. 3).

t' terms. The parameters b, ,a, (0) and b.,b,'(0) and
the spectrum obtained in this way do not differ
substantially from those given by the previous
estimate (see full curve in Fig. 1). At the further
stage, even the rather drastic assumption that
f, (t) has already the limiting form, i.e.,

f (t) =~ [2(~ )"t] i(~ )"t (43)

B. Finite temperatures

Experimental Stokes spe.ctra" ""up to
T -1.4 T~ show a broad inelastic peak indicating

is seen to give results in fair agreement with the
experimental data (short dashed curve in Fig. 1).
This is a clear indication of the convergence of the
whole method. " Moreover, only very small
changes in the spectrum are found if one con-
serves in the low-frequency expansion of f, (z = i~)
[Eq. (19)] also higher-order terms like —,'a'3(0)&u'.
Therefore, in this case the main non-Markoffian
effects are already taken into account by a nonzero
b,'(0).

For comparison, in Fig. 1 it is also plotted
(long dashed curve) the purely Markoffian result'~
which implies A,b,(0)=0. Its disagreement with
experimental data is a clear evidence of the break-
down of the main assumption of this approximation.
In other words, the assumption of a very rapid de-
cay of f,(t) is not valid in the high-temperature
limit. All these features at T-~ have already
been noted in the neutron scattering case at large
wave vectors. "

f,(t) = exp(- —,'a, t ') . (44)

This may still give a meaningful estimate for
a, (0), whereas b,'(0) can be seriously overesti-
mated if the actual f,(t) presents a negative under-
shoot at intermediate times. This feature limits
the usefulness of any assumption based on the
small-time behavior (16) even if the initial time
decay of f,(t) were known.

In absence of any detailed knowledge of f,(t), any
hope for a quantitative understanding of the be-
havior of h,a, (0) and b, ,b,'(0) at finite temperatures
must rely on a stepping-down procedure of the
continued fraction [Eqs. (36)—(38)]. In such a way,
the problem is reduced to some guess for the low-
er-order functions f, (t), f, (t), or f,(t). Even here,
it is apparent from Eqs. (32)-(38) that, whereas
A,a,(0) can be reasonably estimated by the know

the presence of overdamped collective excitations.
In three-dimensional antiferromagnets there is
also some evidence of a diffusive central peak al-
though it is difficult to observe the precise shape
of the spectrum near v =0. The overall spectrum
has probably a three-peaked structure, similar to
that observed in neutron scattering at large wave
vectors.

In the neuron case, attempts to explain this
structure by means of Gauss ian te rminations (17)
were unsuccessful. "" A purely Markoffian,
three-pole approximation" seems to give a fair
agreement for the overall shape, even if the pre-
dicted inelastic peaks occur at frequencies some-
what larger than the experimental ones. This
agreement is a&so borne out by a modified Markof-
fian theory" [Eq. (21)] in which the parameter
A,b,'(0) is determined in such a way to reproduce
the experimental peak frequency: one finds that
b. ,b,'(0) fitted in this way has a very small value,
thus empirically supporting the substantial validity
of the Markoffian hypothesis [A,b,'(0) = 0] in the
neighborhood of TN.

As already stated, very little can be told on the
temperature dependence of the parameters a, (0)
and b,(0) according to their definitions (20), since
even the initial time decay of f, (t)—roughly of the
order of I/(a, )'t' —is completely unknown. None-
theless, some qualitative remarks can be made
even at this stage. The parameter a, (0) measures
only the area under the f, (t) profile: therefore,
for an evaluation of a,(0) a detailed knowledge of
the temporal behavior of f,(t) is not necessary. On
the other hand, according to its definition, b,'(0)
weighs more strongly the intermediate time be-
havior of f,(t): therefore, here we require a much
better knowledge of this memory function. In par-
ticular, let us assume a monotonous behavior for
f, (t) with the correct initial time decay, e.g. ,
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Then from Eqs. (45) and (39) one gets

a,(0) = (~/2~ )"(1- 3E/~;),

b,'(0) = (1/6, ) (1- 8E/6', ) .
(46)

ledge of the area of one of these f~(t) and of some
low-order frequency moments, h, b,'(0) requires a,

better description of these memory functions,
since this parameter is determined by a delicate
balance between [a, (0)]' and b,'(0).

The quantity which has a more direct connection
with the experimental spectra is f,(t). Since for
T &1.4T„ the spectra show a broad inelastic peak,
here the function f,(t) has a more or less defined
oscillatory eharaeter: in particular, it must have
a non-negligible negative undershoot. For neutron
scattering in RbMnF, at high %., such a behavior of
f, (t) has been indeed found" at T = 1.25T„(analyti-
cal fit to the experimental data) and' at T =1.17T~
(a computer simulation). The simplest form for a
f,(t) of this type is

f.(t) = e-"" '(1-«') . (45)

Z
0

1.2 .

0
U)

Rb MnF3

T/TN = 1.022

3.831

7.169 Qo

O. 934

NH\. tt ~~ 0'l~- R
06 ~ rr ~ ~ I K~\6 +

+
4

+ +

30 60 90
FREQUENCY (crn )

0
0

0

FIG. 2. Two-spin Stokes spectrum in HbMnF3 at
84.5'K (T - 1.02T&). Long dashed and full curves refer
to the purely Markoffian theoretical shapes in which the
parameter 63@3(0) has been evaluated according the first
or the second way in Eq. (48), respectively. Short
dashed and dotted curves refer to the same shapes in
which band effects (G &1}have been accounted for. The
circles and the crosses are the experimental data for
the spectrum and for the stray light respectively (Ref.
21). The exchange integral has been taken as J =
—4.73 cm

If the parameter E were determined requiring
that f,(t) has the correct small-time expansion up
to t' terms, one would obtain

E =,—', a', (1-~,/2t, ) . (47)

However, this estimate of E is found to give a
nearly Gaussian shape for f,(t) in Eq. (45): in
particular, f,(t) vanishes at times t =E ' ' much
higher than those obtained in the aforementioned
neutron cases. As a consequence, the quantity
a,b,'(0) derived by means of Eqs. (46), (47), and
(38) is found to slightly increase with respect to
its high-temperature value, thus being unable to
reproduce any inelastic peak. This circumstance
is another evidence of the bad results of any pro-
cedure just based on the small-time quantities.
As a matter of fact, the value of E obtained from
the computer simulation' at T =1.17T„turns out
to be almost six times larger than that predicted
by Eq. (47) and gives for f,(t) a much better des-
cription of the overall spin dynamics near T„. If
one phenomenologically accepts this large value of
E in Eq. (46), one indeed finds for A,b,'(0) a value
substantially smalle r than the high-temperature
one, and about one half of that estimated by
means of Eq. (47). On the other hand, the param-
eter S,a,(0) turns out to be much less affected.

All these results support for the high-k neutron
case the approximate validity of a Markoffian hy-
pothesis in the neighborhood of T„. Since two-
spin Raman spectra are dominated by high wave
vectors and show a shape very similar to that ob-
served in neutron scattering, it appears reason-
able to assume that b,,b3(0) =0 even in the Raman

case. Therefore it is very interesting to com-
pare the theoretical shapes obtained using this
Markoffian approximation and the evaluated fre-
quency moments with the experimental spectra
near T„. For a meaningful comparison in this
temperature range one must of course consider
also the effect of the detailed balance factor in
Eq. (9). Even here, we shall consider simple
cubic antiferromagnets like RbMnF, and KNiF, .

In Fig. 2 our theory is compared with the ex-
perimental Stokes spectrum' in RbMnF, at 84.5 'K

(T =1.022 T~). The experimental spectrum is un-
observable at low-frequency shifts due to the
strong stray light. The theoretical shapes refer
to two simple Markoffian approximations [b.,b,'(0)
=0] which differ only for the estimate of b.,a,(0).
This parameter is evaluated by means of Eqs. (37)
and (38) stepping the continued fraction down to
the first and to the zeroth order. As A,a,(0) is not
much affected by the detailed behavior of f,(t) or
f, (t), for the sake of simplicity we have chosen
Gaussian behaviors. This yields

a,a, (0) = (-,
' vs, )'~', t,a,(0) =t,(2/~t, )'~' (48)

for the first and for the zeroth stage, respectively.
Both approximations are in good agreement with
the experimental spectrum. In particular, the
experimentaj. peak at 76 cm ' is reproduced within
few em '. Figure 2 also shows the fair agreement
of the same curves in which the deviation of the
second moment ~, from the zone-boundary value
4,8 has been taken into account through the factor
C discussed in Sec. IV. If one considers that the
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FIG. 3. Two-spin spectrum in KNiF3 at 256'K
(T -1.02TN). The theoretical shapes have the same
meaning of Fig. 2. The stars are the experimental data
(Ref. 22). The exchange integral has been taken as J =
—71 cm

only fitting parameter which has been used is a
common amplitude factor, the agreement con-
firms also in the Raman case the validity of the
Markoffian theory in the neighborhood of T„.

The same conc1usion can be drawn looking at
Fig. 3, which compares theory and the experi-
mental spectrum in K¹F,at" T = 256 'K (T-1.02T„). The parameter b, ,a, (0) has been eval-
uated in the same way as before. The agreement
is very good; moreover, in this case one can
make a meaningful comparison also at frequency
shifts comparatively lower than in RbMnF„since
the experimental spectrum appears to be less af-
fected by spurious quasielastic scattering.

At intermediate temperatures the experimental
-inelastic peak is hardly recognizable. In these
conditions the quantity h,b,'(0), which in a sense

g
16

KNiF3
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= 1.197

= 3.154 Qo

3 2
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FIG. 4. Trvo-spin Stokes spectrum in KNiF3 at
300 K (T -1.20T&). The theoretical shapes refer to the
results of a purely Markoffian [E3b3(0) =0; dashed curve]
and of a modified Markoffianapproximation [D3b3(0)
=0.25; dash double-dotted curve]. In both cases the
parameter d 3a3(0) has been determined according the
first of Eqs. (48). The stars are the experimental data
(Ref. 22).

measures the deviation from the purely Markof-
fian behavior, begins to play a non-negligible role
which increases more and more with tempera-
ture. Few experimental spectra have been pub-
lished in this temperature region: in any case,
just to give an idea of the effect of a finite A,b,'(0)
at intermediate temperatures, in Fig. 4 we have
plotted the theoretical spectra for KNiF, at T
= 1.197T„obtained with a purely Markoffian hypo-
thesis I A,b,'(0) =0] and with b. ,b,'(0) =0.25 I i.e.,
about one half of the T -~ value ~,b,'(0)-0.45].
Comparing these shapes with the experimental
Stokes spectrum at T =300 'K, one indeed notes
that the presence of a finite A,bt(0) leads to a bet-
ter agreement.

VI. CONCLUSIONS

In this paper we have worked out a, modified long-
time approximation for the spectral shape using
its continued fraction representation established
by Mori. The theory has been applied to the in-
terpretation of two-spin Raman spectra in the
paramagnetic region of simple cubic antiferro-
magnets like RbMnF, and KNiF, . The relevant
frequency moments have been evaluated by means
of a simple decoupling procedure and turn out to
be dominated by the contribution of zone-boundary
wave vectors in the whole temperature range.

The temperature dependence and the main fea-
tures of the experimental Raman spectra are quite
analogous to those observed in inelastic neutron
scattering at large wave vectors. This behavior
can be understood within the framework of the
modified long-time theory: in particular, its
agreement with the experimental data at high tem-

peraturess

is an evidence of the breakdown at
T -~ of any purely Markoffian hypothesis. The
deviation from the Markoffian behavior I measured
by the quantity b, ,b,'(0)] which is substantial at
T -~, decreases as the transition temperature T„
is approached. Even if a quantitative explanation
of this temperature dependence is difficult, the
main effect is due to the strong deviation of the
main time correlation functions from a monoto-
nous behavior as T —T~. The increasing validity
of the Markoffian assumption is most clearly seen
at T-1.02 T~, where the theoretical spectra
evaluated with A,b3'(0) =0 are found to be in good
agreement with the experimental ones in RbMnF,
and KNiF, : in particular, the inelastic peaks are
well reproduced. As two-spin Raman spectra
strongly weigh the wave vectors at the antiferro-
magnetic zone boundary, the whole method can
give a basis for a consistent treatment of the
spin dynamics at short distances through all the
paramagnetic region.
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