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In this work we present the results of a careful analysis of a random stacking, or stacking fault, model for

tetrahedrally bonded amorphous semiconductors. In this model due originally to Wilson, the structure is

characterized by the probability of faulting a (0 ( a ( 1) when close-packed pairs of planes (double layers)

are stacked in the direction perpendicular to the planes: adjacent planes are relatively displaced, occupying

positions A or 8 or C; complete randomness is achieved for a = 1/2, and a wurtzite or diamond structure

for a = 0 or 1, respectively. We modified Wilson's earlier results by taking the limit of an infinite stacking

sequence and by separating discrete and continuous parts of the scattering: this facilitates the analytical and

numerical application of the model for structures with arbitrary fault probability a. In the course of our

analysis we carefully examined some other recent and more restricted treatments of the random stacking

model. We find that the "invariant vectors" whose existence was pointed out by Betteridge are a

consequence only of the relative displacement of adjacent planes and of the maintenance of any fixed

interlayer spacing and do not result from the existence of perfect tetrahedral bonds as Betteridge and Heine

asserted. Perfect tetrahedral bonding occurs for only one particular ratio of interplane spacing to in-plane

spacing: c/a = +273. Hodges' assertion that the scattering from a completely random stacking structure

(a = 1/2) is closer to wurtzite scattering is irrelevant because of his omission of one of the two equivalent

three layer sequences from consideration: when both sequences are included the asserted connection

disappears. We also give some preliminary results of a numerical calculation of the scattering intensity for

various fault probabilities.

I. INTRODUCTION

The present investigation was originally moti-
vated by some work on a random stacking model' '
of a tetrahedrally bonded amorphous semiconduct-
or. The model system is described as a close-
packed structure which is constructed by randomly
stacking close-packed two-dimensionally perfect
layers of unit cells in three different relative posi-
tions. Each unit cell contains two atoms in the di-
rection of stacking, perpendicular to the planes.
As a result, bonds in adja. cent layers are in either
diamondlike (staggered) or wurtzitelike (eclipsed)
configurations while maintaining perfect lattice
spacing and perfect tetrahedral bonding. Although
this is a newly proposed structural model for
amorphous group-IV semiconductors (Si, Ge) and
some other tetrahedrally coordinated III-V semi-
conductors (such as Gap, Gahs, GaSb, etc. ), the
problem of stacking faults in close-packed struc-
tures has a long history' "of hexagonal cobalt,
Sic, etc. Theories developed for the latter prob-
lem of stacking faults are expected to be useful
for treating the former problem of a structural
model for those amorphous semiconductors if
suitably modified. This attempt to apply the me-
thods of the latter problem to the study of the
former problem is the main theme of the present
paper. To be more precise, the purpose of the
present paper is twofold. First, we briefly review

earlier work of Wilson on the x-ray scattering in-
tensity of materials with stacking faults, rewrite
Wilson's result in a simplified form and analyie
some characteristic features of the result. This
analysis itself is interesting and significant in its
own right. Second, we apply Wilson's theory to
the study of a structural model for tetrahedrally
bonded amorphous semiconductors and give some
discussion of the properties of the model.

In the course of this, we examine the origin of
the "invariant vectors" which were first pointed
out by Betteridge. ' %'e find that these vectors
are correlated with maintaining fixed interplanar
spacing and the existence of only two possible
relative displacements of adjacent two dimen-
sionally perfect layers rather than with perfect
tetrahedral coordination as suggested by Better-
idge and Heine. ' '

In order to explain the x-ray scattering intensity
of hexagonal cobalt, Wilson' developed a forma-
lism which was applied to close-packed structures
made by piling up close-packed planes of atoms in
three different relative positions. For treating the
effects of stacking faults, Wilson introduced the
probability ot of each added plane being a fault in
a structure which should otherwise be proper hex-
agonal. The system with a=0 corresponds to a
hexagonal close-packed structure, while one with
a=1 to a cubic close-packed structure (fcc). His
formalism covers the whole range of values of
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a, i.e., 0~a ~1. In Sec. II, we review his
formalism. In Sec. III, we modify his result and
evaluate a simplified form for an infinite system.
We also discuss the behavior of the obtained struc-
ture intensity in the limit of a = 0 and e = 1 as well
as for the specific value of a = —,

' which corresponds
to a completely random stacking sequence.

Armed with the formalism as described above, we
then turn to the second point of our theme concern-
ing tetrahedrally bonded amorphous semiconduct-
ors. It seems to be appropriate at this stage to
give a picture of the present situation of research
in the field of these fourfold coordinated amor-
phous semiconductors. The radial distribution
function (RDF) as obtained from experimental data
of the structure factor indicates that all near-
neighbor coordinates are very similar to that of
the perfect tetrahedrally bonded diamond structure
crystal. " Since improvements of experimental
techniques producing more information on the
structure are in the future, recent progress in
this field has to a great extent depended on new
approaches in modeling. Structural models pro-
posed so far may be classified into three cate-
gories: i.e.; (i} the microcrystal or cluster ap-
proach" "; (ii} the perturbed crystal approach;
and (iii) the continuous network approach. In the
first approach, the amorphous solid is assumed
to consist of crystallites of one or a. mixture of
the real or hypothetical polymorphs of the same
element or compound. In the second approach,
the amorphous material is treated as a heavily
distorted crystal containing a large number of
structural defects such as mono- and divacancies.
In the third approach, the amorphous and semi-
conductor is supposed to consist of an infinite
nonperiodic three-dimensional array of inter-
linked atoms in which the perfect tetrahedral
bonding around each atom is retained, but fluc-
tuations of about 10% or 15% in bond angles and
bond lengths are allowed.

Each approach has merits and drawbacks. The
microcrystal approach can take full advantage of
knowledge and methods provided by traditional
crystallography. Accordingly, the formalisms
are well known and enable us to make various
trial and error attempts, Shortcomings are that
unrealistic crystallites or clusters have to be in-
cluded to achieve acceptable fits between model
and experiment, and that the random orientation
of the crystallites causes high-angle boundaries
which yield much higher volume fraction of void-
rich disordered regions than expected. Some of
the perturbed crystal models are comparatively
easy to treat because several methods developed
for substitutionally disordered systems are ap-
plicable to these models mutatis rnutandis. The

models, however, have been criticized as lacking
firm physical grounding. The random network mo-
dels are considered to simulate real systems fairly
well in the sense that short-range order is satis-
fied throughout the material. In addition, there
have been reports that quantitative agreement has
been obtained between model and experiment con-
cerning some physical properties such as the RDF.
A difficulty lies in the construction of a continuous
network which is big enough to be free from size
effects. Another difficulty is that, even if such a
network is constructed, a powerful standard method
to treat a big network has not yet been established.

In this way, approaches in modeling are still
tentative, and accordingly, improvements in mo-
dels are topics of great interest. A random stack-
ing model proposed by Betteridge' is an attempt
towards this goal. This model has the merits of
some of the above described models. Namely, for
this model, the background provided by traditional
crystallography can be used. Moreover, the ideal-
ized, chemically satisfied short-range order is
guaranteed around each atom.

The random stacking model is thought to be most
appropriate in application to carefully prepared
amorphous films which have been evaporated slow-
ly onto warmed substrates. More ideal, voidless
films are expected to form using a recently devel-
oped technique using a glow discharge decomposi-
tion. Thus, physically speaking, we have good
grounds for believing that the random stacking mo-
del serves as the best approach to these nearly
ideal films, although a fair judgement on this point
must be delayed until more experimental informa-
tion regarding idea. l films is obtained and more de-
tailed and comprehensive investigation of the mo-
del is accomplished.

In the present paper, we are going to discuss
the scattering intensity of this model of a random
stacking sequence, while in the succeeding papers
we intend to treat some other properties such as
the electronic density of states, etc. It is import-
ant to note that the study of the scattering intensity
or the structure factor alone is not enough to judge
the validity of a model. This is because the struc-
ture factor or the RDF does not define the struc-
ture uniquely.

In Sec. IV, we examine Hodge's example' of a
completely random case, and we comment on one
of his conclusions. In Sec. V, we give further an-
alysis of invariant vectors discussed by Betteridge
and Heine. ' ' Section VI is devoted to discussion.

II. WILSON'S FORMALISM

The basic idea of Wilson's formalism is to carry
out a calculation of the structure intensity of a
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random stacking structure in two stages. The
first stage introduces a perfect mathematical lat-
tice. The second stage introduces the structure
factor as a random variable. The average value
of this random variable can be obtained by deter-
mining the probability distribution of this vari-
able, which is the needed weight function.

First, a perfect mathematical lattice is intro-
duced with lattice points located at positions

I(s}=—
f S(s) f' =g F;*F, exp(-is r;, ), (2.4)

r; j being rj —r;.
If we put '1= j1+Pll 2 j2+ 2~ t3 j3+t7l3, then

Eq. (2.3) is rewritten as

in which f,& (s) and u„are the form factor and the
position vector of the gth atom in the jth unit cell,
respectively. The scattering intensity is

j ~1 1 ~2 2 j3 3 (2.S } (2.5)
where j» j»j, are integers and a„a„a, are
primitive translation vectors.

The structure factor for this lattice is defined by

In a structure with a perfect space group Fj =— Fj,
and, therefore, Q, Ff~F, would become

S(s) =g F, (s) exp( is - -r, ) (2.2) (n, —fm, f)(n —fm, f)(n, —fm, f) fF f', (2.5)

F,(s) = P f„(s)exp(-i s ~ u„), (2.3 }

as a function of s, with s —= fs
f

=4m sin)9/X, 8 being
a scattering angle, and A. the wavelength. The
vector s is parallel to%.' —k, where 2 and k' are,
respectively, the wave vectors of the incident and

scattered waves. The structure factor F&(s) of the
unit cell located at rj is given by

where n» n„n3 are the numbers of unit cells in
the crystal in the direction of the respective axes.

Second, a. type of compositional disorder is intro-
duced in this lattice. In a structure where Fj is a
random variable, Fj and Fj, are not necessarily
equal, and the problem of calculating the scatter-
ing intensity becomes that of finding the average
value of FP, F, Let (F.,*, F, ) =—J . Then the
scattering intensity is

FIG. 1. Vectors a1 and a2 are primitive translation vectors in the close-packed plane chosen to include an angle 37[ In
a plane of type A, atoms occupy lattice sites of a triangular lattice indicated by small circles. In a plane of type B,
atoms occupy sites denoted by crosses while in a plane of type C, atoms occupy sites denoted by triangles.



2710 FUMIKO YONEZAWA AND JOSEPH L. BIRMAN

f(s)=Q J (s, —(m, ()(n, —)m, ))

x (n, —~m, ~ ) exp(i s r } . (2.7)

Now we consider a random stacking sequence
which is made by piling up close-packed planes
of unit cells in three different relative positions
A, B, and C as shown in Fig. 1. The vectors a,
and a, are primitive translation vectors in the
close-packed plane chosen to include an angle of
-', v, and (a, (= (a, (. The vector a, is parallel to
the stacking direction with magnitude equal to a
constant interplanar distance. Adj acent planes
are displaced relative to each other by d =-,'(a,
+a, ) or -cT. The possible values of F, are ex-
pressed as F» = exp(-is ~ cj g») f (s), where g»
= 0, 1 or -1, according as X=A, B, or C re-
spectively. The factor f(s) is 1 when each unit
cell contains one atom only as is the case for hex-
agonal cobalt. When this arrangement of planes
is used as a model of a tetrahedrally bonded
amorphous semiconductor, a basis has two atoms
at ~ -', a, about each site and we have

f (s) = —,'[exp(mi s ~ a, ) +exp(-Nis ~ a, )]

-0
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:a

=cos(8s ~ a, ) . (2.8)

P +aP, —(1 —2a)P, =n.

The solution of this equation is
1
~ + @ePe +~OPO I

where

(2.10)

Now let us return to Eq. (2.2} in which u»& should
be now regarded as a random variable, deter-
mined by which of the three possible positions A,
J3, or C, an atom or set of atoms, occupies in the
plane. The latter are found following Wilson, who
evaluated the probability P of the (j+m)th plane
being like the jth. The structure is proper hexa-
gonal if there are no faults at all, but because of
occasional faults, the stacking sequence is dis-
ordered. Suppose that the chance of there being
a fault at the (j+m)th plane is a. Then we have
the probability of the ( j+m)th being like the (j +m
—1)th is 0; the probability of the ( j+m)th being
like the (j+m —2)th is 1 —a; the probability of
the ( j+m)th being neither is n; so that

P =P, x0+P„,(1-n}+(1—P, —P,)a

or

FIG. 2. pe and po as a function of a.

(2.12a}

(2.12b)

Equation (2.10) has been derived for m positive.
lt is clear however that the chance of the (j+m)th
being like the jth must be the same as the chance
of thej th being like the (j+m)th: i.e., P =P .
The values p, and p, as functions of cr are shown
in Fig. 2. Since

~ p, ~

& 1, and
~ p, (

& 1, except for
cases where a=1 and a=0, then P --', when
PPS~ 'x1.

Using P, one can calculate J as

J —= (FPi„Fi)
=[P Fg+(1 —P ) (Fs*+F~~)/2] 3 F„

+[P„F~~+(1—P ) (Fc qF*„)/2] ~ Fs
+[P Fc~+(1 —P ) (F*„+Fs}/2]~ Fc

=[P.+(1 —P.}if] ( f(s) I'

+[-,'(1+2K)+ (1-K)(Q,p, +Q, p, )]~ f(s)(',

p = ~(-a +Dil2)

p = ——'((y yD'~2)

(2.11a)

(2.11b) where

(2.13)

with D =4 —Be +n, and Q~ and Qo are arbitrary
constants. They must be chosen so that P, =1 and

P, =0, and it is easy to obtain

I~ =a'[(Fs+Fc)F~+(Fc+F~)Fe+(F»+F s}Fc]
=-,' [cos(2s ~ I) +2 cos(s ~ I)] . (2.14)
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Substituting Eq. (2.13) in Eq. (2.7), Wilson obtained

sin'(-,'n, a, ~ s) sin'{—,'n, a, ~ s)
sin'(-,' a, ~ s) sin'(-,' a, ~ s)

(2.15)

with

I,(s)= +(1-K)(Q.I.+Q.I.) If(s)l', (2.16)

where

n, (1 —p,')
1 —2p, cos(s ~ a, )+p,'

212 p' —p, (1 +p' }cos(s ~ a, ) +p a" cos[(n, + 1)s ~ a,,] —2pa" cos(n, s ~ a, ,) + p",a" cos [(n, —1}s ~ a] ]
[1 —2p, cos(s ~ a, ) +p'] '

x being either e or 0 in Eq. (2.17).

(2.17)

III. MODIFICATION OF WILSON'S FORMALISM

The purpose of this section is to rewrite the
scattering intensity (2.16) for the third axis in a
more compact form when the system is infinite.
To begin with, it is easy to see that when n, and

n, become infinite, those factors in Eq. (2.15) that
concern the first and second axis reduce to sums
of sequences of 5 functions at —,'a, ~ s =h~, and
—,'a, ~ s =km, where h and )t| are integers. Then it
follows directly that K defined by Eq. (2.14) be-
comes

K = cos[aw(h +k)]

[1, h+k =0 (mod 3),
I -a, h+kaa0 (mod 3). (3.1)

This yields the result that, when h +k =0 (mod 3),
we have -', (1+2K}=1, and 1 —K=O, while, for h

+kaa0 (mod 3), —,'(1 +2K)=0, and 1-K =a. This in-
dicates that the first term of Eq. (2.16) is non-
vanishing only when h +k =0 (mod 3), while the
second term differs from zero only when &+I'| 0
(mod 3}.

%hen n3 approaches infinity, the first term of
Eq. (2.16) turns out to be a sum of 6 functions at
—,'a, - s = l~ with / being an integer. On the other
hand, the second term of Eq. (2.16) is a continuous
function of s ~ a, = q. The behavior of this term is
given by Eq. (2.17), from which it is readily seen
that the first te rxn I, increases proportionally to n, in
the limit of n3 infinite while the second term of I, is at
most of the order of magnitude 1, when n is neither 0
nor l. Therefore, it is appropriate to define the con-
tinuous part of I,(s) by

8, (s;h+k =0(mod 3))

5a ~ a, /. a;olf(s)l'
J; integer

(3 3)

where the 5 functions are expressed in arbitrary
normalization. The continuous part is described
as

s, (s;h+ke0(mod 3))

lim ——(Q, I, +Q, I,) If(s) I' (3.4)
Pl 3 2

which is cast in a more compact form as

Sca(s; h +k aa 0(mod 3)}

3a(1 —a)
—,'(5a' —8a +4) +a a cosa'+(2a- 1)cosa'

(3.5 }
Before we discuss the behavior of 5, , it is use-

ful for later reference to touch upon the scattering
intensities of perfect fcc (or diamond) and hexa-
gonal (or wurtzitelike) structures. Whether we are
referring to fcc or diamond will be clear in the
context from the use of a cell structure factor

lim n, ' ', (Q, I, +Q,-I,}If{s)I'.
n 3

Combining the above arguments, we obtain the
following expression for I(s) of an infinite system:

I(S) = g 57 a&/a-aa, o 5s aa/a aa, o Ha( -a his k) y

A, 0; integer

(3 2)

where &a(s; h, k) has both a discrete part and a con-
tinuous part. The discrete pa, rt is written
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containing one or two atoms, respectively. This
is also the case in deciding whether we are dis-
cussing a hexagonal or a wurtzitelike structure.
For an infinite fcc (or diamond) crystal based on
the sequence ABC, we have

ABCr 3I s&= 3 ~ a 1/2-h7r, 0 3 ~ a2/3-k, p
h+ k+ l' =0 (mod 3)

«3, .; Ia 3 „oIf(s)I', (3.6a)

while for the repeat ACB we have

&ACBg~q R~(ss =
s ~ a 1/2 h7r, 0 s ~ a2/2-k7r, 0

h+k l'=p(mod 3)

x &;, .-, Ia 3 w oIf(s)I'. (3.6b)

Now it is easy to see that

I BB C( S) = IBCB (—S) (3.6c)

Generally, the quantity of physical interest, es-
pecially in connection with x-ray experiments, is
the scattering intensity as a function of s =

I s I.
A theoretical value for this quantity is obtained by
taking the average over angles of I(s) with vector
s satisfying IsI=s. Therefore, both Eqs. (3.6a)
and (3.6b) yield the same mean value and it does
not matter whether we take ABC or ACB. For
later convenience, it is useful to rearrange Eqs.
(3.6a) and (3.6b) in the following way:

h+k=p(mod 3) l~=p(mod 3) 5+k=-y(mod 3) l =1(mod 3)h+k = 1(mod 3) l = - l(mod 3)
I" (s)= g Z W (s)+ g Z W (s)+ Z g W (s}, (3.7a}

I"cB(s)= Z Z W (s)+ Z Z W (s)+ g g W (s),
hy k= p (mod 3) l'= 0 (mod 3) IN%=1(mod 3) l =1(mod 3) hy k =- y{mod 3) l ~=-

y (mod 3)
(3.7b)

where

(s) = 6s ~ a)Ia-hw, o 6s ' aa/a-hw, o 6as as/a-sss, o If (s}I (3.8)

The scattering intensity of a hexagonal (or wurtzitelike) structure (repeat sequence AB) is described as

r" (-.)= E P w (-.) ~ P (-s Z w (-.).—, E w (-.))
3

k+k=0(mod 3) l't; even h+k sdp (mOd 3) l"; eVen odd ]
(3.9)

where

(s) = 6s ~ a(Ia-hs, o 6s ' aaIa-hw ~ o 5s ~ aa-3 woIf (s}I
(3.10)

All possible repeat sequences such as (BCBC . . and ACAC. ) for this structure give the same expression
for the scattering intensity as given in Eq. (3.10).

Now let us turn to the general expression (2.16) due to Wilson and evaluate the intensities for a =0, and
a=1. Substitution of a=0 into Eqs. (2.16) and (2.17) yields the identical form as Eq. (3.10). On the other
hand, the case a=1 reduces to

I '(s) = g Z W~(s) +— g Z W~(s)+ g W~ (s) I

h+h=O(mod 3) S'=O(mod 3) h+hwa(mod 3) S'"--S(mod 3) s'=((mod 3)
(3.11)

which is the arithmetic mean of Eqs. (3.7a) and
(3.7b}. This is an expected result since Wilson's
general formalism for @=1 allows the two possible
fcc structures ABCABC ~ ~ ~ and ACBACB ~ ~ ~ with
the same weight of 50:50.

In the next place, we study the behavior of &, as
given by Eq. (3.5). Using notation x= cossi, we
analyze d(ca as a function of x. Since

I
x

I
~ 1, we

only have to study this function for this region of
variable x. It is a straightforward task to derive
the following conclusion. As shown in Fig. 3, the
behavior of 8, is different for different ranges of
e. For 0&ca ~+, =-l6 —2, &, has an absolute

maximum at x = -1, decreases as x increases, has
a minimum at x = a'/2(1 —2a), then increases
again until x becomes 1, where ~, has a relative
maximum. For a, &a&o., -=2-v 2, 8, is a mono-C

tonically decreasing function of x between —1 ~x
&1. For a, &a&1, 5, has a, relative minimum
at x = -1, increases with increasing x until it rea-
ches a maximum at x= —a'(2a-1), then mono-
tonically decreases and has an absolute minimum
at x= I.

Then, it is easy to see the asymptotic behavior
of 8, in the limits of a=5-=0+ and o. =1 —5. When
a=6, g, has an absolute maximum at x= —1 or
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relative maximum a x=integer and a re

=2 m. On the other an,h d when +=1-6,
l tl, t

1). In both cases, i.e., or
a= —, ' behaves like 1/5,a=1 —5, the maximum e av=5, and a=

th those giving max-s of other an
C ches zero like 5. ppar

(3 10) and (3 11)consistent with Eqs.

h al ltd 1

3.5~ shows that 8, is a
tion of g with p eriodicity 2m. T e c
0f 5 for various u ar g'e iven in ig .
where 0 ~ g ~2m.

IV. COMPL ETELY RANDOM STACKING

' f' ite random stackingtreated an in ini e
letely randomwhere stacking is comp

'l*t f f d' lFor this case, the probabi i y o

0

8 s; h+k=1(mod 3),FIG. 5. T e s ruh tructural weight 3 (s3,
.7 and 0.8.Q) fol 0'=0.6,

50:50. Sinceon top of a layer A isB or a layer C on op
lations of the a edded layer are cTth relative trans i

ectively, cT being —, a, +a»
A o d' 1 th=m a ~ cT+ cT ~ d + ~ . c

case is writtenF~, „F,) in ss ca

~ [exp(is ~ cT)+exp(-is - cT)j}

} nd taking the limit of
obt '

th
into Eq. (2.7 an

' ' of

sity of the form expressed by q.
&,(s i k, k) is given by

, s;, — — ( cT)exp[i(s a, +i5)j) '
&, (s;k, k}=((1—cos s ~

.- -i5) -')1 —cos(s ~ d ) exp [i (s ~ a 3 i 5)

x If (s) I'. (4.2)

—& -0.5
& =0.4

— & =0.3
- &-02

2-.

0

ei ht ac (s3, h+k+1(mod 3), 0)FIG. 4. Structural w g
=s e ~ a3 for n=as a function of rI=s a3 s3 3

0.5.

er ence factor exp —
3-5fm, I}, 5Note that a converg

ded in the summa it'on of the-0 has been include
ies. As shown in Eq.eometric series.

cT) is 1 or -!s and therefore, cos s ~

d 3) is satisfied other h +k =0 mop ng
' el . When cos(s ~not, respective y.

E . (4.2) reduces o at a series of
l h"e l ellues —'s ~ a, = lm, w er5 f nct'ons at va

rs. The second case(h+kc0 mo
co — —' E . (4.2) reduces tocos(s cT) = --,', and Eq.

(s k+kw0 (mod 3))

=(3/[4+5 cos(s ~ a, )j j If(s) I' . (4.3)

e uivalent to Eq. (3.5) with a=-,'= —' and this
' ' df lism(35)guarantees s that the modifie or

dom cas e which is d es-covers the completely random cas

orrect. The discussion due to o g
summarized as follows. He as
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FIG. 6. (a) Continuous part of the structural weight
in the third axis for a = 0.5 is denoted by a dotted curve
as a function of g=s a3. The structural weight for hcp
and fcc is also shown for the case where 6+k =-1
(mod 3). (For detail see text. ) The periodic lattice
structure weight has been arbitrarily normalized so that
the height of the random stacking peak is the same as
that of the hcp at that point. (b) The same figure as
Fig. 6(a) except for the structural weight for fcc which
in the present figure is shown for the cases where h

+k =+1(mod 3). The spikes are normalized in the same
way as in Fig. 6(a).

(dotted curve in our Fig. 6} for Eq. (4.3) as a
function of q=s ~ a„where he has implicitly as-
sumed that h +k =-1 (mod 3), and compared this
figure with the structural weights in the third axis
for fcc and hcp. Note that here ~f (s) ~' is taken to
be 1. For fce, he has considered only one pf the
possible sequences, i.e., ABCABC ~ ~ . Because
h+k =-1 (mod 3) must be satisfied, the 6-function-
like spikes are defined by the third term of Eq.
(3.7a} [spikes as denoted by small squares in our
Fig. 6(a)]. The corresponding term for hcp is
given by the second term in Eq. (3.9) [spikes as
denoted by small circles in Fig. 6(a}]. He argues
that, as shown in Fig. 6(a), the continuous part
&,(s; h + k = -1 (mod 3)) of the random stacking se-
quence behaves to a remarkable extent as if the
hep reciprocal-lattice vectors of large structural
weight (at q an odd integer multiple of v) have
simply been smeared with a Lorentzian convolu-
tion. Even if we also take into account the hcp
vectors of small structural weight (at q, an even
integer multiple of v) the whole series of 6 func-
tions for hcp has the same symmetry as the struc-
tural weight of the random stacking layers. On
the other hand, the structural weight of fcc is non-
zero only when q =(—', w} (3v+1) for integer v, and
has a different symmetry from that of Eq. (4.3).
This tendency is emphasized when ~f(s)~'
= cos'(-;s ~ a, ) is included.

Hodges therefore has concluded that the results
for the random stacking must look very similar
to the wurtzite microcrystallite model, thus sup-
porting the structural model due to Rudee and
Howie' of 14 A randomly oriented microerysta)-
lites, all of the wurtzitelike structure.

Careful consideration shows that this conclusion
by Hodges is not appropriate. There is no reason
why we should pick only one of the two possible
configurations for fcc, consequently both cases
ABCABC ~ ~ and ACBACB ~ ~ ~ must be taken into
account. This indicates that Eq. (4.3) must be
compared to the second term in Eq. (3.11) rather
than to the third term of Eq. (3.7a). As clearly
shown in Fig. 6(b), the second term in Eq. (3.11)
has the same symmetry as that of the random
stacking sequence. Actually, as we have presented
in Figs. 4 and 5, the continuous part S, (s;8+k
= -1 (mod 3)) changes from the wurtzitelike limit
to the diamond limit when n is changed from 0 to 1.

V. INVARIANT VECTORS

In his paper on a random stacking model for a-
Ge and a-Si, Betteridge' has placed emphasis on
those reciprocal-lattice vectors that are invariant
for all stacking sequences. By invariant, he
means two things: (a) these vectors occur for all
stacking sequences, that is, all tetrahedrally bond-
ed structures; and (b) each invariant vector al-
ways occurs with the same structure factor. In a
later paper, Betteridge and Heine' attributed
these invariant vectors to the short-range order,
that is, to the perfect tetrahedral coordination,
and they argue that the separation of the set of
reciprocal-lattice vectors into those which are in-
variant and those which vary with the stacking se-
quence (long-range order) provides a method of
distinguishing the contributions of short- and long-
range order in a reciprocal-space description.

We would like to show here that these invariant
vectors are not the consequences of the short-
range order alone. Actually they can be understood
as a. kind of mean effect of the random stacking
sequence, and tetrahedral bonding is not essential
to obtain them.

The invariant vectors which Betteridge has found
correspond to the reciprocal vectors which give
the discrete part of the scattering intensity as de-
fined by Eqs. (3.2} and (3.3). As can be seen from
Eqs. (3.2) to (3.5) this discrete part is unaffected
by the stacking sequence while the continuous part
is dependent on n, the parameter concerning the
random sequence. The reciprocal-lattice vectors
s, at which the discrete 5 functions occur are de-
fined as follows. When we write s, as

so ~ a, = 2hw, s, ~ a, = 2 km, s, ~ a, =2lv, (5.1)
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then h, k, a.nd / must satisfy

h+k =0 (mod 3),

l: integer .
(5.2a)

(5.2b)

trahedrally bonded amorphous semiconductors,
the scattering intensity of a unit cell, i.e., lf(s) l

= cos' (';s ~ a, }[Eq. (2.8}], must be included. The
requirement that this factor be nonzero introduces
an additional condition that

This definition applies to the general random

stacking model for, e.g. , hexagonal cobalt, SiC.
Thus, the invariant vectors as determined by Eq.
(5.2) have essentially no connection with the per-
fect tetrahedral bonding. The important factors
which give rise to these invariant vectors are the
following facts: (i) that the relative translations
of perfect layers are strictly given by cTor -I
[8 =-,'-(a, +aa)] throughout the material; and (ii)
that the interlayer distance is constant. The form-
er factor leads to condition (5.2a), while the latter
to (5.2b). The long-range order in the sense stated
in (i) and (ii) in the above is of course based upon

perfect short-range order. This short-range order,
however, does by no means imply pea feet tetrahed-
ral bonds. We note that not only is this so, but even the
short-range order does not have to be in the sense
of close-packed nearest-neighbor arrangements,
because all the mathematical steps and arguments
so far in the present paper have not required any

special value for the interlayer distance. In other
words, we did not need to define the magnitude of
the primitive translation vector a, for our formal-
ism and discussion. The only requirement is that

3 must be perpendicu lar to two-dimensional or-
dered layers. When the model is extended to te-

la2 (mod 4}. (5 3)

f a, l
=&273 l a, l

= v'2/3
l a, l . (5 4)

Physically, the invariant vectors can be under-
stood as the mean effect of the random stacking
sequence. This may be seen as follows. We in-
troduce a "virtually-crystal model" which is de-
fined by a set of primitive vectors (a„a„a,) as
given in Sec. II and by a unit cell whose structure
factor is equal to the average of the structure fac-
tors of unit cells in la.yers type A, B, and C; i.e.,

F„,(s) = —,
' (F„+Fa+Fc}~ (5 5)

where F„, F~, and E~ are defined in Sec. II.
Namely the virtual crystal thus defined corre
sponds to a regular stacking of two-dimensionally
ordered layers where the latter are specified by
translation vectors a, and a, while the regular
stacking is determined by aa. From Eqs. (2.5}
and (5.4), the scattering intensity for this virtual
crystal is calculated as

The close-packed structures for monatomic lattice
or the perfect tetrahedral bonding for diatomic
la,ttices are realized only when

I (S) Q ~[3 {F„+Fa3+Fc)J l' exp(is ~ r )(q, —]m, l )(na —lm, l )(na —lm, l )

1
3 (1 +2K) Z 2 2 5s ~ a /a-aa, o 5T ~ a /a-aa, o 5s ~ aa/a-la, o cos (a Iw )

&; integer &; integer l; integer
(5.6)

where n = n(n„n„n, ) are allowed to become infin-
ite and K is given in Eq. (3.1). Following the dis-
cussion of Sec. III, we can conclude that Eq. (5.6)
is exactly the same as the discrete part of the
scattering intensity for a random stacking model
which is shown in Eqs. (3.2) and (3.3). This in-
dicates that the invariant vectors correspond to
the average effect of the random stacking se-
quence while the continuous part in Eq. (3.5) re-
flects the effect of randomness or fluctuations.

VI. DISCUSSION

As an extension of Wilson's formalism, we have
evaluated the modified expression for the scat-
tered intensity of a random stacking model. The
scattered intensity so obtained consists of two

parts, one being a discrete part and another a
continuous pa.rt. The discrete part is described
by a series of 5 functions and is independent of
the scattering sequence. The reciprocal lattice
vectors at which these 5 functions occur corre-
spond to the invariant vectors proposed by Better-
idge. ' Although Betteridge and Heine' have con-
cluded that these invariant vectors arise from the
perfect tetrahedral coordination, we have shown
that their conclusion is not correct. We have also
shown that the discrete part of the scattering in-
tensity which is nonvanishing at these invariant
vectors represents the average effects of the ran-
dom stacking while the continuous part represents
the effects of fluctuations. The average effects re-
flect the ordered aspects of the structure. More
precisely, these invariant vectors appear as a
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result of the long-range order in the sense that
the relative translations of perfect layers are al-
ways strictly 8 or -I and that the interiayer dis-
tance is constant. Therefore, although these in-
variant vectors might play an important role in
materials which satisfy the above described two
conditions for the appearance of these invariant
vectors, they are rather spurious in amorphous
systems where no such long-range order is ex-
pectedd.

The continuous part changes from the hcp limit
(or the wurtzitelike limit) to the fcc limit (or the

diamond limit) according to the change of the

parameter which describes the random sequence.
In this paper, we have confined ourselves to the

analysis of the model. In a succeeding paper, we

will present some numerical results for the scat-
tering intensity and compare the calculated re-
sults to the experimental data of the diffraction
pattern. In our further papers, we will also treat
the electronic density of states and the optical pro-
perties of tetrahedrally bonded amorphous semi-
conductors on the basis of the random stacking
model.
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