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Multiphonon absorption in highly transparent semiconducting crystals
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We perform experimental and theoretical investigations of multiphonon infrared spectra in the three- and

four-phonon regimes of semiconducting crystals, including GaAs, ZnSe, ZnS, and Si, over a range of
frequencies and temperatures. The most striking aspect of these spectra is the persistence of structure at
higher frequencies and elevated temperatures. A simple theoretical model which we develop and apply to
interpret the data suggests that nonlinear moments and selection rules have a relatively weak effect on the
observed spectra. Rather, the principal characteristics of the observed spectra appear to be consistent with

highly simplified calculations emphasizing phonon density-of-states effects and multiphonon interactions
induced by the anharmonic crystal potential.

I. INTRODUCTION

Considerable attention has been given in recent
years to the theoretical interpretation of the multi-
phonon infrared absorption spectrum of solids. ' "
However, although overall trends in frequency (v)
and temperature (T) dependence manifested by ob-
served spectra have been accounted for reasonably
well, very few calculations aimed a.t reproducing
the detailed structural features of such spectra
have been reported. Boyer et al. "predicted de-
tectable structure in the absorption coefficient o. (m)
of certain ionic crystals in va, rious temperature
ranges; they utilized a hybrid calculation which
combined single-particle theory'" with a realistic
density of phonon states for the crystal. Harring-
ton et al." and Duthler" later refined the calcula-
tions for alkali halides by incorporating approxi-
mate selection rules in a more explicit fashion. In
essence, the contributions to the higher-order den-
si'. ies of sta. tes in the latter treatment become
tagged according to the type of phonon contributing,
and these contributions would interfere construc-
tively or destructively, as dictated by appropriate
approximate selection rules. The predicted be-
havior, which indicates suppression of even-pho-
non regions of the spectrum, has been confirmed
experimentally in the two- to four-phonon regime
of selected alkali halides. " We note that both of
the abo ve- mentioned theoretical treatme nts incor-
porate only linear contributions to the electric mo-
ment when calculating the absorption.

In the case of semiconductors, both previously
available data" as well as the present measure-
ments manifest a dominance of structure in the
spectrum, as contrasted with the relatively smooth
variation manifested in ionic spectra. We will see
that there does not appear to be a strong influence

of selection rules (which would favor various pro-
cesses in different orders, say) on higher-order
spectra. This suggests that to the first approxima-
tion it might be reasonable to ignore selection
rules entirely when calculating the multiphonon (n
~3) absorption spectra of semiconductors. A ra-
ther general approach to calcula, tions of this type,
which accounts for both anharmonic i ty as well as
nonlinear moments, had been given previously by
Bendow et al.""However, computations were not
performed utilizing models which were capable of
accounting for detailed structure in spectra. In the
present paper, we combine various elements in the
latter approach to obtain an approximate expres-
sion for the absorption coefficient n which is aimed
primarily at incorporating effects due to structure
in the phonon density of states, yet is reasonably
compact and well suited for numerical computa-
tions. This expression for n is a functional of the
anharmonic displacement-displacement eorrelator
v of the lattice. ' We choose to calculate 0. utilizing
a highly simplified but exactly soluble model for
the anharmonic interactions in the lattice, whence
we obtain a final expression for a(v) in the form of
a double convolution series involving functions
which are quite similar to the lattice density of
states. For the linear-moment case, the double
series collapses to the single one familiar from
other treatments of mult jphonon absorption. ' ' ' ' '

We find that the formulation developed here is es-
pecially convenient for theoretically investigating
the effects of variations in anharmonicity and non-
linearity in the electric moment on the multiphonon
absorption spectrum.

The present measurements are aimed at extend-
ing the available data on multiphonon absorption for
various semiconductors (see Refs. 24 and 25 for Si,
Refs. 26 and 27 for QaAs, Refs. 28 and 29 for ZnS,
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II. SIMPLIFIED MODEL FOR MULTIPHONON ABSORPTION

A. Expression for 0f(m) as a functional of the lattice correlator

The formal expression for the absorption coeffi-
cient in terms of the susceptibility X is'"

o ((u) = (4v(u/n, c) Im It (&u), (2.1)

and Ref. 27 for ZnSe) into the three- and four-pho-
non regimes (and over an expanded range of higher
temperatures); and providing appropriate data for
a detailed comparison between theory and experi-
ment in the many-phonon regime. The measure-
ments were performed utilizing a Digilab FTS-14
Fourier-transform spectrophotometer in the dou-
ble-beam mode, and absorption values deduced
from transmission in the usual fashion. A small
furnace was placed close to the focal point of the
spectrophotometer compartment for the elevated-
temperature measurements. The sample tempera-
ture was monitored by a Cu-Constantan thermocou-
ple in contact with the edge of the sample. Correc-
tions were incorporated for variations of the 100%
line, and variations in the ref lectivity, as functions
of both frequency and temperature in the ranges
investigated. The spectrophotometer values were
verified at selected frequencies using emittance
spectroscopy, "standard thermocouple calorime-
try, "'"and/or photoacoustic calorimetry. " The
samples utilized for the present study consisted of
Texas Instruments Lopex (111)single-crystal sili-
con, Raytheon chemical-vapor deposition-grown
ZnS and ZnSe, and high-resistivity horizontal
Bridgman-grown GaAs obtained from Laser Diode
Labs, Inc. (The ZnS samples displayed either
strong impurity bands or considerable scattering
above 1000 cm ', limiting their usefulness some-
what for the present study. )

In Sec. II the formal theory is developed, and ex-
pressions for o. (~) are obtained. In Sec. III, we
perform calculations for a variety of cases, pres-
ent the experimental results, and compare them
with theoretical predictions. %'e also discuss cer-
tain implications of the present study and indicate
the significance of our results with respect to the
field of multiphonon absorption in general.

is appropriate for the many-phonon response
sought here, in which we suppress all selection
rules, thereby allowing phonons from all branches
and points in the zone to be excited. This choice
does not restrict the distribution; indeed, we will
utilize the full distribution of phonon modes
throughout the calculations, although the moments
are restricted to a single cell. This "hybrid" ap-
proach follows closely the spirit of Refs. 11, 18,
and 19, for example. One then has

4p(d 1
o'((u)=

@ 2[ ( ) I]F((u), (2.2)

where r, is the volume per particle, F(~)
=—(m(t)m(0))„ is the Fourier transform of the cor-
relation function F(t) for the moment m, and n(&u}

is the Bose-Einstein function, n(u) =[exp(P&) —1] ',
I3

' = k~T. The well-known relationship" between
the imaginary part of the Green's function and the
corresponding correlator has been utilized in ob-
taining (2.3). If we further define a dimensionless
moment f(x) through

m (x) = m, er, f(x),
where ~0 is the equilibrium atomic separation; and
constants y, , through

3
c 1 0 0 2 0

then

2xm,' y', e' 1 &u F(u/w, }
n, y, hc a, eo n(&u)+1 ' (2.4)

where F is now the correlator for the dimension-
less moment f(x}, and an arbitrary sealing fre-
quency u0 has been introduced for convenience.
The present model will assume one "bond" moment"
per unit cell, depending on just the relative atomic
displacement u. These restrictions are introduced
solely for reasons of convenience; the present de-
velopment may be straightforwardly generalized to
account for multiple bonds, and for the vector
character of the moments. Nevertheless, we be-
lieve that the single-bond, scalar model to be em-
ployed here does incorporate the essential physics
of the multiphonon absorption process.

In what Iollows, we will utilize moments of the
form

where n, is the refractive index, and It(v) is the
Fourier transform of the susceptibility /(&) &-2g &u (2.5)

It(t) = (I/a. V) ((M(t); M(O))), (2.2)
For this case, one can express F in terms of a cu-
mu lant expansion" in the form

where V is the crystal volume, M is the dipole mo-
ment of the lattice, and (( )) indicates a Green's
function. Vfe adopt an independent-cell approxima-
tion" for M, in which the crystal moment is re-
placed by M=Nrn, where m is the moment of a sin-
gle cell." Such an approximation for the moment

F (t) = exp [-W+ 4 $', a, (t) y ~ ~ ], (2.6)

where the omitted terms involve higher-order cor-
relators (containing more than two displacements)
and where W is a Debye-%aller factor. Thus, ne-
glecting the time-independent factor 8' and the
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higher-orde r correlations,

F(~) =g,' cr„(&d),
(2& )'

n! (2.7)

B. Evaluation of gi(~)
The evaluation of an anharmonic correlator of the

type cr, (&o) for a real crystal is a formidable task,
even in the few-phonon regime, let alone the mul-
tiphonon regime of interest in the present treat-
ment. Rather than starting from general formulas
applicable to real crystals and then invoking a se-
ries of approximations to make the calculations
tractable, we choose instead to start from an ex-
actly soluble model to begin with. We believe that
this model, although admittedly somewhat over-
simplified, nevertheless contains the principal
physics of the many-phonon response in crystals.
The Hamiltonian we adopt for this purpose is es-
sentially the one utilized for studying electronic
impurity sidebands" (Huang-Rhys model and its
variations),

H=~,
~

~+ ~;a';a, gV;i
~

(a', +a;),
(0 0}, (I 0'}

(0 If ' ' (0 -1j
(2.8)

where uo is an arbitrary phonon and the u,.'s (crea-
tion-annihilation operators a', , a,.) are the remaining
phonon modes; V; is a measure of the coupling be-

where the n = 0 term has been omitted since it con-
tributes only at ~=0. (We note that as long as M is
a sum of bond moments, M =K m... then a cumu-
lant expansion similar to that in Eq. (2.6) can be
carried out for more general forms of M, as de-
scribed in detail in Refs. 11 and 36. 'The results
indicate that if the series similar to the one in the

exponent in Eq. (2.6) is cut off at quadratic (two-
displacement) terms as done above, and if correla-
tions between moments in different cells are ne-
glected, then one essentially obtains

( f rllr)2
F (&u) =g, cr„(&u),n!

where f '"' is the nth derivative of f(x), and a„ is the
nth convolution of the anharmonic displacement-
displacement correlator cr, (&d) =(u(t)u(0))„. This
expression is equivalent to Eq. (2.7) for the par-
ticular f(x) chosen in Eq. (2.5).) Thus, within the

present approximations, n(co) becomes a functional
of cr, (cd), n = n(cr, (id)), and is therefore determined
essentially by just the single correlator cr, (t).
Since 0, is an anharmonic correlator, I: and there-
fore n will contain contributions from couplings of
all orders in the nonlinear moments and the anhar-
monicity. For the linear moment case one obtains
the familiar result n - (u(t)u(0))„.

tween the mode co, and the mode co, Note that al-
though the interaction term in H is linear in V;, the

coupling between the excited and unexcited states of
(d, will, in general, lead to response functions con-
taining contributions from all orders in V; (all or-
ders of phonons). In effect, in the present model
one truncates the space of (d, from ~ x ~ to 2 x 2, to
allow exact calculation of the response of the mode
(d, interacting with the rest of the lattice. The two

levels represent the absence of the phonon &u, (zero
energy} and its presence, i.e. , its excitation (ener-
gy &do). For this system the many-phonon response
will consist of the virtual excitation of the state w„
followed by its decay through interactions (V, 's)
with phonons cu, This situation is quite similar to
the usual picture of (damped} anharmonic absorp-
tion where a single TO mode is excited (virtually)
and subsequently damps through interactions with
other phonons. A principal limitation of the pres-
ent model is the neglect of higher-order terms in-
volving multiple excitations of ~, in a single tran-
sition. Although such an approximation cannot be
rigorously justified, it does nevertheless appear
reasonable for calculating the many-phonon re-
sponse, since multiple transitions involving all of
the remaining co,.'s except for co, are indeed prop-
erly included. There is one other important con-
sequence of the use of the present model which re-
quires consideration. Since the mode (d, here takes
on a fermion rather than boson character, it will
be necessary at finite temperatures to alter the re-
sults so that in fact a boson temperature depen-
dence will be obtained for ep The T dependence of
the remaining modes will, of course, be correct to
begin with, and will not require modification.

In the truncated representation we require the
response function for the displacement

r/2( 0 ei(u t)O
u, (t) =

L,
e'"" o f

We define the dimensionless correlator 0,

(2.9}

cr, (rd) = cr((u —rd, ) D,(T) + cr(cd + cd, ) D,(T),

D, '=zo=1+e "0, D, =e ~"&D, ,

(2.11)

where zo is the (fermion) partition function for the
mode co, . 0 is the usual response function obtained
for a generalized Hua. ng-Rhys model" (T depen-
dence of (d, ignored),

1
cr(~) = P —,p„(rd),

n

(2.12)

2m(d 0 2m (d Cl

cr, (t) =(u, (t)u, (0)) 0 '= a, (t) ' ', (2.10)
h

where uo is now measured in units of a, . The eval-
uation of 0', is given in Appendix A, with the result
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where p„ is the nth convolution of

p(((d) =Q s';5((d —(d, ) [n((u)+1] for (u&0,

p, ((u) =e '( (p, (~(u ~) for (v&0,

F, -=2V, /(u, .

(2.13)

Fx, in the calculation. We will here employ the lat-
ter procedure in which 0, - O„with

1
o(((d) =B d(d, g(~, )—o, ((u, (u, ),

() (do
(2.16)

where B —= 8'/2ma, ', and g((d, ) is the normalized den-
sity of phonon states fgd(u/f d(u= l. Then

If the F, 's are assumed constant then the p„'s be-
come =imply the n-phonon densities of state for the
lattice. " We will return to the question of choosing
the values of the a, 's later on.

As remarked previously, the appearance of the
fermion T dependences D, and D, is a result of the
truncated representation for the mode (d, in the
model Ha, miltonian H. There are various physical-
ly reasonable ways to patch up this deficiency al-
though strictly speaking none of them can be justi-
fied rigorously. One way is to simply utilize the
results obtained by ignoring the T dependence as-
sociated with (d„ i.e. , by setting Dy D2 1 but
then it would be necessa. ry to remove the n((d)+1
factor in the denominator of Eq. (2.4) so as to ob-
tain the T-independent one-phonon absorption which
follows from a rigorous theory. However, the T
dependence for j-phonon absorption would then
vary as [n((d, )+1]' ', as opposed to the correct
variation [n((d, ) + 1]'/ [n((d) + 1] (although this differ-
ence is not really substantial unless I3+ ~ 1). We
therefore elect here to take a somewhat different
approach, by replacing the Fermi factors D, and D,
by the boson factors n(u, )+ 1 and n((d, ), respective-
ly. This replacement is motivated by the V; =0 re-
sults, for which

o((d) - 6((u —(d, ) [n((d, ) + 1]+6((d + (u, ) n(~, ) . (2.14)

Such a replacement may be alternatively postulated
as the result of assuming a boson thermal depen-
dence for the fermion operators representing the
mode cu„when performing the thermal average in
oo. This choice automatically provides correct re-
sults for V, =0, and leads to the correct form for
the multiphonon T dependence as well. We thus re-
tain an exact treatment of multiphonon dynamics,
i.e. , the interaction of the mode (d, with the modes
((u,. j, but alter the thermodynamics (T dependence
of ~,) to conform to the physically correct beha-
vior. The expression for 0, takes the form

o', ((d) =o((d —(d ) [n((d, )+ 1]+o((d+ a )n(ufo) . (2. 15)

The above development provides an expression
for the response function of a single mode co,. To
obtain a((u), we may either choose the (d, in o, as
some suitably averaged phonon mode and utilize 0,
directly or else we may take an appropriately
weighted average of a, over all the modes of the
lattice, and employ the resulting averaged quantity

o, ((u) = dx q(x)o((d —x),
~ OO

where

B [n(x) +1], x &0y(x)

v (i i)
n(x), x&0.

/x(

(2.17)

y(x) is simply the harmonic response function for
the lattice, "

(p ((0) = (8 (f, 0) R(0, 0))„. (2.18)

F;'= X', w, /8m, .&u', , (2.19)

where m,. is an appropriate mass, and X; is the
range parameter associated with mode i; a Morse
interaction potential" has been assumed. Because
of the crudeness of the model as well as the pre-
scription, it seems reasonable to simplify matters
further by replacing (d,'/(d, in Eq. (2. 19) with an
average optical mode frequency (d, X',. by the usual
thermodynamically determined X, a,nd m, by the
reduced mass in the bond, so that F;'=a'
=V(8m~) '. ~iththisreplacement, p(((d) becomes

p, ((d) = 3 ra'p((d) [n((d) + 1], (2.20)

where x is the number of atoms per unit cell.
Thus, apart from the constants involved, ea.ch 0,. is
obtained from j convolutions of cp(&u) [n((d)+1], fol-
lowed by a single final convolution with

Thus, 0, is obtained by convolving 0 with y; the
resulting quantity may be then utilized to calculate
F((d) [Eq. (2.7)] and consequently o. ((d) [Eq. (2.4)].

In order to calculate 0 or o„one must first ob-
tain the function p((&u) given by Eq. (2.13),
which in turn requires the choice of the pa-
rameters F, =2V,./(d, .Because of the highly sim-
plified nature of the present model, it is not pos-
sible to postulate a. single unique and unambiguous
relationship between the parameter F,. and the an-
harmonic coupling of a realistic crystal lattice.
Instead, it appears more reasonable to adopt the
simplest possible choice for the value of F,, name-
ly, F,. =constant for alii. In Appendix B, we indi-
cate a possible prescription from which one may
obtain a rough estimate for the magnitude of F;,
and infer its dependence on lattice parameters as
well. The results of the latter analysis indicate
that
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u 'rp(&u) [n(&u)+1]. If we had chosen V; constant ra-
ther than F,. =const, then j+1 convolutions of
u 'p(v) [n(u&)+1] would have been required. As sta-
ted previously, a rigorous basis for choosing be-
tween such alternative prescriptions is not avail-
able because of the simplified model utilized here.
As we will see in Sec ~ III, the details of the calcu-
lated spectra may depend sensitively on the partic-
ular density of states utilized as input, so that cer-
tain of the distinctions under discussion here per-
tain to a level of accuracy beyond that achievable
in the computations in the first place. For calcula-
tions in this paper we will utilize the prescription
F', =a' for all i, but we will consider a' as a vari-
able which may, in general, differ somewhat from
its estima. ted value of X'(8m~) '. Such variations
are not unreasonable due to the uncertainty in the
values of the range parameters characteristic of
interatomic interactions in semiconducting solids. "
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III. RESULTS AND DISCUSSION

We first examine some general characteristics
of spectra calculated via the procedure described
in Sec. II. Let us employ a density of states ap-
propriate to ZnSe, "along with the moment function
given by Eq. (2.6). If we vary both the parameter
$, in the moment and the potential parameter a',
then we obtain the behavior indicated in Fig. 1 (the
curves have been adjusted to make the peak near
600 cm ' coincide for all). Inspection of the values
for the range parameters given in Ref. 11 suggests
that the potential will have a relatively larger effect
than the moment in determining the rate of de-
crease of n vs (d, and this is indeed borne out by
the curves presented in Fig. 1. One can show""
that the relative insensitivity to changes in the mo-
ment occurs only when the linear and nonlinear
portions possess differing signs, as is the case for
the semiconductors considered here. As expected,
the shape of the curves is determined primarily by
the input density of states rather than the parame-
ters characterizing the potential or moment. Also,
although the moment is more effective in changing
the shape of structural features than the potential,
such changes are in any case relatively small com-
pared to those associated with variations in the
phonon density of states. The substantial differ-
ences in the latter function obtained by various
workers is perhaps the primary difficulty one faces
when attempting comparison between theory and ex-
periment. For example, typical differences in
spectra predicted for different inputs for GaAs are
indicated in Fig. 2. The uncertainties which arise
in this fashion suggest that a comparison of overall
trends over a range of frequencies, temperatures,
and different materials should be more significant
than detailed comparisons for particular cases.

[ i l I L t

500 700 900
FREQUENCY ( c m ')

FIG. 1. Calculated absorption coefficient vs frequency
in the three- to four-phonon frequency regime of ZnSe,
for different values of potential g ) and moment ($ f)
parameters. Curve (a) is calculated using parameter
values from Ref. 11; for (b), P) 0.5/&, (c), $& 0.1(2),
(d) &2 0 5&2. (e) +2 0 1&2. (f) ~2 0 5 ~2 and 2

0.5a .

Thus, rather than focusing our efforts at obtaining
more accurate densities of states, we instead util-
ize those which are readily available in the litera-
ture, and concentrate on deducing the overall
trends which emerge from the calculations.

'The results of both our measurements and calcu-
lations are indicated in Figs. 3-6, for the case of
GaAs, ZnSe, ZnS, and Si, respectively. In all of
the calculations, the moment parameters obtained
in Ref. 11 were utilized. The potential parameter
X [see Eq. (2.18)] from Ref. 11 was utilized for
ZnSe and ZnS. A value of twice the listed A. was
utilized for GaAs to obtain a best fit, and X was
varied to obtain a best fit for Si, where a starting
value was not available (the X chosen was about one
and a half times the typical values for III-V and II-
VI's listed in Ref. 11). A. was not varied for ZnSe
because the fit was relatively good without it, and
it was not varied for ZnS because of the uncertain-
ties in the absorption background induced by im-
purities in the samples. For each crystal the ab-
solute magnitude of n was adjusted to obtain a best
fit, and to facilitate comparison with experiment.
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FIG. 2 ~ Absorption coefficient vs frequency for GaAs.
Broken curves were calculated using density of states
from (a) K. Kunc et al. , Phys. Status Solidi 72, 229
(1975) and {b) G. Dolling and R. A. Cowley, Proc. Phys.
Soc. Lond. 88, 463 (1966). Solid curve is experimental
measurements {this work).
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FIG. 4. Log&0 of absorption coefficient (cm ') vs
frequency at selected temperatures for ZnSe. Density
of phonon states taken from Kunc et al. (see Fig. 2).
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FIG. 3. Absorption coefficient vs frequency at selected
temperature for GaAs. Density of phonon states taken
from Dolling and Cowley (see Fig. 2).

FIG. 5. Absorption coefficient vs frequency at selected
temperatures for ZnS. Density of phonon states taken
from Kunc et al. {see Fig. 2).
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FIG. 6. Logfo of absorption coefficient (cm ') vs
frequency at selected temperatures for Si ~ Density of
phonon states taken from C. S. Wang et al. , phys. Lett.
44A, 517 (1973).

'The single most striking characteristic of both the
experimental and theoretical spectra is the persis-
tence and dominance of s tructure well into the three-
and four-phonon regimes, and up into elevated tem-
peratures. This behavior contrasts sharply with that
for ionic solids such as alkali halides" and alkaline
earth fluorides, "where even the room-temperature
(and for some cases the low-temperature} spectra
are nearly structureless, and close to exponential-
like as a function of frequency. As can be seen
from the figures, the overall agreement between
theory and experiment with respect to both frequen-
cy and temperature variations is reasonably good,
which suggests that the presently observed struc-
ture at lower levels of absorption is due indeed to
intrinsic multiphonon processes. In general, peak
and shoulder positions in the experimental and cal-
culated spectra agree quite well, suggesting that
the observed structure is associated with phonon
density-of-states effects. It is reasonable to infer
that selection rules have at best a weak influence
on the observed spectra. Although it is possible
that various extra predicted peaks which are absent
or weak in the experimental data (in the 700-800
cm ' and approximately 1000 cm ' regimes in GaAs
and approximately 1400 cm ' in Si, for example)
are suppressed as a result of selection rules, un-
certainties in the accuracy of the input density of
states prevents one from drawing more definite
conclusions. Although the detailed selection rules
for the present crystals have not been worked out
theoretically for three- and four-phonon processes,
their weak effects in the many-phonon regime as

manifested in the present study is in agreement
with the preliminary work of Duthler, "who finds
that strong effects of selection rules do not obtain
for tetrahedral semiconductors as they do for
rocksalt crystals, "for example.

One additional factor of importance which must

be considered in comparing theory with experiment
is the effect of anharmonic broadening and shifting
of peaks in the spectrum. "'" In a real crystal, the

anharmonicity potential induces a complex self-en-
ergy for all phonon modes, "a phenomenon which is
not accounted for by the highly simplified Hamilto-
nian of Eq. (2.8). Nonetheless, the general charac-
teristics of the anharmonic broadening are well
known and ought to be involved to interpret aspects
of the present data: specifically, the linewidth in-
creases and the line position shifts to lower fre-
quency4' with increasing temperature. These phe-
nomena are clearly manifested by the peaks in the
ZnSe data near 600 cm ', in GaAs near 700, 750,
950, and 1000 cm ', and in ZnS near 900 cm ', for
example. One observes that the suppression is
more striking for the more ionic semiconductors
(least evident for IV-IV's, most evident for II-
VI's}. This pattern fits in well with the absence of
structure in the spectra of the more highly ionic
solids""" such as alkali halides, crystals which

presumably are characterized by a greater degree
of anharmonicity (large anharmonic potential).
Correspondingly, as one progresses through a se-
ries of increasingly ionic solids, the spectrum
tends toward the exponential-like frequency depen-
dence which is predicted"'" when structural fea-
tures are absent in the density of states, behavior
which is clearly manifested by the present data.

It is interesting to compare the absolute magni-
tude of n„, predicted by theory with experimental
values e, . In the case of ZnSe, where no parame-
ters were varied, o.„,/n, =25; the greatest de-
parture was for ZnS, where n, ,/n, =70. This
disagreement probably arises from a combination
of factors: the oversimplified form for the poten-
tial which lumps the anharmonicity into a single pa-
rameter a', and the uncertainty in the form of the
moment and the value of m, characteristic of semi-
conductors. For example, certain authors assign
zero static charges to the atoms in zinc-blende
semiconductors, while others assign charges in ex-
cess of unity. " Moreover, returning to the poten-
tial, note that an uncertainty in X of a factor of 2
leads to an uncertainty in the calculated four-pho-
non absorption by a factor of 256. These simple
observations point to the necessity for highly accu-
rate input values for moments and potentials if
quantitatively accurate predictions are really anti-
cipated.

In conclusion, we have measured the many-pho-
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non absorption in typical semiconducting crystals,
and find persistent structure in the spectrum over
a range of frequencies and elevated temperatures.
We have performed simplified calculations which
account well for the principal trends in the fre-
quency and temperature dependence of the observed
spectra. Comparison of theory with experiment
suggests that the principal factor determining the
spectral shape is the density of phonon states, and
that selection rules play a relatively minor role in
the many-phonon regime. The present study has
hopefully contributed towards a more comprehen-
sive and unified picture of the nature and origins of
the spectral characteristics of multiphonon absorp-
tion in the highly transparent regime of crystals.

aj (0 A 'j (, 0 a+f j
(A2)

and the diagonalized Hamiltonian may be written as

H= ' /+~/
(d, 0 ) n, /cay, A, A. , . 0

0 co, +&,j 4 0 co, At„.A

(A3)

where 40 = -Z,. &o,.f,', and 4. , = d, are the energy
shifts for the y, =(o) and X, =(n) states, respective-
ly. The original and transformed phonon states are
related by

APPENDIX A

The impurity Hamiltonian (2.8) may be diagonal-
ized exactly by a linear shift of the phonon creation
and annihilation operators. The unitary transform-
ation that diagonalizes the full Hamiltonian may be
written as U = e ~ with

(&t)n;
~ P„)= U ~n, ), where ~n, )=,', ~, ~

0) .
I '

Thus, we have

(A4)

(A6)

S= " (a, -at) and f„= f„=—-',0), v,

(A1)

where the linear shifts f, have been determined
by minimizing the ground-state energy. The trans-
formed phonon operators are then given by

where
~ P) = U ~0) denotes the ground state of the full

Hamilton ian.
We may now calculate the correlation function

(u(i)u(0))r where the subscript T indicates that a
thermal average with respect to both phonon and
fermion states is to be taken. The matrix elements
appearing in (u(t)u(0})r for a given ith phonon mode
may be reexpressed as

(lp„, ~u(t) u(0) )g„)=(n, (U 'u(t)u(0}U(n, ) =(n, (e'~ "U'[U 'u(0)U]e 'U "U'[U 'u(0)U] )n,. ) . (A6)
Considering first the zero-temperature limit, we evaluate the Fourier transform of the correlation function
tJ,(t) in the y, sector

2m (It) 0
&.(i)r=. = &' '(0;X.~u(&)u(0) ~A;X. )

=(O~e '"&&'exp P (a e '""—a e'"")(f . —f„)—(a, —a;)(f„—f„.) ~0). . (A7)

Defining the Fourier transform as

(A8}

we then have

aO

o', ((u)r, =& e''" "&" 0 exp p (iy, a, +iy, a;} 0 exp —g iF',. sin(u, . t} dt,~OQ $

where

iy, = (e '"~' —1)F; and F, =f„f„—
i

Replacing the ground-state expectation value with a thermal average over phonon states yields

(A9)
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CO 1
a((d —(()0) =— e' '" ()"exp —— y; y,

' cath(8, ) exp —g i F', sin(((); I) df
2m i

p —P p t',h(e, ) p [)(,)t] p g P', [th(.S,.} [,t) —) s t,.t)]) dt,
2 7T ~ (}() $

(A10)

where il, = If', /2kT.
A similar result holds in the y, sector

(X ls«)(«0) IX, )r=a(~+~.)

00

exp —P F', cath(8, ) exp[i((a+ (()„)]t exp PF,' [cath(}9;)cos((d; t) —i sin(((); t)] dt .
2 7t ~ ()() i

(A11)

xexp [-P((d, + 6,)]jZ ', {A12)

Taking a thermal average over the two fermion
states X, and y, with energies ~0 and ~0+4, yields

a, ((d) = ja((a (d, ) exp(-tiA, ) + a((a+ (a, )

1 bmoc, 'i'/0 1

a i /0 I)u=
)) I Oj

(B4)

where Z= exp(-PAD)+exp[-P((d, +6,)). The full
temperature-dependent correlation function can thus
be written as

and the remaining n by (5/2m, .(d,.)' '(a,. +a,.), one
obtains

a((d —(v, ) + a((v+ (d, ) exp( —t)(d, )
Cr0((d) =

1+exp(-pi~, )
(AI2)

C, =—II/2m ((), , C,. = 5/2m, (a,
APPENDIX 8: ESTIMATION OF THE INTERACTION

PARAMETER V,.

Assume that the dynamics ina single crystal cell
or bond to be determined by an interionic potential
v(u). Then the cubic anharmonicity is given by

V =(I/2!)v"'s'.
A

Then,

-(1 31)v"'C C'/' —V

For a Morse potential, utilizing dimensionless dis-
placements u —u/a„

v(u) = v, (e "("—2e "'"),
We can manipulate this term into a form similar to
the interaction term in H of Eq. (2.8) if we replace
one of the u's by the prescription

we find

g3 ( g I/2
i 0 i 0 i (B8)

P ~ SPY(808

in order to write

V„=(1/3. )v"'(p/irn(d )u'.

(82) If we identify the quadratic term in v(u) with the
harmonic energy —,~,.(d,. u', then

~m co',. v, X',
1

Then, replacing P and one of the u's by the trunca-
ted representations

If we use the above correspondences then

a'. = X'. g'/4g . = X'. ~ /8m .co'. . (B10)
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