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We report high-precision measurements of the temperature dependence of the diamagnetic susceptibility,
X(T), and the temperature derivative of the infrared refractive index dn/dT of Si. A simple Debye-Waller
picture accurately predicts the low-temperature behavior of dn/dT. The temperature dependence of dn/dT
allows the prediction of the Van Vleck paramagnetic component of the valence-electron susceptibility. The
precision of the measurements of x(T) and dn/dT is sufficiently high to reveal that our understanding of the
temperature dependence of the valence-electron diamagnetic component is incomplete.

I. INTRODUCTION

A chemical-bond description of the electronic
properties of solids has recently been utilized to
explain trends among families of materials, and
may be useful for predicting new materials with
unusual properties. This approach yields an
overly simplified picture of the electronic struc-
ture of solids, but one which is valuable in studying
chemical trends and which avoids the computa-
tional difficulties of band theory. The chemical-
bond theory is most powerful in investigating those
properties of solids which are determined pre-
dominantly by bonding (local order), as opposed
to those determined by the crystal structure (long-
range order). In general, properties that result
from the average behavior of all the valence elec-
trons in the solid are expected to be determined by
short-range order. We can call such properties
chemical-bond properties.

The first chemical-bond property to be under-
stood and exploited was the electronic contribution
to the dielectric susceptibility.!** This property
yields information about the strength of the chemi-
cal bond siraply because stronger bonds are less
easily polarized by an electric field. Later,
Hudgens, Kastner, and Fritzsche® (HKF) showed
that a simple chemical-bond model describes the
magnetic susceptibility of the AYB®~¥ semiconduc-
tors (C, Si, Ge, GaAs, and GaP). More recently,
Sukhatme and Wolff* (SW) and, independently,
Chadi, White, and Harrison,® showed that the HKF
model could be derived using a Hamiltonian simi-
lar to those of Hall® and Weaire and Thorpe.” Ac-
cording to SW, the magnetic susceptibility can be
written

X=XC+X0+XD9 (1)

where x, is the diamagnetic susceptibility of the
core electrons, and the valence electrons give rise
to a diamagnetic term y, and a paramagnetic term
Xp+
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Here, (#2(j)),a iS the matrix element of (¥xB)2/
B? evaluated for the jth sp® orbital on a given site,
where B is the magnetic field; (r3())oens, 1S the
matrix element of (¥ B)?/B? between the two orbi-
tals forming the jth bond. N is the number of
atoms in the solid. (We will take N to be two times
Avogadro’s number.) The overlap correction (S) is
included explicitly. SW estimate that the (»3(j)
term is less than 15% of the (r3(j)),., term.

The last contribution in Eq. (1) is the Van Vleck
paramagnetism x, resulting from virtual magnetic
dipole transitions between the valence and conduc-
tion bands. SW give

Xp=zN(eh/mc)1/(1 - $*)[(1/E,), @)

where E, =[2SE,+ 2|V,|]/(1 - 5°) is the energy dif-
ference between bonding and antibonding states in
the limit that vV, = B=0. Here E, is the average
energy of an sp3 orbital, V, is the matrix element
of the Hamiltonian between the two orbitals form-
ing a bond, and V, is the matrix element between
two orbitals on the same atom. Equations (1), (2),
and (3) represent an expansion in powers of V,/V,
in which terms of order (V,/V,)? and higher are
omitted.

To compare the SW theory with experiment, one
must separate the diamagnetic and paramagnetic
contributions to the valence electron susceptibility.
This is because for the covalently bonded tetra-
hedral semiconductors x, and x, are both large
and nearly cancel. Therefore, a theory which
adequately predicts the individual terms may yield
a total susceptibility in substantial disagreement
with experiment. In addition, the individual terms
each yield different information about the chemical
bonding. x, is sensitive to the spatial extent of
the valence charge density, whereas Xp 1s sensi-
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tive to the symmetry of the bonding. Specifically,
the factor + in Eq. (3) is appropriate only for sp*
hybridization. (See appendix.)

HKF showed that it is possible to use the weak
temperature dependence of the diamagnetism to
separate x, and x,. They assumed that the largest
contribution to the temperature dependence arises
from the decrease of E, with increasing T, result-
ing in larger x,. It was expected that the matrix
elements of »? and of the angular momentum which
are involved in x, and x,, respectively, are less
sensitive to T than E,. This is because these
matrix elements measure the spatial extent and
symmetry of the wave functions, and wave func-
tions are, in general, less sensitive to perturba-
tions than energies. HKF further assumed that
E(T) could be extracted from measurements of
the temperature dependence of the refractive in-
dex, n. In other words, they assumed that the E,
in Eq. (3) is the same as the energy gap in a
simplified Penn model for the electronic contri-
bution to the dielectric constant €. For Si, which
has no d electrons, this has the form

e€=n*=1+(hw,/E,)*, (4)

where w, is the valence-electron plasma frequency,

w§=4nNue2/m for valence-electron density N,.
This simplified model for the dielectric constant
is obtained using the same assumptions as those
leading to the model for y in Egs. (2) and (3).
Within limits analogous to those leading to Eq. 3),
V,=E=0, where E is the electric field; the energy
gaps E, appearing in Egs. (3) and (4) are the same.

The origin of the temperature dependence of the
average gap is itself of some interest. For the
most part it arises from the electron-phonon in-
teraction. The temperature variation of E, has
been predicted by Yu and Cardona,® (YC) treating
the Brooks and Yu theory.® A comparison between
this prediction and experiment is given in detail
in Sec. III.

The results reported by HKF substantially sup-

port the assumption that most of the T dependences

of x arise from that of E,. Indeed, the values of
X, and x, obtained using this assumption for Si are
in good agreement with the theoretical calculations
of SW. However, the results for diamond, where
dE,/dT is small, could only be explained by as-
suming that yx, is also temperature dependent.
Since x, is proportional to (2, HKF postulated
that d Iny,/dT = 2a, where « is the thermal-expan-
sion coefficient. The precision with which HKF
could separate x, and x, was, however, limited by
the precision of published values of drn/dT and

thus x,(T) could not be accurately determined. The
present measurements were carried out with the
aim of improving the precision of the measure-

ments of dn/dT, x and dy/dT for Si, thus deter-
mining the temperature dependence of x, and x,.
This allows a stringent test of the simple theories.

II. EXPERIMENTAL DETAILS

The temperature dependence of the refractive
index was measured for single-crystal Si (n-type
10" cm™ carriers). The sample (thickness [
=0.85 cm) was polished flat and parallel to within
a tenth of a wavelength of visible light. Infrared
radiation from a He-Ne laser (A=3.391 um) was
passed through the sample and detected with a
liquid -nitrogen-~cooled InSb detector. The sample
was suspended in vacuura on a liquid-nitrogen-
cooled cold finger, and the temperature was mea-
sured (with an accuracy of +0.1 K) using a calibra-
ted copper-constantan thermocouple soldered to
the sample. Since interference maxima occur
wherever mA=2nl, (m is the order of the fringe)
dn/dT can be determined by counting fringes:

Lde ldn 1 dm _ (5)
2¢ dT ndT m dT ’

Using known values'® of «(T), Egs. (4) and (5) were
used to determine (9E,/9T),/E, at temperatures
between 77 and 300 K. The temperature derivative
E, can be written

(1), (25, -3 ()
8T /p \3T /), «k \oP/,’

where « is the compressibility, (3E,/dP), is the
pressure derivative of the average gap, and (aEg/
dT), is the electron-phonon interaction. Equation
(6) together with Eq. (4), and using (3E,/3P),/
k=0.66," gives

1 (a_e_> =<alnw§> _2<81nE1)
e-1\aT/, oT /p 8T /p

- 3a- z(—a%E—L>P , Q)
or
L) eohoi )

where 0€/9T is measured at zero pressure.
Using the best measurements available for the
refractive index'! (n =3.404+ 0.004 at 150 K and
A=3.4 um) and for the density'? of Si, one finds
hw,=16.6 eV and E,=5.1 eV. Note that this is
different from E, given by Van Vechten'® for two
reasons. First, our E, is measured at 150 K
whereas Van Vechten gives a room-temperature
value. Second, Van Vechten uses the full Penn
model instead of Eq. (4). The estimated error in
An/AT of the experimental points is 2% for AT
=3 K. Previous measurements' have precision of
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FIG. 1. Logarithmic temperature derivative of E, at
constant volume for Si obtained by using the temperature
derivative of the refractive index. Solid curve is pre-
dicted by Yu and Cardona using the form of E, proposed
by Heine and Jones. Note the good agreement at low
temperature.

only 5 to 10% for AT = 20 K. Therefore, the data
of Fig. 1 represent, by far, the most precise and
accurate measurement of the temperature deriva-
tive of the refractive index of Si.

The magnetic susceptibility was measured in the
temperature range 100 K< 7 < 230 K with a Cahn
RG'® electrobalance using the Faraday technique.
The total susceptibility x was determined by cali-
brating the system with a Ge sample [y =(~1.06
+0.01)x1077 cm3/g|. The Si sample (p-type,
5x10% carriers) was suspended from a fused silica
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FIG. 2. Variation of magnetic susceptibility of Si with
temperature. Solid line is obtained by fitting model de-
scribed in text to experimental points [ =7.0, Xp =35.6
% 10~% ¢cm®/(2 mole Si)]. Dashed line is prediction of
model using theoretical estimate of Sukhatme and Wolff,
X =33.2 x 107% cm®/(2 mole Si), (8=2.0).

fiber in a liquid-nitrogen-cooled hangdown tube.
Thermal coupling was accomplished through con-
duction in 2 Torr of He gas for some measure-
ments and by radiation cooling for others. For
the He-gas system, normal as well as magnetic
buoyancy are negligible at this pressure. The ef-
fects of thermomolecular flow and convectian were
eliminated by subtracting force changes observed
in zero magnetic field. The temperature of the
sample was monitored with a thermocouple placed
in close proximity. There was a reproducible
temperature gradient between the sample and
thermocouple which was calibrated using a sample
of MnF,, an antiferromagnet for which x(7T) is
well known. When measurements were carried out
in vacuum, sample temperature was calibrated

in the same manner. Furthermore, it was ob-
served that after sufficient time adsorption and
desorption effects were negligible. The uncer-
tainty in sample temperature is estimated to be
+0.5 K. The absolute measure of x is accurate to
0.9%, and the relative error is much smaller,
0.03%. The relative error is three times smaller
than the best previous measurement.'®''” There-
fore, the data shown in Fig. 2 are the most precise
measurements of the temperature dependence of
valence-electron diamagnetism ever reported.

III. DIELECTRIC SUSCEPTIBILITY

Yu and Cardona® predicted (3E,/8T),/E, using
an approximate form of the relationship proposed
by Heine and Jones'® for E,;

E, = 2[v(111) *(a/27)?, )

where a is the lattice constant in Bohr radii and
v(111) is the (111) pseudopotential form factor.
Equation (8) is valid in the limit that v(220)<v(111)
for homopolar A*B®~¥ semiconductors. According
to the Brooks-Yu theory all pseudopotential form
factors should decrease with increasing T at con-
stant volume. This decrease is described by
multiplying by the appropriate Debye-Waller fac-
tor, exp[-|g [?(1?/6]. Therefore

=2

7 (5) =-tizapiE, (10
where (1% is the thermal average of the square
of the displacement of an atom from its equilibrium
position, and § is a reciprocal-lattice vector. Yu
and Cardona (YC) evaluated (3% using a Debye
model for the phonon spectrum so that the only
parameter in the prediction is the Debye tempera-
ture, ©,, which is taken from heat capacity data.
One can show'® that in the Debye approximation

() (%)

I
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with

_lo(2 (rydy | x >
F= <x ) e’ -1 e -1/’ (12)

where M is the mass of a Si atom.

The solid curve in Fig. 1 is the YC prediction
of (3E,/8T),/E, with ©,=647 K. In the low T
limit, these equations reduce to

1 /[oE - R°n?
1 (BE 2 . 13
i (5%) = -RUF s 1 13)

In this low-temperature regime, the agreement
between theory and experiment is surprisingly
good. Perhaps the agreement at higher T would
be improved by including other pseudopotential
form factors which contribute to E,. More im-
portant, however, would be the use of a realistic
treatment of the phonon density of states. At
~160 K, where the deviation of theory from experi-
ment becomes apparent, kT is sufficiently large
that deviations from the Debye model are impor-
tant. The room-temperature value of (3E,/8T),/
E, is close to that® of (8E,/dT),/E, where E, is
the largest peak in €,, the imaginary part of the
dielectric function, substantiating the relationship
between E, and the average gap.'®

IV. MAGNETIC SUSCEPTIBILITY

The first step in separating the various com-
ponents in Eq. (1) is the calculation of x,. Calcula-
tions were carried out for Si** using a Hartree-
Fock-Slater-Xo technique. The result is in agree-
ment with earlier calculations,* y, =-4.6x107°
cm®/(2 mole Si). (All our analysis is done for
two moles of Si to facilitate comparison with
AYB®*™¥ compounds.)

HKF assumed that the temperature derivative
of x, was proportional to a and that 9x,/8T was
proportional to —(3E,/8T),/E,. Then the change
of x between temperature T, and some higher
temperature 7T is given approximately by

ax =x(T) = x(T,)

T T 1 [/8E
=;’5xvf a(T)dT—-x,f A (—-‘) ar, (14)
T, To (4 T P

where x, and x, are the average values over the
temperature range studied and /5 is an unknown
constant of proportionality d Iny,/dT =Ba. HKF
assumed B=2. A polynomial was fit to the data of
Fig. 1 to make analysis more convenient. It was
found that a second-order polynomial fit the

data quite accurately in the temperature range of
the susceptibility measurements (100-230 K). In
this temperature range «(T) increases approxi-
mately linearly with T so integrating a(T) is

straightforward. Using Eq. (1) we can rewrite
Eq. (14) in terms of the two parameters 8 and x,:

T
Ax =B[x = x. -xp]fT a(T)dT

T 1 [8E
- — 15
v B (ﬁ‘),dT’ 15)

To

where the integrals are experimental functions of
temperature. y at 150 K was measured to be
—(6.34+£0.06)x107° ¢cm?3/( mole Si), in agreement
with the result of HKF.

Several methods of analysis were applied to the
data of Fig. 2. First, using the calculation of SW
for the average Van Vleck matrix element [the
coefficient of 1/E, in Eq. (3)] and E,=5.1 eV, we
compute a theoretical x§ =33.2X107° cm*®/(2 moles
Si). This allowes the determination of 3 from a
least-squares fitting procedure. It was found that
B=2.0£0.3, and the prediction of Eq. (15) for
AX(T) using this value of 38 is shown (dashed curve)
in Fig. 2. Although the agreement is quite good,
there is a small systematic discrepancy between
theory and experiment.

A second approach was to allow both y, and B to
vary. This required a nonlinear regression, and
the best fit is given by the solid curve in Fig. 2.
For this curve =7.0+0.5 and x,=(35.6+0.4)
X107% cm?®/(2 moles Si).?? As can be seen from
the figure, the fit is considerably better for these
values of the parameters.

The theory of SW suggests a different analysis
of the data. As can be seen from Eq. (2), the
temperature dependence of y , comes mostly from
the temperature dependence of S. This is because
r2(j))oen is temperature independent (the orbitals
do not vary), and {r2(j)) overlyp 18 very small, so
its temperature coefficient is negligible. To be
consistent, however, one should then consider the
temperature dependence of S not only as it effects
X, butalso x, [Eq. (3)]. Differentiating equation
(1) and using Egs. (2) and (3)

[ 0w ]628)
ar T1+s X 7X X \Ts)\sar) ~

X AE,
E, dT

(16)

Assuming that S depends only on the bond length
b, and using S=0.5 chosen by SW, we have

-b dS
N T [%(x-xc)+x,]f a(T)dT
To
T 1 <aE
- — ——&) dT . (17)
5 (57,

In this case the nonlinear regression yields y,
=(35.7+0.2)x107% cm®/(2 mole Si) and
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—(b/S)(dS/db)="T.4+0.3. The fit is indistinguish-
able from the solid curve in Fig. 2.

V. DISCUSSION

The value of x, which best fits the data, (35.6
£0.2)x107° ¢m3/(2 mole Si) is close enough to that
predicted by SW, 33.2+107° em?®/(2 mole Si) that
one should consider the agreement excellent. The
small difference might arise from differences be-
tween the average magnetic and average electric
gap. Indeed, it is surprising that one obtains
such good agreement since the two average gaps
are weighted with different matrix elements that
connect different valence and conduction states.

Lacking any better model, HKF assumed that
X, scales with the square of the lattice constant
(i.e., p=2). This value of 8 and the value of x,
predicted by SW, gives a fair estimate of Ay.
However, the present experimental data are
precise enough to determine that 8 is actually
quite a bit larger than 2. This is surprising since
it means that the bond charge seems to be expand-
ing faster than the lattice. Si is not a special case
in this regard. Recent measurements on alkali
halides yield the same result.*?

Analyzing the data on the basis of the SW theory
gives an unexpectedly large value of —(b/S)(dS/db).
The fractional change in the overlap is largest
when S=S,e7%% (i.e., for small overlap) where b,
is the decay length of the hybrid orbitals. The best
fit then yields 6/b,= 7.4, which is surprisingly
large. Since S=0.5, one expects a much smaller
value. Of course, the (r1(j)) ., term decreases
as the lattice expands, so this only makes the
situation worse. It is possible that (1/E,)(dE,/dT)
is different for the magnetic and electric average
gaps, but since this electron-phonon interaction
depends almost entirely on the properties of the
phonons this seems very unlikely. It is also pos-
sible that the Van Vleck matrix element varies with
with T because of bond-angle fluctuations. How-
ever, since large increases with temperature of
the diamagnetism have been observed also in
alkali halides (for which the Van Vleck term is
negligible), it is likely that it is our understanding
of x, that is deficient. One possibility is that, in
addition to the effects of lattice expansion, the
electron-phonon interaction affects the wave func-
tions and changes (**(j)),.q Or S. This hypothesis
could be checked if one could measure (3y/dP),
with sufficient precision. Unfortunately, experi-
mental techniques have not yet been devised which
will allow these measurements.

The agreement between the simple prediction
[Eq. (13)] of (3E,/3T),/E, and experiment (Fig. 1)
is excellent, and is confirmation of the Brooks-
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Yu theory. Brooks-Yu suppose that E, changes
with temperature because phonons reduce the
long-range correlations in atomic positions.
This ties the temperature dependence of E, to
long-range order and suggests that d InE,/dT is
not a chemical-bond property, even though E,
itself certainly is. This is clearly seen in Eq.
(13) which shows that d InE,/dT depends only on
phonon and lattice parameters, whereas E, itself
depends on the electronic structure.

One is then tempted to conclude that d InE,/dT
is not a chemical-bond property, but one should
examine whether this conclusion is consistent
with all available evidence. If loss of long-range
order decreases the average gap according to
exp|-|E|*(w?/6], then in amorphous Si where
atomic positions are completely uncorrelated one
expects a very small value of E,. However E, is
the same to within a few percent in amorphous
and crystalline Si.>* Furthermore, recent mea-
surements® show that d InE,/dT is comparable
in the amorphous and crystalline phases. These
facts suggest that d E,/dT is in fact a chemical-
bond property and that a deeper understanding of
the temperature dependence of E, may be possible.
Perhaps a chemical-bond picture can be developed
which yields the Brooks-Yu result in the limit of
the perfect crystal.

APPENDIX

There is a simple way of predicting the size of
the matrix element M in the Van Vleck susceptibil-
ity, x,=M/E,, where overlap is neglected. The
Van Vleck term arises from the term —(e/mc)_ls-x
in the Hamiltonian which gives a contribution to
the energy in second-order perturbation theory.
This contribution is

___e’B? CILIDNGIL,
AE——4m2022i: Z,: E,-E; ’ (AD)

where the states |i) are occupied and the states

|7} are empty. Most of Xp» therefore, arises from
virtual excitations between filled bonding bands
and empty antibonding bands. Replacing the energy
denominators by the average gap E,, and recalling
that y =0%E/8B 2, we obtain

2
M:Zi‘:azcz .Z Zj:<ilelj><le,|i\}. (A2)

We cannot immediately use completeness to re-
duce this sum to matrix elements of L? because

the states |j) are not a complete set. However,

the total of states [i) plus |j) is complete. Further-
more, the matrix elements (i|L,|j){(j|L,[:) and

(i |L, )i |L,|i) are equal for a given pair of bonds,

if we maintain the Weaire-Thorpe’ criterion that
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only orbitals on the same site or in the same bond
mix. Therefore,

e? o
= it 2 GILER) . (A3)

This is trivial to evaluate. For example, with
sp® orbitals
GIL2[)=%(S + P,+ P_+ Py|L%|S+ P,+ P_+ P, , (A4)

where P, P,, P_ are p states with L,=1,0, and

-1, respectively. Therefore, (i|L2|i)=3%2, and
since there are four electrons per atom, for sp?

M=e?n?/2mc?, (A5)

as in Eq. (3). For pure p bonding as in amorphous
arsenic, one would obtain

M=%(e*n?/mc?) . (AB)

Similar results can be computed for other hybrid-
izations.

*Work supported in part by NSF—DMR73-02678, MRL,
and a Cottrell Grant from Research Corporation.
tPresent address: Institute of Isotopic and Molecular
Technology, P. O. Box 243, 3400 Cluj-Napoca, Ro-
mania.

3. c. Phillips, Rev. Mod. Phys. 42, 317 (1970).

2W. A. Harrison, Phys. Rev. B 8, 4487 (1973).

35. Hudgens, Marc Kastner, and H. Fritzsche, Phys.
Rev. Lett. 33, 1552 (1974).

4y. P. Sukhatme and P. A. Wolff, Phys. Rev. Lett. 35,
1369 (1975).

’D.J. Chadi, R. M. White, and W. A. Harrison, Phys.
Rev. Lett. 35, 1372 (1975).

8G. G. Hall, Phllos Mag. 43, 338 (1952); 3, 429 (1958).

'D. Weaire and M. F. Thorpe, Phys. Rev. B 4, 2508
(1971).

8P. Y. Yu and M. Cardona, Phys. Rev. B 2, 3193 (1970).

%3. C. Yu, thesis (Harvard University, 1964) (unpub-
lished).

R, H. Carr, Philos. Mag. 12, 157 (1965).

'}, Lukes, Czech.J. Phys. B 10, 317 (1960).

12\, E. Straumanis and E. Z. Aka, J. Appl. Phys. 23, 330
(1952).

133. A. Van Vechten, Phys. Rev. 182, 891 (1969).

14M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem.
Solids 8, 204 (1959).

15Cahn model RG Automatic Electrobalance manufac-
tured by Ventron Instruments Corp.

18E. Sonder and D. K. Stevens, Phys. Rev. 110, 1027
(1958).

"G, A. Busch and R. Kern, Helv. Phys. Acta 32, 24
(1959).

18y Heine and R. O. Jones, J. Phys. C 2, 719 (1969).

193, M. Ziman, Principles of the Theory of Solids
(Cambridge University, Cambridge, England, 1965),
pPp. 60—63.

R, R. L. Zucca and Y. R. Shen, Phys. Rev. B 1, 2668
(1970).

A1, B. Mendelsohn, F. Biggs, and J. B. Mann, Phys.
Rev. A 4, 1130 (1970).

2The error bars for B and x, correspond to the extremes
of the confidence contour for an approximate 75% con-
fidence level.

23, Hudgens and Marc Kastner (unpublished).

%Robert C. Chittick, J. Non-Cryst. Solids 3, 255
(1970).

®Rodica M. Candea, S.J. Hudgens, and Marc Kastner
(unpublished).



