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We present a refined model for the prediction of the energy-band lineup at an abrupt semiconductor
heterojunction. The position of the energy bands with respect to the electrostatic potential is calculated by a
self-consistent pseudopotential, for the bulk semiconductors. The lineup of the electrostatic potentials is then
calculated from an ionic model in which the ionic charges are determined by the electronegativities of the
atomic species. The resulting band lineups are independent of the crystallographic orientation of the
heterojunction. They are also generally consistent with experimental data.

I. INTRODUCTION

The semiconductor heterojunction is rapidly be-
coming an important part of electron-device tech-
nology. The unique ability of heterojunctions to
confine charge carriers to limited regions of a
device has made possible the development of effi-
cient semiconductor injection lasers.! Heterojunc-
tion technology has also produced periodic layered
structures on a scale sufficiently small that quan-
tum effects lead to novel optical and electronic
properties.?:3

A central question in the study of heterojunctions
concerns the energy-band discontinuity at the junc-
tion. In an earlier paper* (hereafter referred to as
I) we presented the results of a first attempt to
predict the energy-band lineup from properties of
the bulk semiconductors. The approach taken was
to divide the problem into two parts: A calculation
of the energy-band structure relative to the period-
ic electrostatic potential of the bulk semiconductor,
and a simple model of the charge distribution near
the interface, to determine the relative lineup of
the electrostatic potentials of the two semiconduc-
tors. In the present work we have divided the
problem in the same way. In Sec. II we discuss a
more refined model of the charge distribution near
the heterojunction, which allows for charge trans-
fer between the semiconductors, determined by the
relative electronegativities of the constituents of
those semiconductors. In Sec. IIl we present re-
fined band-structure calculations. We have also
extended the calculations to a number of techno-
logically important semiconductors which were not
considered in I.

The relationships between the various energies
and potentials to be discussed are illustrated in
Fig. 1. The bulk energy bands are referred to the
mean interstitial potential V;. This is defined as
ViE %[ Ves(F1)+Vps(F2)]’ (1)

where
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assuming that the atomic postions are a(0, 0,0) and
a(i, 1,1). Here V., represents only the electrosta-
tic part of the total periodic potential. The conduc-
tion- and valence-band-edge energies E_, and E,

are expressed relative to V;. As the bandgap lies
below i_/‘. , these energies are negative. The dif-
ference between the V;’s on the two sides of the
heterojunction is what we call the dipole potential
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Vp=V,(1)=V,(2). (3)
The band-edge discontinuities are then given by

AE,=E 2)-E(1)-V,, (4)

AE,=E (1) = E,2)+ V5, (5)
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FIG. 1. Definition of the principal quantities used in
the model. The figure is a diagram of energy vs position
along a line normal to a (111) heterojunction between
semiconductor 1 (compound AB) and semiconductor 2
(CD). The curved lines represent the electrostatic
potentials. The mean interstitial potentials ‘—’i are de-
rived from them and used to define the band-edge ener-
gies E, and E;, and the dipole potential V.
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where 1 and 2 indicate the narrower and wider gap
semiconductors, respectively. Note that these are
the band-edge discontinuities which would be mea-
sured very near an ideally abrupt junction, where
the effects of Fermi-level equalization due to dop-
ing would be negligible.

II. MATCHING SCHEME

In I we introduced the mean interstitial potential
as the reference potential in our band-structure
calculations. We conjectured that heterojunction
band lineups could be approximated by simply as-
suming that the V,’s line up across the junction.
We now wish to demonstrate that the mean inter-
stitial potential arises naturally within an ionic
model of the solid and that such a model allows us
to calculate the dipole potential V.

The model we consider is one in which the micro-
scopic charge distribution of a semiconductor is
assumed to be a linear superposition of spherical
ions. If the electron density at the interstices
(which are one nearest-neighbor distance, aV3,
from the ions) is negligible, the potential at these

points is the same as if the ions were point charges.

Within this model it is easily demonstrated that the
average interstitial potential is equal to the poten-
tial at infinity. Consider a large but finite crystal
bounded by nonpolar faces. (The requirement of
nonpolar faces insures that the crystal will be
electrically neutral and there will be no macrosco-
pic electric fields due to the different charges on
different faces.) Clearly there will be some unique
relationship between the interstitial potential deep
within the crystal and the potential at infinity. Now
perform that symmetry operation on the crystal
which interchanges the ionic species. As the aver-
age interstitial potential is symmetric under this

TABLE I. Ion parameters.

a Y 1) q
Element Z Q (@Y @) (Ryad (¢ Xpy
Al 13 10 4.04 1.7 43 0.72 1.18
Si 14 10 4.52 225 44 cee 141
P 15 10 4.99 25 41 132 1.64
s 16 10 547 2.6 41 140 1.87
Zn 30 28 3.33 2.0 25 0.79 0.91
Ga 31 28 3.64 2.0 28 0.89 1.13
Ge 32 28 3.94 206 368 --+ 1.35
As 33 28 4.22 2.2 42 1.22  1.57
Se 34 28 4.49 225 44 1.30 1.79
cd 48 46 3.02 18 46 0.58 0.83
In 49 46 3.24 2.0 52 0.75 0.99
Sb 51 46 3.63 1.8 56 1.03 1.31
Te 52 46 3.81 1.8 58 113 147

operation, it remains unchanged, but, for purposes
of calculating the potential, such an operation is
equivalent to multiplying the ionic charges by -1,
which would multiply the potential by —1. There-
fore, the average interstitial potential must be
equal to zero, or the potential at infinity. This
argument breaks down when polar faces are pre-
sent, because the macroscopic electric fields pro-
duced by such faces are not invariant under the
interchange of ionic species.

Nevertheless, we can apply this model to a semi-
conductor heterojunction by conceptually bringing
together two semiconductors. If we do not allow
any charge redistribution between the two, the
vacuum levels, and therefore the average intersti-
tial potentials, should line up. Thus, within this
very naive model of the free surface, our intersti-
tial-potential matching scheme is equivalent to the
electron-affinity rule for heterojunction band line-
ups proposed by Anderson.®

The crude scheme described above suffers from
a rather severe shortcoming. If it is applied to
heterojunctions on polar faces, it predicts macro-
scopic electric fields on one side or another of the
heterojunction, depending on the configuration of
the other faces of the crystal. We can overcome
this problem if we tlink of the ionic charge as being
due to a transfer of charge between nearest neigh-
bors. Then, any region of the crystal containing
many atoms will be electrically neutral. The
amount of charge transferred between a given pair
of nearest neighbors should be determined by some
parameter of the ionic species, and a natural para-
meter for this purpose is the electronegativity. We
have previously® derived effective ionic charges
from our band-structure calculations and shown
that these can be expressed as the difference be-
tween parameters of the ionic species, which show
a good correlation with the Phillips electronega-
tivities.” These parameters will be denoted ¢ and
are listed in Table I.® The effective charge of an
ion in the bulk semiconductor AB is given by

e*=q(B)-q(A) (6a)
or
e*=0.76e[ Xp,(B) - Xpy(4)] . (6b)

(We can use either the ¢’s or the Phillips electro-
negativities Xp, to calculate the charge on the ion.
As our band calculations give no information on the
relative electronegativities of Si or Ge, we will use
the Phillips electronegativities for heterojunctions
involving these semiconductors, and we will use
the g parameters for all other heterojunctions,
because they should in principle be more accurate.)
To apply this to a heterojunction, we assume that
that the charge on a given ion is given by Eq. (6),
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FIG. 2. Ionic model for a (100) Ge-GaAs heterojunc-
tion. The atomic positions and effective ionic charges
are shown above. Below is a diagram of the plane-
averaged potential.

but we average the g’s of the nearest neighbors.
This is equivalent to assuming a charge transfer
of i[g(B) - g(A)] between any pair of nearest neigh-
bors.

Consider the case of an unreconstructed Ge-GaAs
heterojunction on a (100) Ga face, as shown in Fig.
2. The charge on the Ga ions adjacent to the inter-
face is

e¥, =0.76e[ 3Xp (As) + 3X p, (Ge) — Xp, (Ga) ]=0.25¢ .
(7)

Similarly, the charge on the Ge atoms at the inter-
face is

et. =0.76e[ 3Xp,(Ga) — 3X,,(Ge)|=-0.08¢. (8)

The As ions near the interface, not being bonded
to anything but Ga ions, will have the bulk GaAs
charge of -0.33e.

Given the location and magnitude of the ionic
charges, we can easily calculate the electrostatic
potential. As we are only interested in dipole
moments across the heterojunction, we may aver-
age the charge density over the plane parallel to
the interface. We are then dealing with sheets of
surface charge and the potential differences

between them. Since we wish to express the dipole
moment at the heterojunction as the difference
between the average interstitial potentials in the
bulk materials, we must find some way to identify
those levels in such a calculation. Applying the
same sort of interchange-of-ions argument as used
above, we see that the average interstitial potential
is the plane-averaged potential at a point halfway
between any two adjacent atomic planes. In the
Ge-GaAs case, there is one-half the charge trans-
fer from Ga to Ge as there is from Ga to As. Thus
the charge transfer from Ga to Ge brings the Ge
potential up to the GaAs interstitial potential. In
other words, the dipole across the interface (mea-
sured between interstitial potentials) is in this
case negligible.

The above calculation can be generalized to a
heterojunction between arbitrary semiconductors
AB and CD, for interfaces on the three principal
low-index planes [(100), (110), and (111)]. In all
cases the results are the same, if the ideal atomic
geometry is assumed. The interface dipole is
given by (mks notation)

Vp=(1/4¢0a) 5[ q(A) +q(B)] - 3[q(C)+q(D)]}, (9a)
or
Vp=(0.76e/4€,a){ 3| X, (A) + X, (B)]

- 3[Xp, (C) + Xp, (D]}, (9b)

where a is the cubic lattice constant of the (lattice-
matched) semiconductors. A detailed derivation is
given in the Appendix. This result is intuitively
pleasing because it simply says that the dipole is
proportional to the difference between the average
electronegativities of the semiconductors. The
direction of the dipole is such as to raise the
energy bands of the more electronegative semicon-
ductor.

Eq. (9) suggests the definition of an “electro-
negativity potential” vV,  for each compound,

Ven(AB):(l/eeoa)[q(A)“"Q(B)] ) (103)
or

Ven(AB)=(0.76e/8€,a)| X, (A) +Xp, (B)] . (10b)

The heterojunction dipole is then simply the differ-
ence between the V. ’s. These parameters, as
derived from both the ¢’s and the Phillips electro-
negativities, are given in Table II.

Unfortunately, the dipole is a small difference
between relatively large electronegativity poten-
tials. Thus, small relative uncertainties in the
electronegativities lead to a rather large uncer-
tainty in the dipole. This is particularly true for
Al, where there is a significant disagreement
between the results obtained from the Phillips
electronegativities and our ¢ values.



16 THEORY OF THE ENERGY-BAND LINEUP AT AN ABRUPT...

2645

TABLE II. Semiconductor band energies. The “electronegativity potentials” V., used in calculating the interface di-

pole are also given. All energies are in eV.

EC EC EE Ven Ven

Semi- (from ¢q (from Phillips
conductor E, (direct gap) (indirect gap) (calculated) parameters) electronegativity)

Si -3.16 -0.21 -2.10 1.06 e 8.93
Ge -3.25 -2.39 -2.51 0.74 coe 8.21
AlAs -3.96 -1.21 -2.00 1.96 7.75 8.35
AlSb -3.94 -1.66 -2.35 1.59 6.45 6.98
GaP —-4.12 -1.26 -1.92 2.20 9.17 8.74
GaAs -3.96 —-2.44 e 1.52 8.44 8.21
GaSb -3.89 -3.04 . 0.85 7.13 6.88
InP —4.58 -3.15 e 1.43 7.98 7.70
InAs -4.38 -3.98 cee 0.40 7.36 7.26
ZnS -5.34 -1.53 3.81 9.12 8.80
ZnSe -5.07 -2.33 v 2.74 8.34 8.19
ZnTe -4.74 -2.51 e 2.23 7.12 6.71
Cds —-5.42 -3.11 e 2.31 7.69 7.97
CdSe -5.29 -3.53 1.76 7.03 7.44
CdTe -4.90 -341 1.49 5.97 6.10

III. BAND-STRUCTURE CALCULATIONS

The present calculations were done within the
self-consistent pseudopotential approach described
in I, in which the potential is constructed so that
the electrostatic potential can be calculated sepa-
rately from the pseudizing and exchange-correla-
tion potentials.

The ionic pseudopotential consists of the electro-
static potential and an adjustable pseudizing poten-
tial. The distribution of core electrons is assumed
to be of the form

Peore (¥) = (QaPe/4mr)e ™, (11)

where @ is the number of core electrons and a is

a parameter characterizing the size of the ion. It
is matched to atomic Hartree-Fock calculations®

by setting

a’=6/(r%), (12)

where (#*) is the second radial moment of the
Hartree-Fock core electron distribution. Equation
(11) leads to a core electrostatic potential of

Ves () = = (e*/4mer)[(Z - Q) +Qe™] , (13)

where Z is the nuclear charge. The pseudizing
potential is taken to be

Vps ()= (Ze2/41T€0‘r) exp[ _(Q/Z)l/z ar]
+(Vy*/(2m)*/2) exp(-v**/2) . (14)

The first term has the effect of smearing the nu-
clear charge, and the second provides the repulsive
core. The only two freely adjustable parameters in

the calculation are V, and y. The total ionic pseu-
dopotential is combined with the Hartree potential
and a local exchange potential to obtain the total
pseudopotential. The valence electron distribution
is calculated from the wave functions and the calcu-
lations are iterated until self-consistency is
achieved.

The parameters determining the ionic pseudopo-
tentials are given in Table I. These pseudopoten-
tials were tested, apart from the band-structure
calculations, by calculating the energy levels of an
electron in an isolated ionic pseudopotential. These
energies were compared to experimental ionic term
values and were generally found to be in agreement
to within 5%.%°

The accuracy of the band-structure calculations
may be briefly summarized. Apart from AlAs,
CdS, and CdSe, the agreement between calculated
and experimental bandgaps is quite reasonable. If
we exclude those three compounds, the average
error for the first direct gap at I" is only 0.02 eV.
The I'y;, - T',;. is generally correct to 0.2 eV. The
indirect gaps from I' to A and A are in error by
0.2 to 0.3 eV on the average, but the minimum
bandgap of the indirect gap semiconductors is
generally accurate to within about 0.1 eV. The
L,,- L, and L;,— L, gaps are in error by an av-
erage of 0.3 and 0.5 eV, respectively. The direct
gap at X is consistently too small, by an average
of 0.8 eV. AlAs shows a somewhat poorer fit, both
the first direct and indirect gaps being 0.2 eV too
low. The direct gap in CdS is only 0.1 eV low, but
the other gaps show errors of 0.5 to 2.5 eV. There
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appear to be no experimental data on cubic CdSe,
but the calculated bandgap is close to that experi-
mentally observed in the hexagonal material.

The above experimental comparison is based
largely on electroreflectance data. In fitting the
band structures, we assumed that the E, peaks are
due to transitions at I', the E, peaks to transitions
at L, and the E, peaks to transitions at X. Cheli-
kowsky and Cohen'! have recently reported very
accurate nonlocal pseudopotential calculations for
several of the semiconductors considered here.
Their more elaborate fit to the experimental data
largely supports the naive interpretation of the E,
and E, peaks, but in some cases (particularly the
phosphides) they find gaps at X a few tenths of 1 eV
lower than the E, peak. Therefore, at least some
of the discrepancy between our calculated energy
bands and the experimental data at X may result
from an oversimplified interpretation of the spec-
troscopic data.

The band-edge energies, relative to the average
interstitial potential, are given in Table II. The
calculations were done without the spin-orbit inter-
action, but in the table the calculated valence-band
energies have been corrected for this by adding
one-third of the experimentally observed splitting
(A,) to the uncorrected energies. This facilitates
comparison with experimental heterojunction data.

Another aspect of the band-structure calculations
which deserves comment is the role of correlation
effects. The dominant manifestation of such ef-
fects at a heterojunction is the dielectric image
force.'* Our approach to the lineup problem will
automatically include the image force, if the cor-
relation effects are properly taken into account in
the bulk band-structure calculations. Pantelides
et al.® have studied the effects of correlation on
Hartree-Fock energy bands and found them to be
significant. Our calculations, though, are not true
Hartree-Fock calculations, since we include the
exchange interaction via a Slater approximation.
Phillips and Kleinman'* noted that such an approxi-
mation incorporates the qualitative features of the
correlation effects, and more recent calculations
have shown that local exchange-correlation poten-
tials seem to be adequate. The surface calcula-
tions of Appelbaum and Hamann,'® in particular,
gave an ionization potential for the Si (111) surface
which is in good agreement with experiment. Since
correlation (image force) effects contribute signif-
icantly to the ionization potential, this indicates
that the local exchange-correlation approximation
does not introduce unacceptable errors into the
absolute band energies.

The calculations in Ref. 15 employed the full
Wigner interpolation formula.'® In I, we used a
pure Slater approximation, but in the present cal-

culations we have adopted a generalized Slater
“Xa” exchange!” with parameter «=0.8. This leads
to an approximation which is closer to the Wigner
formula for the semiconductors studied, *® and has
been used successfully in other surface calcula-
tions.’® The effect of this change in «, apart from
allowing us to better fit the bandgaps of a larger
number of semiconductors, was to shift all band
energies upward by an approximately constant 2.5
eV. This can be easily explained by noting that the
Slater exchange potential, evaluated at the average
valence electron density of germanium, for exam-
ple, isabout -12 eV. Changing @ from 1 to 0.8
would then make this potential less negative by
about 2,4 eV. Thus, while the band energies are
sensitively dependent on the exchange parameter o,
the heterojunction lineups are not, particularly in
the case of lattice-matched heterojunctions, where
the participating semiconductors necessarily have
the same average valence electron density.

IV. HETEROJUNCTION LINEUPS

The predicted band lineups for selected hetero-
junctions are given in Table I, both neglecting
and including the dipole correction. The band-edge
discontinuities AE, and AE, are given by Egs. (4)
and (5). The dipole potential is given by

Vp=Ven (1)—Ven(2), (15)

where V is the “electronegativity potential, ” as
defined in Eq. (10).

The Si-GaP heterojunction was discussed in I,
The band lineup obtained without the dipole poten-
tial is essentially identical to our earlier calcula-
tion, but taking the dipole into account almost eli-
minates the conduction-band discontinuity. The few
experimental data®® indicate zero conduction-band
discontinuity.

The Ge-GaAs and Ge-ZnSe predictions are also
substantially the same as reported in I. The dipole
potentials are negligible because the average elec-
tronegativities of GaAs and ZnSe are equal to
X(Ge). The small conduction-band discontinuity
at the Ge -GaAs heterojunction is in agreement with
the calculations of Baraff, Appelbaum, and
Hamann,? and at least the more recent experimen-
tal data.?

The best experimental data on heterojunction band
lineups are those of Dingle et al.? for the GaAs-Al,
Ga,_yAs system. For compositions in the range
X =0.2-0.3, they find that the valence-band dis-
continuity is 0.15+0.03 of the total difference in
bandgaps. Neglecting the dipole potential, our cal-
culations give zero valence-band discontinuity, in
contrast to the nearly perfect (and probably fortu-
itous) result obtained in I. If we include the dipole
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TABLE III. Predicted band lineups for selected heterojunctions. The dipole is positive if
it raises the narrower gap semiconductor with respect to the wider gap one. All energies are

given in eV.

Band lineup neglecting
charge-transfer dipole

Band lineup including
charge-transfer dipole

Heterojunction AE, AE, Vp AE, AE,
Si-GaP 0.96 0.18 +0.192 1.15 -0.01
Ge-GaAs 0.71 0.07 0.002 0.71 0.07
Ge-ZnSe 1.82 0.18 +0.022 1.84 0.16
GaAs-AlAs 0.00 1.23° +0.69 0.69 0.54"
GaAs-ZnSe 1.11 0.11 +0.10 1.21 0.01
InP-CdS 0.84 0.04 +0.29 1.13 -0.25
InAs-GaSb -0.49 0.94 +0.23 ~0.26 0.71
Gag,45lng, spAs-InP 0.40 0.09 -0.13 0.27 0.22
GaAs-Gag_s5Ing 43P 0.38 0.27 -0.13 0.25 0.40

2 Evaluated using the Phillips electronegativity scale.
b Measured between the I’ minimum of GaAs and the I minimum of AlAs. This is more
appropriate for a comparison with experimental data taken on heterojunctions involving

AlyGa_yAs in the direct-gap composition range.

potential, our predictions become considerably
poorer. Using the ¢’s, we find V,=0.69 eV, or a
valence-band discontinuity of 0.56 of the total.
Using the Phillips electronegativities, we find Vp
= -0.14 eV, which goes the wrong way. The dipole
potential for this system is ultimately dependent on
the relative electronegativities of aluminum and
gallium. Phillips finds Al slightly more electro-
negative than Ga, while we find it considerably less
electronegative, but one should bear in mind our
poor band structure for AlAs. The truth presum-
ably lies somewhere in between. It seems reason-
able to assume that AlAs is somewhat more ionic
than GaAs (the bandgap is larger, for example),
but our band-structure calculations probably over-
estimate the ionicity. The difficulty is probably in
our neglect of the effects of nonlocality of the
pseudopotential. One would expect nonlocal effects
to be important for elements from the Si row of the
periodic table.®

Another point that needs to be menticned here is
that our calculations are appropriate for hetero-
junctions between pure semiconductors. In the
above discussion we implicitly assumed that we
could derive predictions for a heterojunction in -
volving an alloy system by simply linearly inter-
polating the band energies for the pure compounds.
Such a procedure is somewhat hazardous in view
of the known nonlinearities in the dependence of
bandgap on composition, ** but lacking an adequate
treatment of randomly disordered systems within
the self-consistent pseudopotential scheme, this
is as meaningful as any other procedure.

The InP-CdS heterojunction has been studied ex-
perimentally by Shay et al .*®* They find a staggered

lineup, with AE_ =-0.56 eV. Our calculations,
without the dipole potential, give almost continuous
conduction bands. However, when the charge-
transfer effects are included, we also get a stag-
gered lineup with AE_=-0.25 eV. It should be
noted that our calculations were done for zinc-
blende-structure CdS, whereas the experimental
junctions were grown with wurtzite material. This
difference, along with the inherent uncertainties
in the electronegativities, and the poor CdS band
structure, perhaps explains the remaining discre-
pancy.

In some ways the most interesting heterojunction
prediction is that for the InAs-GaSb system. If we
do not include the dipole effects, we find the con-
duction band of InAs about 0.1 eV below the valence
band of GaSb. Similar lineups result from the pre-
dictions of Harrison®® and the electron-affinity
rule.?” If we include charge-transfer effects via
our ionic model, we find a dipole potential suffi-
cient to raise the conduction band of InAs about
0.1 eV above the valence band of GaSb. This is
still an extremely staggered band lineup, and this
heterojunction is likely to have some very interest-
ing transport properties, possibly including inter-
band tunneling or electron-hole pair generation via
the Auger effect.?®

There is a great deal o1 current technological
interest in heterojunctions involving the quaternary
alloy GayIn,_yAs,P,_,.** We may use linear inter-
polation to derive the band energies for these
alloys. We have chosen two representative hetero-
junctions from the many that could be fabricated
within this alloy system. The ternary solid solu-
tion for Y=1, Gag, ,lIn,, s,As is lattice matched to
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InP, so that a heterojunction between the two is
representative of the junctions that could be grown
on InP substrates. Including the dipole effects, we
find about equal valence- and conduction-band dis-
continuities. For the GaAs-Ga,,g,In, 4P hetero-
junction we find a conduction-band discontinuity
slightly larger than the valence-band discontinuity.

V. DISCUSSION
A. Procedure for predicting heterojunction lineups

We have presented a systematic procedure for the
calculation of the energy-band lineup at an abrupt
semiconductor heterojunction. The procedure re-
quires only a knowledge of the energy-band struc-
tures of the participating semiconductors, and it
does not invoke any properties—empirical or
theoretical —of the free surface, nor does it re-
quire a self-consistent calculation of the electronic
structure in the immediate vicinity of the interface.
The accuracy of the method is believed to reflect
directly the quality of the band structures. Given
sufficiently accurate band structures and a suffi-
ciently sophisticated model of the charge distribu-
tion near the interface, it should be capable of
serving as an accurate tool for the quantitative
prediction of band lineups at heterojunctions for
which no experimental data yet exist.

The procedure itself consists of three steps: (i)
the self-consistent calculation of the energy-band
structures and the microscopic electrostatic poten-
tials, (ii) the determination of an effective potential
at infinity, and (iii) the estimate of the interface
dipole shift by which the effective potentials at in-
finity are displaced relative to each other. We re-
view these steps in more detail.

1. Band structure

We believe two aspects of our calculations to be
absolutely essential for accurate band lineups:
self-consistency between band structures and elec-
trostatic potentials, and methodological consistency
in the treatment of different atomic species and
semiconductors. By the latter we mean perfect
consistency in the treatment of the ionic cores,
exchange effects, etc. One would certainly intro-
duce unacceptable systematic errors if one were
to use core data from different sources for differ-
ent atomic species, or different exchange-correla-
tion approximations for different semiconductors,
or different analytical forms for the pseudopoten-
tials. (Because of these considerations, one should
particularly not try to combine the results of the
present work with those of I, in view of the differ-
ent exchange approximations.) Given these twofold
consistencies, the choice of the calculational meth-

od is probably a purely practical question. We have
used a pseudopotential approach, but other meth-
ods, such as OPW (orthogonalized plane wave),
APW (augmented plane wave), or LCAO (linear
combination of atomic orbitals)?® calculations
should serve as well if carried to comparable
accuracies in the self-consistent band structures.
We prefer the pseudopotential approach because
of its overall simplicity, and because it lends it-
self particularly well to a self-consistent treat-
ment. In addition, it can be easily upgraded to
higher accuracy by increasing the number of ad-
justable parameters, leading to potentially very
accurate results for a modest computational ef-
fort.!

In the present paper, we have implemented this
general approach only in a rather low-order ap-
proximation, in terms of a local pseudopotential
using only two adjustable parameters per atomic
species. While the results obtained in this way are
very gratifying, the band structures themselves
are still too crude to be entirely satisfactory, or
to allow one to place a quantitative reliance on the
heterojunction lineups thus derived. The least
satisfactory band structure (considering both the
fit to experimental data and the technological im-
portance of the material) is that of AlAs. Unfor-
tunately, this places the greatest uncertainty on
the lineup of the experimentally best-known hetero-
junction, AlAs-GaAs. The difficulty is probably
attributable to the absence of d electrons in the
Al-ion core, which makes a local pseudopotential
a poor approximation. Thus, we are convinced
that for quantitatively accurate lineup results,
nonlocal pseudopotentials should be employed.
Because of the importance of methodological con-
sistency, this should be done for all atomic species
of interest. We have not undertaken such a refined
calculation.

2. Reference potential

We express our band-structure energies with
respect to an electrostatic reference potential
which is chosen so that, within some model, it is
the effective potential at infinity. By “effective
potential at infinity” we mean a level, defined in-
side the crystal, which would be equal to the poten-
tial far from the crystal if the crystal had a suit-
ably idealized surface. We have shown that, with-
in the spherical-ion model and for a crystal having
only nonpolar faces, the mean interstitial potential
is equal to the effective potential at infinity. The
actual charge distribution is of course tetrahe-
drally distorted by the covalent bonds, and if one
incorporated this distortion into the model, the
mean interstitial potential would be somewhat low-
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ered with respect to the effective potential at infin-
ity.

3. Dipole potential

In many ways, the interface dipole potential
would be the hardest correction to calculate exactly
because it is a true interface property. The exact
calculation of this potential would require a full
self-consistent calculation of the interface itself,
such as undertaken by Baraff, Appelbaum, and
Hamann®! for the Ge-GaAs heterojunction. How-
ever, it appears that in most cases the dipole
shifts are surprisingly small, of the order of a few
tenths of 1 eV. Therefore, a very high relative
accuracy is not required, and simple estimates
based on chemical-bond concepts should do. This
is essentially what we have done. Again, our model
couldbe refined. Wehave already mentionedthe te-
trahedral distortion of the valence-charge distribu-
tion. This could be taken into account by some version
of the bond-charge model.*® There is also the
question of refining our charge-transfer para-
meters g. The value of ¢(Al) is clearly out of line
with the rest of the column-III elements.® To use
the Phillips electronegativities instead is only a
temporary expedient. Ultimately, the charge
transfer along the bonds should be determined from
self-consistent band-structure calculations, rather
than taken from sources that are conceptually dif-
ferent from the purely electrostatic quantities we
are after. The sameargument applies to the inter-
relation of the g-parameters between the column-
IV elements, the III-V compounds, and the II-VI
compounds. Simply adjusting the origins of the
different ¢ scales to fit the single Phillips electro-
negativity scale, as was done in Ref. 6, calls for
ultimate replacement in terms of something better.
Probably the best approach would be to perform
self-consistent band-structure calculations on the
II-IV-V, and I-III-VI, semiconductors, in addition
to the III-V and II-VI compounds. This would give
information on the charge transfer across I-VI,
II-V, III-VI, and IV-V bonds.

B. Relation to electron-affinity concepts

Although our point of departure had been a cri-
tique'2 of the electron-affinity rule,’ we have arrived
at a rule that shares one important feature with
the electron-affinity rule. The band discontinuities
are transitive quantities, that is, they can be ex-
pressed as a simple difference between two num-
bers, each of which is a property of only one of
the participating semiconductors. The original®
model described in I, involving only the band-
energy contribution, is necessarily transitive, but

as Eq. (10) indicates, even the dipole potential is
transitive. This aspect of the dipole potential is
somewhat surprising, as it was not obviously put
into the assumptions of the ionic model.

A closely related point is the lack of an orienta-
tion dependence in the dipole potential. This
orientation independence presumably exists only in
the model of spherical ions, ignoring any separate
bond charges. It would certainly be destroyed by
any nonideal atomic geometry at the interface, such
as relaxation between atomic planes or periodic
reconstruction of the sort that occurs at a free sur-
face. However, any orientation dependence of the
band lineup from these sources would certainly be
a second-order effect and, hence, would probably
be small. The only experimental evidence of an
orientation dependence are the old Ge-GaAs data
by Fang and Howard.}! However, in this case, the
scatter in the data for a given orientation is of the
same magnitude as the difference between orienta-
tions, so these data cannot be considered conclu-
sive.

It is instructive to compare our conduction-band
energies with measured electron affinities. The
electron affinity of GaAs, for example, is 4.07
eV.?” By comparing our value of E (GaAs)=-2.44
eV, we conclude that the mean interstitial potential
must lie 1.63 eV below the vacuum level. If the
same comparison is made for other semiconduc-
tors, the separation between the interstitial and
vacuum levels falls between 1 and 2 eV. Such a
potential difference may be plausibly attributed to
the combined effects of the surface dipole and the
tetrahedral distortion of the valence charge.

C. Relation to other work

Until recently, the Anderson model, in which
AE, is postulated to be the difference between the
free-surface-electron affinities, was widely ac-
cepted. However, as one of us has pointed out, 2
this model suffers from a number of limitations.
More recent theoretical work on the lineup problem
has taken two main approaches. One is to try to
express the heterojunction band lineup in terms of
the properties of the bulk crystals, as in the pre-
sent work and that of Harrison.*® The other ap-
proach is to calculate the detailed electronic
structure of the interface, as is done by Baraff,
Appelbaum, and Hamann, *! and by Cohen and co-
workers.>?

Harrison has followed an approach that is quite
similar to ours. He calculated an absolute energy
for the top of the valence band by the linear com-
bination of atomic orbitals (LCAO) method. The
reference level for these energies is effectively
set by the use of atomic term values for the diago-
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nal elements of the Hamiltonian. Thus the band-
edge energies are given with respect to the vacuum
level outside a free atom. The significance of such
a level inside the solid is not entirely clear.
Empirically, Harrison’s valence-band energies,
E,(H), are related to those from the present work,
E,(FK), by

E,(H)~E, (FK)+2.0 eV/Axa-17.1eV,  (16)

where a is the lattice constant. Thus, Harrison’s
heterojunction lineups are generally in agreement
with ours (neglecting the dipole potential) for
lattice-matched systems.

Baraff, Appelbaum, and Hamann®' have done a
fully self-consistent surface calculation for a sys-
tem with three atomic layers of Ge cn (100) GaAs.
They find a very small dipole moment across the
heterojunction, *® leading to a band lineup very
similar to our prediction. Moreover, they have
derived the effective charge transfer from the Ga
to the Ge atomic planes from the variation of the
potential as the interplane spacing is changed.
Their value of 0.05 electron per atom is in reason-
able agreement with the 0.08 electron derived from
our ionic model, considering that their value is
effectively a dynamic charge, while ours is a pure-
ly static one. They also find a band of partially
occupied interface states which they attribute to
the unsaturated chemical bonds between the Ga and
Ge atoms. Our model is of course not capable of
treating the interface states, but we find the agree-
ment on the band lineup and charge transfer most
gratifying.

Another approach which might be applied to the
heterojunction problem is the work of McCaldin,
McGill, and Mead on Schottky-barrier heights.**
They found that the barrier height for holes in
semiconductor-gold “junctions” is dependent only
on the anion, and is in fact linearly related to the
anion electronegativity. We find a similar, though
not as strong, correlation in our valence-band
energies. Also, our ionic model indicates that
both the anion and cation participate equally in de-
termining the dipole potential. Thus, these are
two approaches which employ the same sort of
chemical concepts, but the relationship between
the two is not yet clear.

D. Interface states

Our model does not provide any information on
the existence or spectral distribution of localized
states at the interface. However, this is not likely
to affect the validity of the band lineups. If an
interface band exists that can trap free carriers
from the bulk semiconductors, the result will be a
sheet of charge. This will cause a discontinuity in

the electric field at the junction, but not in the
potential. Hence it will not affect the band discon-
tinuities at the heterojunction.

The interface states found by Baraff, Appelbaum,
and Hamann are associated with the Ga-Ge bond.
These states certainly contribute to the bond charge
and the charge transfer between the two atoms. To
the extent that our ionic model, or some more so-
phisticated version of it, describes the charge dis-
tribution due to such bonding, it also includes the
effects of the interface states.

Note added in proof. We have recently become
aware of another electronegativity scale, proposed
by St. John and Bloch [Phys. Rev. Lett. 33, 1095
(1974).] It supports our view of the relative elec-
tronegativities of Al and Ga. If these electroneg-
ativity values are applied to the GaAs-AlAs hetero-
junction (through a fitting procedure similar to
that used in Ref. 6) the resulting V, raises the
valence band of GaAs 0.30 eV above the valence
band of AlAs. This is a valence-band discontinuity
of 25%, in much better agreement with the experi-
mental data of Ref. 2.

APPENDIX: CALCULATION OF THE DIPOLE POTENTIAL
1. (100) orientation

The geometry is as shown in Fig. 3(a). The mean
interstitial potential of compound AB is equal to the
plane-averaged potential halfway between atomic
planes A and B. Similarly, the mean interstitial
potential of CD is that halfway between planes C
and D. Thus the dipole potential is

Vp=Vpe - %VAB - %ch . (AI)

The charge transferred between planes A and B is

:[q(B) - q(A)] per atom, therefore the effective
surface charges are

0=(1/24)[¢(B) - q(4)], (A2)
where A =3a? is the area per atom. Therefore,

Vap=(0/€0)ia=(1/4€.a) q(B) - g(A)] . (A3)
Similarly,

Vep=(1/4€,a)q(D) - g(O)], (A4)

Ve =(1/4eq) q(B) - q(C)]. (A5)

Inserting (A3), (A4), and (A5) into (A1), we get
Vp=(1/4¢,0){ 2 q(A) +q(B)] - 3[q(C) +q(D)]}. (AS)

2. (111) orientation

The geometry is as shown in Fig. 3(b). Again, we
have

Vp=Vac—3Vas-3Vep. (A7)
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FIG. 3. Plane-averaged potential vs position for
heterojunctions on the principal low-index planes.

The charge transfer between planes A and B is
3 q(B) - g(A)] per atom, A=;V3a? and the sepa-
ration of pianes A and B is & V3a. Therefore,

=€l_o\/l_2a \/—aZ{ [¢(B) -q(A)]}

AB

1o (008 -4, (48)

Similarly,
Vep=(1/4¢€,a)[q(D) - q(O)]. (A9)

The charge transfer between planes B and C is
ilq(B) - ¢(C)], and the separation is V3 a, so

Ve =(1/4€,a)[q(B) - q(C)]. (A10)

As in the previous case, we get
Vp=(1/4¢,a){ 5[ q(A) +q(B)] - 3[q(C) +q(D)]}.
(A11)

3. (110) orientation

This case is somewhat different since the planes
are nonpolar,

Vo=Vap-Veo, (A12)

as illustrated in Fig. 3(c). There is a transfer of
charge of 3[q(B) - ¢(C)] between the B and C
atoms, but there is also a transfer of [ (D) - q(A4)]
in the opposite direction between the A and D
atoms. Therefore the net planar charge is

=(1/AY 5[ q(B) - q(C)] - 5[ q(D) - ¢(A) |}
= (V2/4a®{ [q(A)+q(B)] - [q(C)+qD)]}. (A13)

Since the separation between the planes is a/2V?
the potential is

<
S]
|
|
|
,J_
[N

"6 22 deq [q(4) +q(B)]

-3[q(C)-q(D)]}, (A14)

thus demonstrating that the dipole potential is the
same for the principal low-index planes.
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