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, We analyze the coercivity, remanence, and initial magnetization of a single-domain, single-component
amorphous material, We assume a uniform ferromagnetic exchange and concentrate on the effect of single-
ion anisotropy. We fmd a threshold anisotropy below which the coercivity is zero. At large anisotropy, the
coercivity is proportional to the anisotropy energy. Exchange pulling increases the remanence of amorphous
materials. We suggest that exchange pulling between crystallites may also be operative in small-grain
metallic polycrystals.

I. INTRODUCTION

The rare-earth- iron amorphous mater ials show
unusual magnetic behavior. YFe, is a spin glass. '
Alloys of the other rare e6.rths, those with ionic
magnetic moments, are ferrimagnetic, although
due to nonalignment both the iron and the rare-
earth "sublattices" can display average moments
below those of the isolated ions. ' The Curie tem-
peratures are well below those of the crystalline
phase. ' The hysteresis curves show sharp discon-
tinuities at the coercive field. ' ' The low-temper-
ature initial magnetization curves show what
Rhyne et al. call an "anomalous coercive -force-
type spin transition. " That is, at low tempera-
tures the magnetization versus applied field curve
rises with large positive curvature at fields far
beyond the demagnetization field. Not only do ex-
periments show the RFe alloys to be generally
ferrimagnetic, but there is also some supportive
theoretical evidence. ' Chi and Alben in a paper
which should be viewed as a companion to this one,
and one in which the authors consider numerically
the same questions we attack analytically, show
that for the same Hamiltonian we assume, states
of significantly reversed moment and spin glass
states are of higher energy than the more aligned
states.

The peculiarities we investigate derive from an-
isotropy not exchange. Therefore for simplicity
we assume a single exchange field, the same at all
rare earth sites, both in magnitude and direction.
The anisotropy, on the other hand, could hardly be
so uniform. The material is amorphous, so all
directions are equally likely for the uniaxial crys-

tal field easy axis of any particular spin. (The
easy plane case will be considered in a separate
section later in this paper. ) We assume a uniform
distribution of easy axes over the unit sphere, but
the same magnitude of anisotropy energy, the same
coefficient, for all sites. This is consistent with
experimental Mossbaur evidence, ' which shows the
magnitude of local, single-ion anisotropy field to
be as sharply defined in the amorphous materials
as in the crystalline phase, and of about the same
size in the two phases.

This model, the random anisotropy model, was
first proposed by Harris, Plischke, and Zucker-
mann' and employed by them to explain (albeit not
uniquely —the spread-in-exchange model can give
the same results) the reduction in Curie tempera. —

ture and saturation moment of amorphous materi-
als. Harris and Zobin' have now used the random
anisotropy model to explain the same properties-
coercivity and remanence —that we analyze herein.
Thus there are now three papers explaining the
same observations on the same basic model. "
We shall compare as we go along.

II. MODEL

We treat the problem classically at T =0 in the
molecular-field approximation. There is an ex-
change energy, a Zeeman energy, and a single-
ion anisotropy energy. Suppose the magnetization
and the external field to be along the z axis. An
individual spin, of dipole moment p, , makes angles
8 with the z axis and Q around the axis, measured
from the xz plane, and has an easy axis with polar
and azimuthal angles 8 and C . The magnetization
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per unit volume is M. Because the single-ion an-
isotropy is assumed to be purely uniaxial, for each
spin P =O. Letting D be the uniaxial crystal-field
parameter, the anisotropy energy of a spin of easy
axis 9 is -D cos (9 —8). The Zeeman energy in
external field II is -pH cos8 and the exchange en-
ergy of the spin is —pXM cos8. The energy of this
spin is then

E = p(H-+ AM) cos8 -D cos'(9 —8) .

easy axis nor, mutatis mutandis, does the aniso-
tropy reduce the crystallite moment. The exchange
plays no part. The polycrystal average is simply
the crystallite z components of moment averaged
over assumed directions of easy axes."

In the amorphous magnet, when d is small each
8 is small, and we find rn by iteration from m = 1.
From Eq. (4),

sin8 = [d/(h + 1)] sin26

The magnetization density is M = p.nm, with n the
number of spins per unit volume and m= (cos8).
In terms of the reduced parameters

and

cos8 = 1 ——,[d/(h+ 1)]'sin'29 .

h =—p,H/hng'; d= D/&np—

the energy is

E/Xnp'= e = —(6+m) cos8 —dcos'(9 —8) .

(2)

(3)

Integrating in Eq. {7), we find

m= 1 - —,', [d/(I + I)]'.
This is good when d «v 2 (h+ 1). Thus, when d
«W2, the remanence is

Classically the equilibrium position of the spin is
at that 0 at which its energy is an extremum

c sin8 = sin2(6 —8),

with

c =- (h+ m)/d . (5)

The reduced magnetization is of course the spheri-
cal average

m = cos8 sine dO Sln6 de . (7)

In this equation we must substitute the function
8(6) from Eq. (4).

III. REMANENCE AND SUSCEPTIBILITY

One must check that the energy is not merely an
extremum but a minimum

(6)

m (0) = 1 ——,', d',

and the reduced susceptibility at remanence is

dh „-0 is= —,', d' {d«W2) .

The same calculation allows us to find the high-
field susceptibility, for when h is large 8 is also
small. From Eq. (8) one finds that at large fields

dm 8 d'
dh 15 h' W2

h» and h»1

Near the other limit, when d is large, each spin
is pulled to a 8 slightly less than its easy axis 8 in
the upper half space

8=9 -[(&+0.5)/2d] sin6,
cos8 = cos6+ [(4+0.5)/2d] sin'6 .

Therefore,

m = 0.5+ (h + 0.5)/3d . (12)
It is conceptually nicest to start from the unique

state of complete magnetic saturation at infinite
field, and then relax h back to zero. At T = 0, and
ignoring domain effects, what is the remanent
magnetization'P Since all the spins were pulled to
6I =0 by the external field, when the field is turned
off they will all remain in the upper hemisphere.
First consider the two limits. At one end, d=0,
all spins will lie a,long the exchange field, and m
=1. At the other limit, d=+~, each spin will lie
along its easy axis and m = 0.5. At intermediate d
the spins will on the average be pulled from their
easy axes toward the z axis by the exchange, in-
creasing m. The reader should contra, :-t this with
the calculation of the remanence of a polycrystal. '
In the usual polycrystal average (we shall have
more to say about this later) the exchange does not
pull the magnetization of each crystallite from its

This is good when d» —', (2k+ I). The remanence is
then

m(0) = 0.5+1/6d (d»-', ),
and the susceptibility at remanence is

dm 1 i
dI „.=3d """

(13)

(14)

Figure 1 shows the remanence as a function of d,
for positive d.

Chi and Alben' examine the ground state of a,

cluster of 100 classical spins with uniform fer-
roma, gnetic exchange, uniaxial anisotropy, and ex-
ternal field. Their remanence drops below 0.5
when the anisotropy is more than 40 times the ex-
change energy, and is 0.45 at 500 times. Chi and
Alben argue that at very large d (but not infinite)
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FIG. 1. Reduced remanence as a function of d (d =the
ratio of anisotropy energy to exchange energy).

The state of magnetization depends not only on do-
mains, which we ignore, and on the crystal field and
the external field, but upon the past history; except
for m= + 1 there are different ways of arranging indi-
vidual spins consistent with a particular magnetiza-
tion.

Suppose one relaxes the spins back to remanence
from infinite field. If the anisotropy is zero and
one puts on an infinitesimal negative field, the

local fluctuations in the exchange will cause an oc-
casional spin to be flopped down into the lower
he'misphere as the external field is relaxed back to
zero. It is our understanding, however, that this
could only happen to spins with easy axes very
close to the xy plane. These spins although rela-
tively heavily populated contribute very little tp
the remanent magnetization. In any case at phys-
ically attainable ratios of anisotropy to exchange,
we believe that the generalized pulling by the ex-
change force on all of the spins more than compen-
sates for the occassional flopping of a few spins to
the lower hemisphere, and the remanence rise
above 0.5, as in Eq. (13).

In real materials, inhomogeneities in the ex-
change interaction —occassional antiferromagnetic
bonds —reduce the moment from alignment, and
this cannot be neglected in estimating the reman-
ence. In the RFe, 's, for example, nonsaturation
because of antiferromagnetic rare-earth-rare-
earth coupling is large. '

The analysis of Harris and Zobin' is more dif-
ficult to comprehend. Those authors improve on
molecular-field theory by introducing explicitly
another local molecular field which varies from
site to site. They claim that for d &0.1 a spin-
glass state lies lowest. We do not understand how

this can be correct at large d. Yet Harris and
Zobin also cite Harris, Plischke, and Zucker-
mann' to show the remanence at d = 1 to be 0.9 (we
find O.V). There seem to be some differences in
definitions here.

/

IV. HYSTERESIS LOOP AND COERCIVE FORCE

magnetization will switch from +1 to -l. [Ulti-
mately for all d, m(-h) joins the line m=-I+ —,', [d/
(6+ 1)]' of Eq. (8), as h becomes more negative. ]

The valid argument that for d = 0, m switches to
-m at k = 0 appears to be in tension with the fol-
lowing: When there is no effective field on the
spins they lie along their easy axes in the upper
half space (so prepared). In this state their mo-
ment is 0.5. There will then be no effective field
when h = -0.5. Therefore it would seem that all
'hysteresis curves should pass through the point
h. = -0.5, m = 0.5, irrespective of d. This is clearly
not right at d = 0, but we shall see that for d &1 all
hysteresis curves do indeed go through this point.

Molecular field theory is not a very satisfactory
way to calculate the coercive force. If the mag-
netization were truly uniform there would be no
coercive force at any value of d, since the random
anisotropy, evenly spread over all directions,
would be averaged out to zero, and the only angu-
larly dependent term in the total energy would be
the Zeeman term. It is the local irregularities in
the magnetization induced by the local anisotropy
which allow for coercivity. But molecular-field
theory should be a good approximation at large ex-
ternal field and/or large anisotropy field, the
single-ion terms in the energy. In the large aniso-
tropy regime we expect the coercive force to be
proportional to the anisotropy energy (H, ~D), and
here we shall find that molecular-field theory and
geometry gives

yH, = 0.964D (d & 5.3), (15)

which we expect to be not far off the mark. Chi and
Alben, in their Fig. 3, show H, having a constant
value h, = 2.2 for all d & 5, a.t least up to d = 500 (a,t
which d we expect h, =482).

The behavior of the coercivity in the small d

regime, where the exchange plays a more import-
ant role in averaging out the anisotropy, is more
subtle. We defer discussion of these results until
after describing the method of analysis.

For each value of c one is to solve Eqs. (4) and

(I) for m, starting from the assumed high-field,
fully aligned state. A particularly simple case is
c= 1. Then we have, from Eq. (4), 8=-',8, and Eq.
(7) gives m=0. 76. Another simple case is the one
discussed previously, c=0. Then 8=8 and m=0. 5.
A third case is c = -1, for which 6 = 2B for 0 ~ 6
& —,'v and8= —', (m+28) for —,'w -8- ~v, and m=-0.053.

At other values of c one must solve Eq. (4) nu-
merically, being careful to consider the stability
criterion. For c & -1 all spins remain stably in the
upper hemisphere, but at c = -1 the spins whose
easy axes are on the 9 =45' cone become unstable.
As e is made more negative an annulus symme-
trical around 45 widens. The spins with easy



266 E. CALLEN, Y. J. LIU, AND J. R. CULLEN I6

FIG. 2. Reduced magnetization as a function of c,
starting from the saturated state (c is the ratio of re-
duced effective field to d).

axes in this annulus overcome the local anisotropy
energy barriers and find lower minima in the low-
er hemisphere. At each c one calculates the pro-
per 0 for each spin easy axis 0 and sums to find
the magnetization, m(c). Only when c = —2 are all
spins flopped down; memory of past history is
lost, and reversibility restored. Figure 2 shows
m(c).

It is worth noting that this procedure of obtain-
ing m(c) using Eqs. (4) and (7) is identical with
that used by Stoner and Wohlfarth in getting the
hysteresis curve for their isolated particle model
of polycrystals (we will comment on this matter
in Sec. VII), the correct loop being given by
Chikazumi. "

From Fig. 2 we can now, by a geometrical con-.
struct, find the self-consistent magnetization.
From Eq. (5) we have

(16)

For each assumed d and applied field h one plots
on Fig. 2 a straight line whose m intercept is -h
and whose slope is d. The intersections of the
straight line with the curve m(c) are possible self-
consistent solutions, but not all are thermodynam-
ically stable against small fluctuations in the mag-
netization. Only those solutions with m a positive-
ly increasing function of h can be realized.

Suppose d is small and h positive. The straight
line intersects the curve at large +c and near m
=+1, of which the physical solution is of course m
= 1. As h is decreased the physical solution moves
toward smaller m, and toward the remanence. At
h equal to zero the interesting solution switches
abruptly to the negative m (and negative c) inter-
section. There is thus no coercive force and no
hysteresis for small d.

Now consider another limit —large d. Even for
large positive fields the straight lines of very
large slope intersect the m(c) curve close to c = 0
and near m =0.5. Clearly the remanence, as d be-

k, = 0.964d (d & 5.3), (17)

which is Eq. (15).
Figure 3 shows the coercivity as a function of d.

It should be contrasted with Chi and Alben's result.
While we are confident of a proportionality of h,
on 4 at large d, we do not have confidence in our
small-d behavior. The major question is whether
a more sophisticated analytical treatment would

5

4

3

FIG. 3. Reduced coercive force as a function of d.

comes larger, approaches 0.5 {see discussion at
end of Sec. III).

At what anisotropy energy does coercivity first
appear? This is the d at which a straight line with

slope d, going through the origin, tangents the

m(c) curve in the third quadrant. It occurs at d
=0.6. For d &0.6 there is no coercivity. A sudden

drop in magnetization occurs at h = 0. At negative
fields the proper solution of the three intersections
is that of the most negative m. But for d &0.6 there
is a finite coercivity.

Is there an anisotropy energy above which there
is no discontinuity in m'? There is not. At 4= 5.3
the straight line tangent to m{c) in the third quad-
rant intersects the m(c) curve at m = 0 and c
= -0.964. For 0.6 &j& 5.3 there is a sudden drop
in magnetization at the coercive force, obtained
from the rn intercept of the tangent line. This is
observed. " For more negative fields, the proper
solution is again that of the most negative m. For
d & 5.3 the discontinui. ty in m starts at a small neg-
ative m. The discontinuity in rn becomes smaller. ,
and the m at which the discontinuity occurs be-
comes more negative with increasing d, approach-
ing ra= -0.053 in the limit. For d&5.3 the coer-
civity is that field for which the straight line pass-
es through m(c) at rn = 0, and is therefore given by
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(c)

(b)

eliminate a threshold d -at which hysteresis first
occurs, and recover Chi and Alben's numerical re-
sult.

Those authors, and Alben, Budnick, and Car-
gill, "also give an insightful dimensional argu-
ment. Following Imry and Ma's" analysis of the
energetics of domain size, Chi and Alben conclude
that at small d the coercivity should vary as d4

with no small-d cutoff.
Harris and Zobin identify as the coercive force

the field at which a discontinuity in m occurs when
a field is applied to an initially unmagnetized ma-
terial. We defer discussion of this phenomenon to
our analysis of initial magnetization.

One comment on reversible magnetization. With
d &0.46 and the material in the remanent state, an
infinitesimal negative field reverses m(0) to -m(0)
and an infinitesimal positive field switches the
magnetization back to m(0) again. But for d &0.46
this process is irreversible. Although d is below
the coercivity threshold, so that the magnetization
switches negative with an infinitesimal negative
field, it is reduced in magnitude. Reverting to a
small positive field does not restore the original
remanence, but something less.

From the foregoing analysis, and using a sym-
metry argument for the return loop of the magnet-
ization m*,

(18)

(-0.5,0.5)
we are now in a position to construct hysteresis
loop& for any value of anisotropy. Figure 4 illus-
trates characteristic loops in various ranges of the
anisotropy parameter.

V. INITIAL MAGNETIZATION

Even without domains there are many ways to
achieve zero magnetization. We assume one of
these, the uniform distribution of spin vectors in
both hemispheres, over the unit sphere. It can be

FIG. 4. Characteristic hysteresis loops in various ranges of d: (a) d &0.46; (b) 0.46&d &0.6; (c) 0.6 &d &1;
(d) 1 & d & 5.3; (e) d & 5.3.
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seen that this state is self-consistent: Since m
and h are zero, c is zero, and Eq. (4) has the sol-
ution 0 =8 for each e. Easy axes are uniformly
distributed, each spin lies along its easy axis, and
the spins sum to zero moment.

Now an external field is turned on. What is the
response'P One can proceed as before. The dis-
tribution of spins is the sum of uniform popula-
tions of the upper and lower hemispheres. There-
fore the appropriate m, (c) curve is one half the
sum of m„(c) of Fig. 2 and its inverse m f, with
m*, (-c) = -m„(c):

m, (c) =-,' [m„(c) —m„(-c)] . (19)

By a load line analysis paralleling that explained
in Sec. IV we conclude that for d&0.63 any small
field will flop the unstable spin system into a state
of large remanence.

For d &0.63 and for small fields one can again
iterate from m=0 and 0 =8, more or less as pre-
cedes Eq. (12), and find

m =h/(3d —1) (d & 0.63) . (20)

But this linear response does not long continue.
As a magnetization is induced by the external field
an exchange field is built up. Positive feedback
leads to a catastrophic collapse of the initial state
at a certain field, as in the case of coercive force
discontinuity. This field k& at which a sudden jump
in magnetization takes place can be found as a
function of d by graphical analysis, using Eqs. (16)
and (19). h; is zero for d&0.63 and rises linearly
at large d, much as does the coercivity shown in

Fig. 3. Something like this behavior has already
been observed, ' and has been explained by Harris
and Zobin, ' who, however, identify the critical
field at which the jump in m occurs as the coercive
force. We do not think it is the coercive force.

Ultimately at large fields all spins are at small
8, and the magnetization is again given by Eq. (6)
irrespective of the initial state. Figure 5 illus-
trates the jump in initial magnetization.

VI. EASY PLANE ANISOT. ROPY

So far we have discussed only positive d. When

d is negative the spins tend to lie not along their
unique 8 axes but in the planes perpendicular to
them. To discuss this case it is less confusing to
take the anisotropy energy to be +D cos'(angle)
and again consider positive d. Thus, if the hard
axis makes angles 8,4, the spin assumes angles
0, 4 + m, with 0 given by the minimization of

E = -p(H+A. M}cos8+D cos'(8+B).

We shall not detail the analysis, which parallels
the foregoing, but we do calculate the remanence

0.2
I

0.4 0.6 0.8 1.0

FIG. 5. Initial magnetization process for the case of
d =1.

and

m=1 ——,', [d/(h+1)]' [d «&2(h+1)];

(21)

the same as the easy axis case (m is even in d).
When d is large,

1 1
0 =—

m -8 --c cose,
cos0 = sinO+2c cosW,

m =-,' m+ —,
'

[(h +—,'m)/d] [d»,—'(4h/v + 1)] .

One might expect that there would be no coercive
force when there is an easy plane —the spins
would at h = 0 simply rotate in that plane to attain
maximum projection along the magnetic field di-
rection. We point out, however, that this is al-
most certainly not the case in an amorphous ma-
terial. Rare earths with an "easy plane" are those
whose charge density is prolate. Their orbital and
spin angular momenta both lie along the elongated
major axis. In a uniaxial crystal it may be possi-
ble to rotate this ellipsoid around in the basal
plane. But in an amorphous material there are
likely to be other uniaxial fields in the plane —the
ellipsoid would "bump" into other ions.

VII. DISCUSSION

For simplicity and specificity we have presented
our model as a single-site energy minimization-
we have minimized the energy of each spin as a
compromise between its individual anisotropy en-
ergy and the exchange and Zeeman energies. This
will be most appropriate in the large anisotropy
limit. If there were no exchange, each spin would
lie along its easy axis. If there were no aniso-
tropy, all spins would be parallel. At intermediate
ratios of anisotropy to exchange there will be co-
herent regions. At large d these microdomains
will be small but well defined (i.e. , thin domain
walls between them). The effective anisotropy en-

in limiting cases.
When d is small, c is large and 0 is small. Then

sin8 = sin2B/c, cos8 = 1 —sin'2B/2c',
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ergy of region i ((D,.)) will be a little less than D
itself (times the number of spins in the region),
because of averaging, and the region magnetization
will point close to its dominant easy axis. It is
these clusters, rather than single ions, whose be-
havior we have been analyzing. At small d the ex-
change will dominate. Coherent regions will not
be well defined. The magnetization will rotate
smoothly and gradually through the material. Do-,

main walls will be as large as domains. The ef-
fective D (per spin) of a "region" will be much
less than the single ion D, because of averaging
over the many spins in a large region. Alben'"
shows that in this limit (D) - d'. Thus (D) is a.

function of d, going a,s d' at small d and asymptot-
ing to D at large d. In the small-d regime our
"single ion" treatment is not very good.

There is good experimental evidence for the ex-
istence of microdomains in the amorphous RFe,
compounds. Small-angle magnetic scattering of
neutrons by" TbFe, suggests scattering by clus-
ters of, very roughly, 100 A diameter. The scat-
tering is strong below the Curie point and dimin-
ishes as the temperature of the sample is raised
into the paramagnetic state. The materials with
microdomain structure are the ones that display
large coercive forces and jumps in the initial
magnetization. By our treatment they should have
d &0.63 and so perhaps there is at least internal
self-consistency in applying our model at this rea-
sonably large d.

One wonders how the ratio of anisotropy to ex-
change energy can be so large —it is usually be-
tween 0.01 and 0.1. It may be that at intermediate
d, when the regions are significantly larger than
the range of the exchange interaction (especially
in an amorphous material with short spin-spin
longitudinal correlation length), the exchange in-
teraction between regions is a surface effect, not
a volume effect, decreasing the operative "J",
and thus increasing the effective d.

That the causative agent of the large coercive
force and initial magnetization jump is anisotropy
and not inhomogeneities in the exchange interac-
tion (i.e., a scattering of antiferromagnetic bonds,
with regions pointing in different directions) is
demonstrated by the behavior of amorphous GdFe„
which should have much the same exchange inter-
action inhomogeneities as the other rare earths,
but in which the Gd ion has no magnetic anisotropy.
GdFe, displays no microdomain structure and a
small coercive force of conventional origin. " It
should be kept in mind that the important mechan-
ism for coercive force, nucleation of reverse do-
mains, has been neglected here.

Unlike the coercivity, the remanence will be af-
fected in a major way by nonsaturation due to ran-

dom antiferromagnetic exchange interactions.
This should be taken into account~before results
on the remanence are compared to experiment.

In comparing to the experimental evidence 'of the
amorphous rare-earth-iron materials, we have
gone even further than assuming a uniform ferro-
magnetic exchange field. In these materials there
is not one magnetic component, but two. The rare
earths tend to point in one direction, the irons op-
posite, but, depending on concentration, neither
"sublattice" is saturated. ' The first effect of an
external field will then be to increase saturation
of the magnetically dominant sublattice, at least.
And at larger fields one can create angled struc-
tures. " Nevertheless, in taking magnetization
data on RFe materials we do observe' ' curves
reminiscent of Figs. 4 and 5, although the ob-
served curves tend to be a little less sharply ang-
ular. This may be the result of temperature aver-
aging. The theory needs to be repeated for non-
zero temperatures. It will be useful to estimate
how sensitive the technologically important energy
pr'oduct is to temperatures.

We feel that some form of the theory should be
applicable not only to amorphous materials but to
some polycrystals as well. In the usual analysis
of polycrystal data one finds the direction of the
magnetization in each crystallite as a minimum
energy compromise between anisotropy energy and
Zeeman energy —the crystallite magnetization is
assumed constant in magnitude, and there is
thought to be no exchange pulling of one crystallite
magnetization on that of its neighbors. This is
surely the case for nonconductors where the ex-
change interaction is of short range, and for large
grain metallic samples when the range of exchange
interaction is small compared to the crystallite
size. But there should be circumstances, particu-.
larly in metals, and in samples of small grain
size, when the magnetic interaction between grains
cannot be ignored.

We think we see evidence of this. Permalloy
(Ni«Fe„) films generally have an in-plane uniaxial
anisotropy for one reason or another. Such films
exhibit rather square hysteresis loops in the easy
direction, although the coercive force is small
(-2 Oe). Permalloy films have also been grown in
the presence of a 50-400-Hz rotating magnetic
field, which wipes out the preferred axis and pro-
duces films that are macroscopically magnetically
isotropic. These films are determined to be poly-
crystalline with grain size estimated to be 400 A.
This is small enough for the grains to be of single
domain, and thus the simplest analysis of poly-
crystals should be appropriate. The procedure of
Stoner and Wohlfarth can be exactly followed in the
case of two dimensions, with only the weighting
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factors adjusted in the grain summation. One
might then expect a hysteresis curve similar to
that shown in Fig. 14.10 of Chikazumi, with a
remanence of 2/m or 0.637. This is, however, not
what is observed on a piece of isotropic Permalloy
film" —the remanence is close to the saturation
moment.

Taking into account magnetic interaction between
grains of this size, we treat the polycrystal as a
random anisotropy amorphous material, and the
analysis in two dimensions similar to that of Secs.
II-IV of this paper is applied. With a typical sin-
gle-grain anisotropy field of 4 Oe and a strong and
long-range exchange interactions by conduction
electrons, d is expected to be very small, so that

our simple analysis is not quite appropriate. But
we can at least understand why the remanence is
close to the high-field magnetization. Our theory,
in two dimensions again, predicts zero coercivity
at small d. The small coercivity observed (-0.5
Oe) could be due to film inhomogeneities and/or
other local fluctuations, or may show that some
more sophisticated analysis, along the lines being
pursued by Alben or by Harris et al. is needed.
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