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High-field magnetoresistance of hopping transport in the disordered impurity system
of transmutation-doped Ge

M. L. Knotek
Sandia Laboratories, A/buquerque, ¹wMexico 8?115
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The magnetoresistance behavior for impurity conduction of a series of transmutation-doped Ge samples
(majority impurity Ga, compensation K = 0.4) with Ga impurity density N„ranging from 3 X 10" cm ' to
5 X 10" cm '

up to fields of 110 kOe is presented. The resistivity approximates the form p = poexp(e, /kT).
At low densities (N„2 X 10" cm ') the pre-exponent obeys lnpo(H) = lnpo(H = 0) + CH N~

' as
Mikoshiba's theory predicts, and a, is constant. At moderate densities, both c, and po increase with field,
with the effect on po being larger than expected from the simple theory, but with a weaker functional
dependence on H and NA. The ratios of transverse to longitudinal effects are consistent with percolation
theory. Contrary to the results of Gadzhiev and Shlimak, we see a smooth decrease of po(H) with N„
throughout the moderate-density region. At high densities, a metal-to-semiconductor transition is induced
which appears to be an Anderson transition. The data are discussed in terms of the impurity polarization
model of Mott and Davis, the Anderson delocalization model of Shklovskii and Shlimak, and the many-
electron hopping model of Knotek and Pollak. The data indicate that while the former two models may
contribute at the higher densities, the latter model more reasonably accounts for the lower-density behavior.

I. INTRODUCTION

In doped semiconductors the transport at low
temperatures is through impurity bands which are
formed by the hydrogen-like impurity orbitals
centered on each impurity site. This has been
called impurity conduction. The impurities are
situated at random and there is a random potential
due to the presence of charged compensating min-
ority ions. Transmutation-doped Ge has fixed
compensation and a truly random distribution of
impurities and hence is an ideal model for studying
transport in a disordered system. At low impurity
densities, impurity conduction is well described in
terms of classical hopping theory. At moderate to
high impurity densities, there are marked depar-
tures from the classical behavior. Three physical-
ly distinct models involving, respectively, dielec-
tric enhancement due to impurity polarization,
Anderson delocalization, and many-electron cor-
related hopping have been advanced to describe the
transport in the moderate- to high-density regime.
It is the purpose of this paper to test these models
against the results of magnetoresistance measure-
ments in the moderate- to high-density regimes.

In this paper we first review in some detail the
development of the theory and the supporting em-
pirical evidence. We then present results of both
transverse and longitudinal magnetoresistance
measurements on a series of well-characterized
transmutation-doped Ge samples in the moderate
to high impurity density regimes as a function of
temperature and field (to 110 kOe). We stress in
particular the variation of the activation energy
and the pre-exponential of the resistivity with den-

sity and field. The data are discussed qualitatively
in terms of the applicable models with the conclu-
sion that correlated many-electron hopping is most
likely the dominant contributor in the transition
region of densities, but that at the higher densities
all of the proposed mechanisms could contribute.

II. REVIEW OF PREVIOUS WORK

Impurity conduction is the transport of charge
between the impurity levels in a crystalline semi-
conductor. At low to moderate impurity densities
the random impurity array comprises a Mott-
Hubbard insulator, ' i.e., the upper and lower Hub-
bard bands are separated in energy and the trans-
port in the upper Hubbard band exhibits the acti-
vation energy, e,. At T =0 the lower band is full
and the upper band empty and the system is de-
scribed in terms of singly occupied impurity or-
bitals. In order to achieve transport in the lower
Hubbard band without first having to promote a car-
rier to the upper Hubbard band, compensating
minority impurities are added to move the Fermi
level into the lower band. The system is then de-
scribable in terms of the charged majority
ions moving by the hopping of electrons in
the random potential of the charged minority
ions as first proposed by Mott' and Con-
well. ' In the most simplistic picture the dc charge
transport ought to exhibit an activation energy
which is roughly equal to the Coulomb interaction
between a majority and a minority ion, Ec,„, =e'I
K,r„where K, is the dielectric constant of the host
lattice and ~„ is the average intermajority distance
(interacceptor distance in p-type materials such as
we are concerned with here) ndra„=(3 nN„)'~''
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where N„ is the acceptor density. Anderson's'
concept that the wave functions in the majority im-
purity band can become localized due to the ran-
dom potential set up by the minority impurity ions
is crucial to the understanding of this problem. In

this paper, we will assume unless otherwise noted
that the entire lower Hubbard band is localized
and that the eigenfunctions of the system are ade-
quately described by a single electron residing on
a single impurity center. This assumption is im-
plicit in the model of Miller and Abrahams~ who
first treated the problem in its entirety using a
phonon-assisted tunneling model. Miller and

Abrahams (MA) reduce the problem to the solution
of an impedance network where each site, i, in
the system is connected to every other site, j, by
an impedance, Z, , , which can be written

where o = 1/a, a being the Bohr radius of the hy-
drogenic impurity oribtal, R,&

the spatial separation
of sites i and j, and &,, an energy term related to
the random potential of the system, arising from the

occupation statistics of both the electrons and the

phonons involved in the phonon-assisted tunneling

(hopping) process. There are three separate cal-
culations which must be carried out in proceeding
from MA's microscopic model to the determination
of the bulk yroperties. First the Fermi level, E~,
must be determined, second, the distribution of
energies for excitations which lead to conduction
is determined, and finally, the impedance network
is solved. MA treated the first problem by assum-
ing an energy distribution for majority impurities
given by the Coulomb interaction with nearest-
neighbor minority ions and then solving for E~ with
this distribution. This is seen to be nearly correct
in that a given majority ion at T =0 will see only
its nearest-neighbor minority plus an additional
background of neutral majority-minority ion pairs,
the potential of which averages to zero. Miller
and Abrahams solve for an average rather than a
true Fermi level, however, since in the nearest-
neighbor distribution there are of necessity con-
figurations with arbitrarily large first nearest-
neighbor separation. We must have E~ =0 for the
true value of E~ in such a distribution. This prob-
lem is correctly solved by Shklovskii and Efros'
(SE) who consider the possibility that some min-
orities may have two majority ions in their vicinity
(2 complexes) and an equal number will have none
(0 complexes). They show that there is a net gain
of energy for the system due to the presence of
these complexes and solve for E„, relative to the
energy of an isolated impurity which is defined as
E =0, finding

P fx g&2ct~g& (2)

with c =1.2, g =1.2, and c =1.4, respectively, for
the three calculations. Thus we expect to find a
resistivity of the form

p =y exp [1.4(2ar„) +P8e2/Kor„],

=p, exp(Pe, ),
(3)

(Sa)

where P = 1/kT and 8 = 1.6 at K=O and decreases as
K increases. This form is seen to be widely obeyed
for low-density samples, especially for small E.
An orbital size can be deduced from the lnp vs r„
curves, and for the Ga-doped Ge, we deduce from
the data of Fritzsche and Cuevas" g = 75 A using

gr =1.6(e /Kor„) when K«1.
Miller and Abraham's calculation has 2.6 in place
of SE's 1.6.

In determining the excitation spectrum MA once
again use the nearest-neighbor minority-ion Cou-
lomb distribution which peaks well away from E =0.
This is clearly incorrect. As discussed by Pollak'
and Knotek and Pollak, ' if a majority ion is excited
away from its minority center, it will move in an

atmosphere of neutral majority-minority ion pairs
which have a potential distribution which must peak
at E =0. This produces a so-called Coulomb gap
in the one-electron excitation spectrum and at
very low K, this gap is equal to E~ as discussed in

Refs. 5-7. As K is increased, the distribution of
states at E =0 is broadened and percolation at low-
er energies is possib1e. Hence increasing K at low

K decreases &„ as is commonly observed. ' In
addition, the presence of the 0 and 2 complexes and

their resultant potential fluctuations has some ef-
fect on q„as discussed in Ref. 5.

Finally, MA solve the impedance network prob-
lem by essentially assuming that at each site in
the path followed through the solid the carrier takes
the first smallest impedance in proceeding to its
succeeding site. If this formula is followed rigor-
ously, one must encounter some arbitrarily large
first smallest impedances for any infinite sample.
Thus any bulk resistivity so calculated will be in-
finite. The correct solution of this problem lies in
the use of percolation theory which considers the
total impedance of the system by finding the criti-
cal impedance Z, such that an arbitrarily long path
may be found through the sample in which no in-
tersite impedance greater than Z, is encountered.
Due to the exponential distribution of Z's, the bulk
impedance is then merely proportional to Z, . When
a Coulomb gap is present, the percolation problem
involves only the intersite separations R,, (the so-
called B -percolation problem). This has been
treated by Pollak, 9 Shklovskii and' Efros, ' and
Seager and Pike" who find
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Seager and Pike's value of c. This value of a is in

good agreement with the value deduced by Golin"
from ac conductivity measurements on p Ge.

The functional dependence of &, on r„, which by
Eq. (3) is given by e, =8e'/K, r„, is also found to
be correct, and at small K, the agreement with
this form is adequate, e.g. , the data of Fritzche'
on n Ge follows this form to densities of -10"
cm '. In the samples studied in this paper an r„'
behavior of g, is followed to -2x10" cm '.""

At densities above the low-density regime, which
we define as that range of densities where Eq. (3)
is followed, a systematic departure from Eq. (3)
occurs. As is widely observed, "' ' &, falls
below the r„' dependence and eventually decreases
with increasing density (see our Fig. 7). Simul-
taneously, as pointed out by Pollak and Knotek"
there is a break in p, to values larger than that
obtained by extrapolation from low densities. We
denote the density at which the peak in &, occurs
as N~. There have been three suggestions put for-
ward to explain this behavior. Mott and Davis"
suggest that intrasite polarization of impurity
levels leads to a dielectric constant w signif icantly
larger than that of the host lattice, Ko which re-
duces q,. However, this larger value of v should
also be observable in the e, (excitation to valence-
band conduction) and e, mechanisms. In general,
breaks in &, and &, do not accompany the break in

3 Al so the break in p, does not fol low from this
model. A second suggestion by Shklovskii and
Shlimak" is that at concentrations above N~, An-
derson delocalization starts to occur in the peak
of states at E = 0. As the concentration increases,
the delocalization region broadens and the acti-
vation energy from the Fermi level to the edge of
the delocalized states lessens. However, if the
Anderson delocalization is operative, pp should
droP to a value no greater than the maximum met-
allic resistivity'o since (by postulate) transport
occurs in delocalized states. The break to higher
values of po above N~ is difficult to explain with
such a model as Pollak and Knotek" point out.

The third suggestion made by Pollak" and Knotek
and Pollak" is that the decrease in q, is caused by
correlated multi-electron hopping. The salient
feature of this mechanism is the possibility of re-
ducing the activation energy by correlated transi-
tions. As Knotek and Pollak" explain, there are
two distinct regimes in density of Eq. (3). In the
low-density regime, the process is matrix-element
limited, i.e., the first exponential term is the larg-
er of the two and Eq. (3) should be followed. In the
high-density regime, the one-electron process is
energy limited, i.e. , the second term in Eq. (3)
dominates. The crossover between the two re-
gimes occurs at rA = r„where r, is given by

r, = (pe'8/2oK, )'~' = (ae'8/2kTK, )' '. (4)

In the high-density regime, multi-electron pro-
cesses which lower e, at the expense of increasing
the first term in Eq. (3) (a smaller quantity) will
dominate the transport. In such a process, the
pre-exponential of the transition rate includes the
factor exp(-2+or) where the sum is over the hop-

ping distances, r, of the electrons which hop si-
multaneously. Thus the pre-exponential of the
resistivity must increase when in the correlated
hopping regime, in comparison with the one-elec-
tron hopping regime.

Mikoshiba and Gonda" and Mikoshiba" treated
the magnetoresistance in impurity conduction in the

context of Miller and Abrahams' theory by consider-
ing the effect of a magnetic field on the micro-
scopic transition rates. Primarily the transition
rates transverse to the magnetic field become
exponentially smaller than longitudinal transitions.
There are two contributions to this effect arising
from (i) orbital shrinkage transverse to the field,
and (ii) magnetic-field-induced phase shifts be-
tween neighboring orbitals. The latter effect was
first pointed out by Holstein" and Miller. " Miko-
shiba's microscopic picture was treated in terms
of percolation theory using. scaling arguments by
Shklovskjj. He fjnds

p, (H)/p, (0) = exp [i(a/X)(r„/X)'],

where t =0.17, and X is the magnetic length

X = (c&&/eH) '~'.

(5)

( 5a)

In the case where unaltered percolation paths
were treated, t =0.255, and in Mikoshiba's mic-
roscopic model, t =0.35. In n-type Ge, this form
is followed quite well although the effect is highly
anisotropic due to the orbital anisotropy. The
value of a deduced from magnetoresistance is
very close to that deduced from the density depen-
dence and Eq. (3)." However, in p Ge, although
the field dependence [i.e., lnp, (H)/p, (0) ccH ] is
obeyed at low densities, the value of a deduced
from Eq. (5) is considerably smaller than that de-
duced from Eq. (3). Gadzhiev and Shlimak" find
t =0.07 for their lowest-density p Ge sample. This
discrepancy is not understood.

Shklovskii" also points out that although the
transition rates transverse to the field are ex-
ponentially smaller than the longitudinal transi-
tions, the transverse to longitudinal ratio of the
magnetoresistance should differ only in the pre-
exponential. This is because both processes make
transitions predominantly at low angles to the field,
but in the transverse case a meandering path is
taken which involves more steps and hence a pre-
exponential increase over the longitudinal case as
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has been observed by Sladek. "
The simple theories like MA's do not predict an

effect on q, due to a magnetic field since in the
simple theories &3 is a function only of the impurity
distribution which is not affected by a magnetic
field. Chroboczek et al."observed that in some
samples large increases in &, could be induced at
high fields in n Qe and subsequently Gadzhiev and
Shlimak" observed the same effect on samples of

p Ge similar to those studied here. Gadzhiev and
Shlimak found that &, increases with field in the
moderate- and high-density regimes (N„&N~) where
e, does not follow the form of Eq. (3). For samples
with N&&Ã& Q3 is not a function of field. A simi-
lar effect was observed by Shklovskii and Shlimak"
in the piezoresistance in n Ge. For N„&N~, &, in-
creased drastically under uniaxial stress while for
N„&N„no increase was seen. Pollak" saw the
opposite effect in p Ge, i.e., &, decreased above
N~. This is because the acceptor levels in Ge
expand with uniaxial stress while donor levels
contract. This points out that the effect on q, is
due to orbital-size variation and not due to, say, the
electron spin interacting with the magnetic field.

Gadzhiev and Shlimak interpret their data in
terms of Shklovskii and Shlimak's model for the
dropoff in q,. It is the purpose of this paper to
extend the measurements of Gadzhiev and Shlimak
to higher densities and higher fields, as well as
to the transverse case, both to query their inter-
pretation and to include interpretation in terms of
the other two models for q, ' " in that density range.

III. EXPERIMENTAL DETAILS
1000

15
100

of effective density ND with a fixed compensation
K= Nn/N„= 0.4. Thus it is possible to vary impurity
density while knowing with a certainty that the corn-
pensation, K, is fixed and that the impurities are truly
randomly distributed. The impurity density is de-
termined by Hall effect and conductivity measure-
ments. These experiments were carried out on a
series of 12 samples, the acceptor densities of
which are listed in Table I.

Contact to the samples was made using Cerroseal
solder and zinc chloride flux. Samples wgre bar
shaped with dimensions 1-2 mmx1-2 mmx1-2
cm. Current contacts covered the ends, while the
voltage probe contacts for four-probe measure-
ments were points 3-5 mm apart centered on the
sample. Standard four-probe techniques were
used with applied electric fields ranging from 10
to 100 mV/cm. The samples were immersed in
liquid He and the temperature was varied by pump-
ing on the He. The temperature was determined
from the He vapor pressure. Measurements were
made from 4.0 to 1.6 K with data taken only on cool-
ing to avoid stratification in the He above the A. point.

Two different superconducting magnets were
used, one capable of 110 kOe and the other 120
kQe. The fields quoted herein are accurate to
within +1%. Bore diameter (2 cm) allowed both
transverse and longitudinal measurements to be
made on samples up to -1.9 cm Long.

TABLE I. Transmutation-doped Ge, K =0.4.

Sample
Acceptor density

The experiments were carried out on a series
of transmutation-doped Ge samples, the prepara-
tion of which is described by Fritzsche and Cue-
vas. " Transmutation doping with 1ow-energy neu-
trons produces Ga acceptor impurities of density
N„with As and Se compensating donor impurities
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FIG. 1. Normalized resistivity p(H, T)/pp(p) vs ]/T
as a function of field H (kOe) in the longitudinal case,
H [( 1, for Sample 1, N =3.55x 10i5. On a longitudinal
scale p(H, T) = po(H) exp(e3/kT)
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FIG. 3, Same as Fig. 2 for Sample 7, N =3.5 x 10 6.
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FIG. 2. Same as Fig. 1 for both transverse {H&I ) and
longitudinal (H ((I) cases for Sample 4, N =1.8 & 10
Note that there are magnetically induced shifts of both
the pre-exponent and the activation energy with the activ-
ation energy shift being orientation independent.
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IV. RESULTS

The results for the resistivity vs temperature
for most of these samples atII =0 have been re-
ported in the payer by Fritzsche and Cuevas. "
We assume for all samples that the resistivity can
be parameterized in the form

D
C)

I—

30

10

l00
90.
70

50
30'
0

Shown in Figs. 1-6 are the resistivity p(K, T)
normalized to po(0) vs T ' as a function of the mag-
netic fieldH for Samples 1, 4, 7, 9, 11, and 12,
respectively. For the remainder of the paper we
set N=N„ for simplicity and all values are in cm '.
In Sample 1, &, increases with JI up to 60 kQe and
then saturates at -0.75 meV which agrees well with

Oej

I

0.0 0. 1 0.2 0. 3 0.4 0.5 0. 6 0.7

1/7 (K )

FIG. 4. Same as Fig. 2, for Sample 9, N =7.2&& 10~6.
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FIG. 5. Same as Fig. 2, for Sample 11, N =1.5x 10 0.3

GS's value at 55 kQe for a similar sample. Figure
7, which plots q, vs N'~' (H'~' is proportional to
1/r» where r„ is the average interimpurity sepa-
ration) shows that the e, has increased up to the

value predicted by the simple theory but does not
increase beyond that point. Gadzhiev and Bhlimak's
value of &, for N =1.2@10", which is & independent,
is plotted in Fig. 7 for comparison.

Our values of p, (0) and q, (0) are very close to
those of Fritzsche and Cuevas (FC) except for the
lowest-density samples where our values of e3(0}
(see Fig. 7} are somewhat smaller than theirs
(FC's q, for Sample 1 is plotted for reference).
This may be due to the fact that our temperature
range did not extend as low as theirs, and the
plateaus evident in their data at the higher tem-
peratures have a stronger influence on our data.

0.2

0. 1

0.0
0 1 2 3 4 5

-5 1/3 -1
10 N (cm )

H {kOe)

I.llQ
~90 100

30
p50

6

FIG. 7. Activation energy, ~3 (meV) vs N' (where
r& =1.6X ) as a function of field 0 (kOe). The straight
line shows the dependence expected from Zq. (3). The
arrows are the calculated transition points for the onset
of correlated hopping from Eq. (8). The smoothly varying
curries at higher density have been extrapolated by dashed
lines to denote the upper limit on e3 expected for cor-
related hopping. 8 From Fritzsche and Cuevas {Ref. 12)
for N=3. 5 x10~~. O from Gadzhiev and Shlimak (Ref. 15)
for N = 1.2 x 10~~.

4 Q-

E
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l I I

0.0 0, 1 Q. 2 0.3 0.4 0.5 0.6 0.?

1/T tK )

FIG. 6. Resistivity, p, and conductivity, e, vs 1/'T(E )
as a function of H (kOe) in the longitudinal case H ItI for
Sample 12. N =5.0 x 10 . The resistivity is metallic at
H =0 and becomes semiconducting at H =30 kOe. The
minimum metallic conductivity is 3.16 x 10 (0- cm) ~

{at 10 kOe).

Gadzhiev and Shlimak'~ (GS) also report similar
data on samples with N ranging from 1.2 to 35x10"
and the same general agreement at H =0.

Samples 4, 7, 9, and 11 (Figs. 2-5) all have
several common features. Figures 2-5 show both
transverse and longitudinal values of p(H, T)lp, (0)
vs 1/T. The e, vs H behavior is not a, function of
sample orientation to within our experimental
accuracy. Hence the mechanism for the reduction
in c, in the moderate-density regime must also be
independent of the direction of &. The magnitude
of the increase in &, with field gradually decreases
as the density of impurities is increased. This is
shown clearly in Fig. 8 which plots q, vs Q for
most of the samples studied.

The pre-exponential shifts are larger in the
transverse than in the longitudinal directions.
The ratio of transverse to longitudinal effects in-
creases as the magnetoresistance effect increases.
Figures 9 and 10 plot p,(H)/p, (0) vs H for the long-
itudinal and transverse measurements, respec-
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FIG. 8. Activation energy, e3 vs H for data of Fig. 7
with Sample 12 added. Note that e3 saturates at H =60
kOe for the lowest concentration (Sample 1). The effect
gradually decreases as density is increased.
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16-
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P9- 7.2 x 19
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~ Ill - l.5 x 10
17

& 812 —5.0x 10
17

I I

80 100 120

tively. The transverse to longitudinal ratio for
the two lowest densities is quite a bit larger than
expected compared to our high-density data, an
effect which we cannot explain. Only the lowest-
density samples approximate an H' dependence of
the exponent. Two ~' curves, normalized to the
highest field point for the two lowest densities
(dashed lines), have been plotted for reference.
For all densities the magnitude of p, (H)/p, (0) de-
creases monotonically as the density is increased
for both longitudinal and transverse results. This
differs markedly from the results of GS, who re-
port that for densities greater than-9X10" the
effect increases with density. This is clearly not
the case for our data and we note that our ranges
of density and field are considerably larger than
Gs.

Figures 11 and 12 plot p, (H)/p, (0) vs N ' '
Mikoshiba's theory predicts an R' (or 1/N) de-
pendence to the curves, and at the highest fields
this is obeyed for the lowest-density samples in
the longitudinal case as the 1/N curves demon-
strate. In the transverse case, we could not make
measurements to the highest fields for the lowest-
density samples due to the high impedance. We
note that in all cases the magnetoresistance effect
is larger at high densities than extrapolation from
low density would predict, i.e., at high densities
the data lie above both the H' and 1/N curves

H (kOej

FIG. 9. po(H)/pa(0) vs H for the longitudinal case,
H~~I, as a function of density. The Ht dependence ex-
pected from Mikoshiba's theory are shown as dashed
curves for comparison.

which nominally fit the data at low densities and
high fields.

The longitudinal curves (Fig. 11) show a distinct
inflection point at N 'i'=(2-3) x10' cm to lower
values of pc(H)/pc(0) as density increases which
is not present in the transverse case of Fig. 12.
Note, however, that when one looks only at the
magnitude of p, (H)/p, (0) the transverse and longi-
tudinal curves exhibit roughly the same functional
form, e.g. , for H ~ 50 kOe and p, (H)/p, (0) & 1.3,
both transverse and longitudinal effects are super-
linear in N ' '. The difference at lower fields may
indicate either that there is more than one con-
tributing mechanism and the transverse field es-
sentially quenches one of them out or that the range
of densities does not extend high enough to see the
inflection in the transverse case. This difference
in transverse and longitudinal effects is not at-
tributable to percolation effects as discussed by
Shklovskii due to the differing functional depen-
dences on&. Note, however, that the effects on
&, are essentially identical for the transverse and
longitudinal cases throughout this density range.
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FIG. 10. Same as Fig. 9 for the transverse case, H-LI.

Finally, we consider Fig. 6 for Sample 12 with
N = 5.0x10", which is distinctly metallic at 0 =0.
At an applied field of 10 koe, p is essentially tem-
perature independent and further increase of 0
causes the temperature dependence to become
semiconductorlike (an Anderson transition). The
value of the conductivity just before the transition
to the semiconductor state occurs corresponds to
Mott's' minimum metallic conductivity and the
value we obtain from the 10-kOe curve is g
= 3.16x10' (Q cm} '. We emphasize the extreme
sharpness of this transition and its implications
regarding the so-called mobility edge which we
discuss below. These results are an analog of the
experiments of Allen et a/. "who see the same type
of transition in n-type Ge at K = 0.3 by varying the
density of impurities. They find p;„„=1.5x10'
(0 cm) ' and a critical density of N = 4.5x10",
both of which are in reasonable agreement with
our values. Note that at N = 5x10" the Fermi
level appears to be extremely close to the mobility
edge and yet the data in Fig. '7 suggest that &3
goes to zero at a density of only -1.7x10"

5.6x 10')

1
0 3 4 5 6

10 N (cm)
-1/3

e3

FIG. 11. pp(H)/pp(0) vs N ('vg 0,62N ) for the
longitudinal case, g ((I as a function of field 0 (kOe).
The 1/N dependence expected from Mikoshiba's theory is
roughly followed for the smallest densities and highest
fields. The effect is stronger at higher densities, i.e. ,
the data lie above the 1/N curves.

V. DISCUSSION

Any model or combination of models which is
envisioned to explain impurity conduction in the
moderate- to high-density case must possess sev-
eral qualitative features which are well established
experimentally. First of all, at& = 0, for N&N~,
&, decreases with density but much more slowly
than the dropoff in &, seen by, say, Fritzsche'~
or Davis and Compton. " In our samples, /~=2
x10" and &, decreases almost linearly with N' '
until atN-2x10", q, =0, and some form of semi-
conductor-to-metal transition is observed. Simul-
taneously, in the same density range, po breaks to
values higher than the R -percolation value. " In
addition, it has generally been observed that at
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FIG. 12. Same as Fig. 11 for the transverse case. As
in Fig. 11 the effect at the higher densities is larger than
the simple theory predicts.

ultralom temperatures the process is not truly
activiated but exhibits a lnp cx: T " behavior with
x &1.34-37 It must also be noted that for N &Np

parameterizing our data in terms of p, and q, is
actually an approximation, although a fairly good
one, in that the data goes smoothly over to the non-
activated behavior for temperatures somewhat be-
low those used here and in Refs. 12 and 15.~"

Fritzsche and Cuevas sam some signs of a mea-
surable Hall mobility for samples with N &2x10".
They mere limited to the measurement of Hall
mobilities p„&2 cm'/V sec and their data do not
extend over a wide temperature range. Our mag-
netoresistance results do not suggest the emer-
gence of a mechanism with a higher mobility in
that density regime and it seems possible that the
measured Hall mobility (-2 cm'/V sec) may actual-
ly be due to some other mechanism with consider-
ably higher mobility, but which makes only a minor
contribution to the total conductivity, such as a
meak contribution from the &, mechanism or ex-
citation above a mobility edge. Fritzsche" ob-
served similar effects in n Ge when &, was only of

minor importance for N =-2.4x10". In that case,
a clear q, mechanism does not dominate until
lV- V.4x 10M and p = 55 cm~/V sec at 2.5 K. Certain-
ly more extensive measurements with techniques
capable of measuring smaller values of p„mould
seem in order.

The Davis and Mott intrasite polarization model
would seem to predict roughly the proper behavior
of q, with density. However, the dielectric en-
hancement may be too small below N = 5x10" to
have an effect of the magnitude observed. Recent
measurements by Castner eI, at.""on the dielec-
tric enhancement due to impurity levels in both Si
and Ge show that intrasite polarization of impurity
levels leads to a doubling of the effective dielec-
tric response at N-2x10" in Si and a tripling at
-5x10" in Ge for K«1. In our case, where K=0.4,
the dielectric enhancement should not be appreci-
able until N-10" cm '. Clearly there should be
some effect above N = 5x10", but this effect does
not seem to be contributing when N & 10' cm ',
mhere &, has already dropped to half the value
predicted by Eq. (5).

In addition, there should be, if anything, a break
to decreased values of p, in this density regime by
the following argument. Consider a system with a
gap of width E~ separating the Fermi level and a
distribution of states of width ~ centered at E =0.
The transport is determined by a percolation so-
lution in the distribution of states centered at E =0.
This has some variable range hopping aspect to it
since by hopping to sites with larger separations
the carriers can find sites at lower energies
through which to percolate, somewhat similar to
the model of Grant and Davis. " When there is a
dielectric enhancement p such that the effective
dielectric constant becomes pK„p &1, both EG
and n, are reduced by the factor I/p. In this case
the carriers will prefer to hop to nearer-lying
sites because of the smaller energies involved.
Hence p, should break to smaller values in this
regime.

Neither the appearance of a measurable Hall
mobility nor the nonactivated behavior at lomer
temperatures follows from the polarization model,
as applied to conduction in the lower Hubbard
band, nor do these two factors preclude its ap-
plicability.

The model of Shklovskii and Shlimak" (SS},
which they have presented only in a qualitative
form, also predicts a dropoff in &,. The drop is
coupled to the width of the peak (band} of states at
E =0, q, being given by the separation of the Fermi
level and the mobility edge in the band. Thus &,
should vary linearjy with the resonance energy,
which varies exponentially with density, so we
would expect a sharp drop in &3. A critical feature
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of this model is the determination of the density
at which there is Anderson delocalization in the
band of states at E =0. The SS model also predicts
a break to lower values of p, (to the maximum met-
allic value) for N&N» which is the opposite of what
is observed. " The observation of a measurable
Hall mobility is critical to this model and if FC's
measured mobility is actually due to the predomi-
nant conduction mechanism it mould support this
modeL for N «2&10M, but we note that the conduc-
tivity at this density is still over two orders of
magnitude belom the minimum metallic value. The
nonactivated behavior observed at Lower temp-
eratures also does not follow from this model.

The correlated hopping model can result in the
proper &, vs density dependence as shown by
Knotek and Pollak. ' The break to higher values of
po is a natural consequence of the model" as is
the nonactivated behavior at lomer temperatures. "
Mott~' has recently proposed that a T '~' tempera-
ture dependence can follow from this behavior. As
presently conceived, there is no reason to expect
a measurable Hall mobility with this mechanism.

It is conceivable that at high enough den-
sity a transition to transport by correlated
hopping with no activation energy may be effected.
In this case, the many-electron wave functions
would become delocalized as opposed to the one-
electron wave functions in the Anderson case. The
disappearance of &, in this data could be due in
part to correlation effects, but surely the intrasite
polarization as well as Anderson delocalization
must play a role for»5x10' .

%heh a magnetic field is applied the orbitals are
compressed and the mechanisms for the decrease
in &, are quenched. In the case where N-Np 63
can be increased to its one-electron Coulomb gap
value as is observed for Sample 1. For samples
which have been so "quenched" we expect that
Mikoshiba's magnetoresistance theory should ap-
ply. For samples such that N &.N~, Mikoshiba's
theory should apply throughout, save for complica-
tions at higher fields mhere it is not really applic-
able, and indeed Qadzhiev and Shlimak observe
such a behavior for their sample with N =1.2x10".
They observe an &, invariant with field and a pre-
exponential behavior following Eq. (5) with f = 0.07
which is over a factor of 2 smaller than expected
[t =0.1V in Eq. (5)]. The small value of I has been
observed by others and is unexplained. "

In the case of the correlated hopping model, the
point in density where a transition to many-elec-
tron processes should set in is calculable using
the simple model recently discussed in Ref. 23. In
this we must derive the magnetic field dependence
of r, of Eq (4). In a .magnetic field we must solve
the equation

2r, /g +0 0.7(ar,'/X ) -Pe /Kov, = 0 (8)

as a function of &. At&=0 and T=2 K, r,
=447 A(N, =2.7x10" cm ') using a =75 A and K,
= 16. In Fig. 7 the calculated values of the upper
limit on c, and the critical density from Eq (8.)
for the transition are denoted by arroms. The
smoothly varying curves at higher densities have
been extrapolated by the dashed Lines to denote the
upper limit of q, me expect from this mechanism.
%'e regard this as remarkable agreement, some-
what better than me could reasonably expect. If a
somewhat larger value of t were used the calculat-
ed magnitude of the effect would be somewhat larg-
er, but it varies rather weakly with t.

For the polarization model, the transition density
(N~) is determined by a critical value of Na' which
is proportional to the polarizability per unit volume
or the dielectric enhancement. ' Thus we expect
r, (H) to vary linearly with the effective a(H} to the
first approximation. This is a stronger function
of field than the solutions of Eq. (8). The Ander-
son delocalization model should yield a similar de-
pendence of the transition point with field because
it involves a critical value of an exponential quan-
tity with (2R/a 0+. 07aR /X ) in the exponent.

The data show that the effect on q, is largest
near the transition point and gradually gets smaller
at the higher densities. Thus the curves in Fig. 7
are converging slightly at the higher densities.
All of the models mould predict that the density
N~ should increase with 8 because the effective
orbital size in Eq. (4) shrinks with H and thus q,
should follow the /'~ behavior to higher densities.
Likewise, the point in density where q, =0 should
scale by the same factor as N~, mhen the effective
orbital is shrunk, to the first approximation. Thus
the curves in Fig. 7 should uniformly shift to higher
densities and higher energies with the field to a
first approximation. For densities X&2.5&10", this
is roughly what is seen, but the shift becomes pro-
gressively smaller above that density, which may
indicate the presence of more than one of the me-
chanisms above that density. All three models
would predict that e, not be dependent on the orien-
tation of the field since the energy &, is determined
microscopically while the resistivity is a percola-
tion effect and should have some orientation depen-
dence.

The density and magnetic field dependence of po
appears consistent with the following qualitative
model for low to moderate densities. For densities
N&N~, the data should (and do} behave in the man-
ner described by Mikoshiba, with the sole effect
being confined to po and no shift in &, apparent. At
moderate densities and fields, &, lies considerably
below the Coulomb gap value and is increasing with
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field. When q, saturates with field we expect that
the & and R dependence of p, should revert to the
Mikoshiba form once again and that is clearly seen
in Fig. 11 where at low fields the curves are dis-
tinctly not R ' but at higher field (ff & 50 kOe) where
roughly an R' (or 1/N) dependence is assumed for
the three lowest-density samples. This behavior is
not inconsistent with that expected from the cor-
related hopping model. " It is not clear what mag-
nitude effect to expect from the other two models
in this density region. In the longitudinal case,
the H curve of Fig. 9 has t =0.035 which is a factor
of 2 smaller than Gadzhiev and Shlimak find at a
similar density. Chroboczek et a/. ",however, find
a value very similar to ours for p Ge and they also
find rather strong orbital anisotropies. Since our
samples were not crystallographically oriented,
some of the discrepancies between our data and
Gadzhiev and Shlimak could be due to the orbital
anisotropy. In the transverse case, although our
data are limited, the effect seems to be larger for
the two lowest-density samples.

For N»X~, the major features of the data are
that there is a large disparity between longitudinal
and transverse effects both in magnitude and func-
tional dependence on B. This may suggest that
there is more than one contributing mechanism
and that the transverse fields are freezing out
one mechanism much more efficiently than is the
longitudinal field. Hall mobility measurements
would be an extremely useful adjunct to this ex-
periment in this density and field regime. The
data in Figs. 9-12 show that the magnitude of
p, (H)/p, (0) at high density and low fields is larger
than expected but that it is a weaker function of
field and density. This is coincident with po also
being larger in this density regime.

Our data are not in agreement with that of
Gadzhiev and Shlimak for N&10" cm ' where they
see the effect on po begin to increase with density.
Although the effect is comparatively Larger in that
density regime in our data, it always monotonically
decreases with density. Their conclusions con-
cerning a high mobility for these densities would
not seem to apply.

In Sample 12, we have interpreted the change in
sign of the temperature coefficient of the conduc-
tivity with magnetic field in terms of an Anderson
transition. Our value of o „„is equal to 0.1 e~/
hr„, a value -4 times larger than Mott's" predic-
tion. There have been several observations of this
same effect using somewhat different schemes.
There are three separate parameters which can
be varied to induce this transition. The relative
position of the Fermi level E~ in the impurity
band should be a function mainly of compensation.
The random potential is a function of both density

and compensation, and the intersite resonance
energy or bandwidth is a function of the overlap
between sites which is a function of density and ef-
fective orbital size. The relative size of the reso-
nance energy and random potentiaL in turn de-
termines the position of the mobility edge E,. In

the case of transport in the upper Hubbard band,
the bandwidth is al.so a function of compensation
since that band is comprised of doubly occupied
orbitals, and the density of these will be equal to
the number of neutral majority impurities.

The experiments of Fritzsche'~ (n Ge), Fritzsche
and Lark-Horowitz4' (p Ge), and Davis and Comp-
ton" (n Ge) induce an Anderson transition by vary-
ing compensation at a fixed density, moving the
Fermi level down in the band, and also increasing
the random potential, and hence moving the mobil-
ity edge up in the band as compensation increases.
When g~ & g„semiconducting behavior is assumed
with excitation to the mobility edge dominating the
transport. The value of minimum metallic conduc-
tivity observed by us is roughly a factor of 3 great-
er than seen by these three studies.

The experiment of Allen et al."varies density
at fixed compensation, thus varying both the reso-
nance energy and the random potential. Since K
is fixed, the Fermi level can be assumed to be
relatively stationary in the band with the mobility
edge moving slowly down in the band as density
increases. In this case both the resonance energy
and the random potential increase with density
and so the transition is induced because one in-
creases faster than the other. Our minimum met-
allic conductivity is a factor of 1.5 or 2 greater
than theirs.

In our case we vary only the resonance energy
because we vary only the effective orbital param-
eter, not intersite separations. The crucial ques-
tion is whether the data are truly activated, i.e. ,
is the activation energy given by E, -E~? If the
data are not characterized by a single activation
energy, then that would imply that the mobility edge
is somewhat soft. A graded mobility edge will
soften the temperature dependence since as tem-
perature is increased the carriers will transport
in lower mobility states which Lie at Lower ener-
gies. If the edge is truly a discontinuity in mobility
then a well-defined activated behavior should be
observed over quite a range in temperature, going
over to a T ' '-like behavior at very low tempera-
tures where transport at the Fermi level is domi-
nant. This requires going to ultralow tempera-
tures. The advantages of using a magnetic field to
move the mobility edge is that it allows arbitrarily
small increments in R, —Rz and if the range in 1/T
can be increased (and typically the range in 1/T
can be increased by a factor of at least 100 by use
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of a 'He dilution refrigerator) the shape of the

mobility edge can be very accurately deduced.
Such a series of experiments is presently being
considered for Sample 12.

There is something slightly paradoxical in the
data in that it appears that q, goes to zero at
pf-1.7x10" and yet our results at +-5x10"sug-
gest that /~=g, . We would expect that given the
rather sharp decrease of g, below ¹1.5x10",
g~ —g, would continue to increase rather strongly
as density was further increased. One possibility
is that for N&1.5x10" the transport is quite dif-
ferent than for 1V = 5x10"when a magnetic field is
applied. In the latter case it appears that trans-
port is by excitation to a mobility edge, but in the
former case it may still be hopping conduction at
the Fermi level or across the Coulomb gap as we
discussed above. A study of samples where 1.5
x10 & +& 5x10" is needed to resolve this question.

VI. CONCLUSIONS

In the low-density regime (N& N~), the basic
concepts of Miller and Abrahams for the dc con-
ductivity, given some refinements, give a good
overall understanding of the data at H =0. Miko-
shiba's theory for the magnetoresistance, also
suitably refined, adequately explains the mag-
netoresistance effects for N & /~. The orbital pa-
rameters derived from the magnitude of the effect
are anomalously small and there is a rather wide
variation among the various studies. Crystallo-
graphic anisotropies shown by Chroboczek et al.
could be responsible for some of this discrepancy.

Our discussion of the possible mechanism for
the drop in &, at higher densities has been neces-
sarily qualitative in nature. The correlated hop-
ping model possesses all of the qualitative features
seen in both density and temperature dependence
as well as magnetoresistance, especially the effect

of field on &,. The rough calculation of critical
density for onset of many-electron transitions gives
better agreement with the data than we could rea-
sonably expect but definitely shows that the data
are not inconsistent with that model. This would
seem to be the dominant effect below N-(2-5) X10".
Above 2x10", effects due to intrasite impurity
polarization enhancement of the dielectric constant
as well as Anderson delocalization in the impurity
band may begin to contribute.

While q, appears to go to zero at N-1.7x10", the
ease with which the temperature coefficient is re-
versed with field at,V = 5x10" suggests that the
system is extremely close to the classical Ander-
son transition (i.e. , F. =h, ) at that density. This
suggests that q, going to zero at N = 1.7x10" could
be due to other effects, possibly many-electron
delocalization or a dielectric catastrophe or a
combination of both effects.

The value of minimum metallic conductivity
derived from our magnetically induced Anderson
transition is somewhat larger (o;„„=0.1 e2/Nr„)
than that derived from experiments which vary
compensation and density. These experiments
carried out to ultralow temperatures promise a
sensitive and accurate method for determining the
structure of the mobility edge.
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