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Hopping conduction in quasi-one-dimensional disordered compounds*t

V. K. S. Shante
Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

(Received 2 September 1976)

Using a percolation construction we evaluate the temperature dependence of the phonon-assisted dc hopping

conductivity of a model appropriate to a class of anisotropic quasi-one-dimensional conductors in which the

electronic states in the vicinity of the Fermi level are localized because of intrinsic and/or extrinsic static

disorder. We find temperature dependences of the general form in[fr (T)/cro] = —[To(m)/T]" where m is

weakly temperature dependent and has the value 4 for asymptotically low temperatures, T ~ 0 K. With increasing

temperature the interchain hopping distances become smaller and m decreases gradually. In a model in which

the two transverse directions are equivalent, m decreases to 2.91 when all allowed interchain hops are to the

nearest chain only. The percolation channel is three-dimensional. For a model in which the two transverse

directions are inequivalent, the percolation channel becomes two-dimensional at high temperatures when all

interchain hops along the more difficult direction become more difficult than the critical percolation hop. In

this case m decreases to 2.70. With further increase in temperature the percolation construction breaks down

in both cases. The observed conductivity of NMP-TCNQ (N-methylphenazinium tetracyanoquinodimethane) is

found to be in good agreement with our results.

I. INTRODUCTION

Recently there has been considerable contro-
versy' ' regarding the temperature dependence of
the dc hopping conductivity in two classes of com-
pounds' ' which consist of weakly coupled linear
parallel chains of strongly coupled atoms or mo-
lecules. The electrical conductivity is highly an-
isotropic, and therefore, these compounds have
been treated as almost one-dimensional conduc-
tors. This paper is concerned only with those of
these compounds in which the electronic states in
the vicinity of the Fermi level are localized be-
cause of intrinsic and/or extrinsic static disorder.
The most prominent examples are salts of the or-
ganic ion-radical tetracyanoquinodimethane' '"
(TCNQ) and the square planar complexes of
transition metals like platinum and iridium. "'"
Three different interpretations have been sug-
gested: Epstein et aE."have discussed the TCNQ
salts in terms of the one-dimensional Hubbard
model and the assumption of a metal to insulator
transition. Kuse and Zeller" and Rice and Bern-
asconi" introduced the interrupted strand model
in which the crystal is considered to consist of
linear metallic strands interrupted by insulating
lattice defects. A criticism of these models al-
ready exists in the literature" and we shall not
repeat the arguments here. Bloch, Weisman, and
karma proposed a model in which the highly con-
ducting quasi-one-dimensional (QOD) compounds
are disordered. Actually these compounds have a
mell-defined lattice structure; however, because
of the random presence of charges or dipoles, the
conduction electrons experience a potential which
varies randomly along the chains. ' Because of

these potential fluctuations, all electronic states
are localized" "and consequently the electronic
conductivity must be due to phonon-activated hop-
ping from one localized state to another.

Following Mott's argument"' that at low tem-
peratures an electron, instead of hopping to a near
neighbor, can hop to a distant but energetically
more favorable state, Bloch, Weisman, and Varma
proposed (from dimensional considerations only) a
temperature dependence of the form

1n[o(T)/&xJ = (T,/T) '~'-,

where T, is a constant. Recently, however, Kur-
kijarvi' showed that for a single infinite chain the
hopping conductivity should have the temperature
dependence

info(T)/cr J = -(TgT)
rather than that of (1.1). Kukijarvi's calculation is
not realistic because the QOD compounds consist
of a macroscopically large number of parallel
chains, each of finite length Z, rather than of a
single infinite chain. More recently Brenig,
Dohler, and Heyszenau' have shown that the con-
ductivity of an infinitely long chain is of the form
(1.2), but that of a collection of parallel noninter-
acting cha. ins of finite length is of the form (1.1).
The resultant conductivity, however, depends on
the length of the chains and therefore violates
Qhm's law. Also, the construction of Brenig,
DGhler, and Heyszenau is analogous to that of
Miller and Abrahams, "whereas it is possible" "
to obtain a lower net resistance by seeking com-
plete paths of lowest impedance. A model which
corrected these shortcomings of the BDH model
was proposed by Shante, Varma, and Bloch. ' The
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Shante-Varma-Bloch approach is similar to that of
Ambegaokar, Halperin, and Langer" (AHL) but

involves probabilistic considerations of finding a
fraction of chains in which an electron can perco-
late down the entire length of the chain without
ever having to go through a very large impedance.
However, the percolation aspects of their calcula-
tion are insufficiently rigorous.

In all of these calculations the QOD conductors
have been treated as if they were strictly one-di-
mensional even though there is a finite, though
much smaller, conductivity in directions trans-
verse to the highly conducting axis. In this paper
we discuss a model which includes the interchain
couplings (which are much weaker than the intra-
chain couplings) and accounts for the anisotropic
lattice constant (the interchain separation being
much larger than the intrachain intermolecular
separation). We find that within the standard per-
colation models" " the hopping conductivity has a
temperature dependence of the form

In[a(T)/op = [T,(m)/T—]' (1.3)

where m is weakly temperature dependent and, for
three- (two-) dimensional anisotropic conductors,
has the value 4 (3) for asymptotically low tempera-
tures 7 0 K. With increasing temperature, the
maximum transverse hopping distances become
comparable to the interchain separation and m de-
creases to a value which depends on the details of
the model.

We have considered the following two models:
(a) The two transverse directions, denoted by X
and Y, are equivalent in the sense that the maxi-
mum hopping distances, X and Y along the two
directions, measured in units of the respective
lattice constants, X, and Y, are equal: 6 =X /X,
= Y„/Y,. In this case the factor m in (1.3) de-
creases to m = 2.91 when ~ & 1. Because of the
interchain hops the percolation channel is three
dimensional. (b) In the second model we consider
d,,&z„,where&, X /X, andh„=Y /Y, . Inthis
case there exists a region where b„~1 and b,„&l.
Thus there are no allowed hops along the Y direc-
tion, the percolation channel becomes two dimen-
sional and m decreases to 2.70. In both models,
any further increase of temperature causes all
interchain hops to get excluded from the critical
percolation subnetwork, all chains become essen-
tially decoupled, and the percolation model breaks
down. The conductivity would then have an acti-
vated behavior, i.e. , m = 1. Whether or not there
exists a transition region in which rn decreases
gradually, rather than abruptly, from 2.7 to 1,
has not been investigated because a simple perco-
lation construction cannot be defined in this re-
gion.

To simplify the presentation of the anisotropic
case we first review, in Sec. II, the isotropic case
and the correspondence between percolation"
and hopping conduction. "" In the same section
we summarize the arguments given by Kirk-
patrick" to show that hops more difficult than the
critical percolation hop do not alter the dominant
exponential temperature dependence as determined
by the critical hop. In Sec. III we consider first an
anisotropic two-dimensional model which is simp-
ler to investigate and yet brings out the essential
features of the anisotropic models. The analysis
is then generalized to anisotropic three-dimension-
al cases. An appropriate extension of Kirkpatrick's
arguments to the anisotropic case is discussed in
Sec. III D. In Sec. III E we estimate the effects of
multiphonon processes and find that these effects
are probably very small for QOD conductors. We
close this section with an analysis of the conduc-
tivity of N-methylphenazinium (NMP)-TCNQ. A
summary of our results .is given in Sec. IV.

The isomorphism between hopping conduction and
a percolation problem proceeds in two steps: (i)
The hopping rate F&& between two localized states
i and j can be viewed as a conductance G„connect-
ing the nodes i and j of an electrical network, and
(ii) the resistance network exhibits a percolation
threshold behavior in the sense that if one con-
structs a subnetwork by retaining only a fraction
x (x & 1) of the conductances in the original network,
the conductivity, as a function of x, has the form

o(x) =O, x &x,

o(x) ac (x -x, )t, x &x,

Here x, is the critical concentration and g is a
critical exponent. Equation (2.1) has been experi-
mentally demonstrated by, e.g. , Last and Thou-
less" and has been established from extensive nu-
merical solutions of random resistance networks
by Kirkpatrick" who found P = ~ for three-dimen-
sional networks with nearest-neighbor connections.
The connection between the hopping rate F,&

and
the conductance G,~ was established by Miller and
Abrahams" and subsequently in a simpler and
general form by AHL"

G„=(e'/kT) I'„ (2.2)

In general, I',
& =(n, (1 —n&)y, &), where n are the

occupation numbers and y&& is the intrinsic transi-
tion rate. For single-phonon processes

y~~ =y. exp[-2ag;& -P~E) E(~e(E) -Eq)],-(2.3)

II. HOPPING CONDUCTION AS PERCOLATION: ISOTROPIC
CASE

A. Percolation construction
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where the prefactor y, contains the details of the

hopping interaction and depends but weakly on the

energies E, and the hopping distance R;& ~ Here,

p =1/kT and n is the coefficient of exponential de-
cay of the localized states whose wave functions
are g(r) =g, exp(-nr). 8 is the Heaviside step
function, being zero for negative arguments and

unity for positive arguments. G,&
can now be ex-

pressed as

Gq) =G exp(-f;))

where

fq) =2etR;, +PF(E(,E))

F{E„E,) =IE, le(E;)+lE, le(-E )

+lE, E, le(-E, -E,),

(2.4)

(2. 5)

(2 8)

f, = in(GJG, ), (2.'l)

and express the condtion G;& & G, in a dimension-
less form as follows:r„.-F{e,, e, ) . (2.8)

Here

and G, =e'y, /kT
Miller and Abrahams" evaluated the effective

resistance of the network by choosing the optimum
impedance at each successive hop. Their result is
thus a lower bound to the actual conductivity. In
the percolation models developed by AHL" and by
Pollak, "one takes an over-all view and seeks
complete paths of lowest net resistance, obtaining
thereby a much better lower bound. This is
achieved by picking a cutoff 6 deleting all conduc-
tances less than G and then varying G so that the
fraction x of conductances left in the network is
equal to the critical value x, . The critical cutoff
G, is then the largest conductance such that the re-
duced network, composed only of conductances
G,~

~ G„contains a connected path large enough to
span the entire system. According to the percola-
tion model, the over-all conductivity of the original
network is g=G, /L, where L is some length scale.
Furthermore, the dominant exponential tempera-
ture dependence of g is determined by G, . Numer-
ical studies"'"'" have shown these arguments to
be substantially correct. [We have here considered
only the single-phonon contributions to the intrinsic
rate y;&. Inclusion of multiphonon processes, as
stressed by Emin, "would modify (2.3). We shall
discuss this in Sec. III E where we shall also see
that the percolation analysis of this and of Sec. III
can be carried out even after an appropriate gen-
eralization of (2.3) to include the multiphonon con-
t r i but ions. ]

Let us define

and

t;y =Ru/R

R. =(1/2o) f, ,

e, =E,/E

(2 8)

{2.10)

(2.11)

= kTf, (2.12)

B(f,) =B, (2.13)

For a given site of energy e;, -1 ~ e& ~ 1, the in-
equality (2.8) and the physical constraint r, ~ &0,
determine the allowed range of variables e& and

This allowed range is depicted in Fig. 1. In
terms of the density of states without spin p(E) the
number of allowed final states, or equivalently,
the number of allowed bonds attached to the site i
1s

Any initial or final state with energy greater than
E will not satisfy the inequality (2.8), no matter
what the other parameters are. These states
therefore will not occur in the critical network.
Furthermore, R is such that hops with R;, &R
will not satisfy the condition G;& ~ G, .

For an evaluation of G, we have to make corre-
spondence with a percolation problem. The stand-
ard percolation theory" treats problems in which
either the bonds or the sites are removed with a
constant probability. Hopping conduction is a cor-
related bond-site percolation problem because not
only all sites with E &E must be removed but also
all bonds with f,& &f, must be removed. AHL solved
the correlated problem approximately by associat-
ing with each site i a sphere of radius R; =R ( —,

—le, l)8(-,' —le, l) and assuming that sites f and j are
bonded when the ir assoc iated spheres inter sec t.

Instead of the overlapping-sphere construction
we make the following correspondence with a bond
percolation problem. "*" Construct a reduced, but
not yet critical, network by ignoring all sites with

energy E &E . In this reduced network there a,re
no further restrictions on the sites, but all bonds
with f&, &f, must b. e dropped. One can now evaluate
the average number B(f,) of bonds retained at each
site, and require it to be equal to the correspond-
ing critical number B, obtained from the bond per-
colation theory. This procedure seems more con-
venient to generalize to the anisotropic case of
concern to us than that of AHL. In any event, by
numerical solutions of Kirchoff's equations, Kirk-
patrick" has shown that close to the percolation
threshold, the conductivity in correlated networks
is indistinguishable from that for the uncorrelated
bond and site percolation problems.

We next evaluate B(f,), the average number of
bonds at a site with f & &f, . The critical value f,
is then determined by requiring that
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Em

dEi p(E~) V (R(J)e (Ru }e(R R-q~), (2.14)
-~e

where V(R&&) is the accessible space, being
2R,&, mR,'& and —,'mR&& in one, two, and three dimen-
sions, respectively. The average number of al-

lowed bonds at a site is now given by

B(f.) =Ca'. (f.)E„(f.) u, , (2.15)

where d is the dimensionality, C~ is 2, m, or —
3m

for 4=1, 2, or 3, respectively, and

+1 +1 +1
de, p(e;) de~ p(e&)r, ,e(r, &)e(1 r„)-de, p(e, ) .

1 1 1

(2.16)

For d =3 and an energy-independent density of
states p,

large and the values (2.22) when the hopping range
becomes comparable to the lattice constant.

B(f,) =(wp, k/40a')Tf, ' (2.17)
B. Corrections to the AHL conductivity

Combining it with (2.13) we obtain the critical con-
ductance G, :

G, =G, exp[-(TJT)'~']

where

T, =40B,n'/sp, k .
Similarly, for d =2,

G, = G, exp[-(T,/T) '~']

where now

T 0
= 16B~a'/w p,k,

(2.18)

(2.19)

(2.20)

(2.21)

p, being the two-dimensional energy-independent
density of states.

In a bond percolation problem where only near-
est neighbor bonds are allowed with a constant
probability, B, is an approximate dimensional in-
variant"

B, =d/(d —1) (2.22)

for Q-dimensional lattices. Because of this dimen-
sional invariance, Ziman" had argued that B,
would remain unchanged even for systems which
do not have a well defined lattice structure, like
the amorphous materials where (2.18) has been ex-
perimentally observed. " Pike and Seager" showed
that B, does not remain an exact dimensional in-
variant when longer hops are included but that it
does approach the limiting values

The AHL construction gives a lower bound to the
conductivity of a network whose individual conduc-
tivities vary over a large range of magnitudes.
The lower bound is a consequence of the fact that
the critical subnetwork corresponds to replacing
all G,&

& G, by 0 and, through the introduction of L,
all G,&

~ G, by G, in the original network. Further-
more, the cutoff G, is exact only in the asymptotic
limit T 0. For all finite temperatures, hops with
conductance less than G, also contribute to the
over-all conductivity and therefore the optimal
cutoff should be somewhat larger than G, . As
stated previously, AHL and Pollak assume
the conductivity to be

cr = G, /f. (2.24)

e;

1
-(1-e;)

e;

where L is some characteristic length which may
be temperature dependent. In this subsection we
discuss how the AHL lower bound can be strength-
ened and show that L and hops with G &Gc do not
alter the dominant exponential temperature de-
pendence as determined by the percolation con-
struction. To do so, we shall follow the arguments
introduced by Kirkpatrick" for nearest-neighbor
hopping: We let the cutoff f be somewhat larger

2 .80 for d =3
Bc=

4.50 for gj =2
(2.23)

e.
,

(1-e )
(1-le; I )

IJ

e;-leJ I)

(1-Ie;I-e;)

for all d-dimensional lattices when the bonding
distances become large compared to the underlying
lattice constant and the density of allowed sites be-
comes small. They further showed that B, is not
temperature dependent in any case, including the
cases intermediate between (2.22) and (2.23). We
shall hereafter take (2.23) as the appropriate val-
ues for B, whenever hopping distances are very

(e;-1)
e,

{1-let I )

FIG. 1. Allowed range of values of e& and r&; for
evaluation of integrals in (2.16) and (3.10).
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B(f) =(wp, k/40ct')Tf' .

This equation determines f(B}. Consider

(2.25)

than the percolation cutoff f, and then determine f
by optimizing the conductivity expressed as a func-
tion of f.

For an arbitrary cutoff f, the average number
of bonds B(f) at a site can be written, in analogy
with (2.17),

length in the problem is the maximum hopping dis-
tance, (2n} 'f(B). The characteristic length L(B)
therefore must scale with f(B). It is not clear how

L (B) should be evaluated but its scaling with f(B)
can be demonstrated as follows: If we regard all
bonds B at a site as identical resistances in paral-
lel,

avj

B =B, +e

where B, =B(f,) and from (2.20)

(2.26)

j avj
(2.3 5)

f. = {T./T)' ' (2.27)

Near the percolation theshold, i.e. , e small, the
conductivity has a threshold behavior as in (2.1).
Hence,

where r&, =2nR;&/f(B) is a dimensionless number.
Accounting for the correction (2.34) and the above
form of L(B), the expression (2.28) for the con-
ductivity becomes

o =re'G, e 'i"/L(-B), (2.28) g ~( ~ -f(B)B (2.36)

e P(f) ~f (2.29)

where G(f) =G,e ~ and P(f) is the distribution
function of f;, 's, as given by (2.6). Since R, &, E, ,
and E& are random variables,

P(f)= d'd f dd, dd, d(f dd dd ld„d,()-—'

xP(R)P(E, )P(E&), (2.30. )

where P(E) and P(R) are distribution functions for
E and R, respectively. For a random distribution
of energies over the range -E, ~ E ~E„

P{E)=2EO . (2.31}

If we approximate P(R) by

P(R) =2Eop,

we obtain

P{f) =(» P, /3E.c(')(kT) f' .

Substituting (2.33) in (2.29) gives

G='sG(f {B))f{B),

(2.32)

(2.33}

{2.34)

which implies that the conductivity o, Eq. (2.28),
should be multiplied by -', f (B). Finally, the only

where K is some proportionality constant. For
nearest-neighbor hops, the value of f is" 1.5; we
have no information on ( for longer-range hops.

To account approximately for having replaced all
G(& ~ G(f) by 0 and all G&& &G(f), Kirkpatrick"
gives the following argument: Near the percola-
tion threshold the network of bonds is very sparse
and almost "chainlike. " If we consider a chain of
conductances G,&

~ G(f), the average conductance
G per link is given by

where all inconsequential factors have been ab-
sorbed into v, . Optimizing g with respect to e we
obtain, to order f y

(2.37)

if B,f'(B,)» 1. The exponent f(B) in (2.36) can be
expanded in a Taylor series and, to order e',

(x = o, (4$ B,}t (T/T, )' '

x exp[ f{B,) -f'(B.) ]e-
= o,(e'/kT)(T/T, )t~d exp[-(TQT)'~d] . (2.38)

Here we have restored the factor e'/kT which was
absorbed into G, in going from (2.2) to {2.4) and
have absorbed other preexponential factors
into v, .

C. Remarks

The above analysis shows that the percolation
criterion for determining the critical hop t", is
exact only in the asymptotic limit for 7.

' —0 when
e -0. For all finite temperatures & &0, and the
critical network does not give the optimal conduc-
tivity because hops more difficult than G, make
significant contributions. However, as long as e
is small and therefore the above perturbative an-
alysis is valid, the more difficult hops contribute
only to the prefactor and the dominant exponential
temperature dependence is still given by the criti-
cal hop. The temperature below which e is small
can be estimated from (2.37): For g = 1.5,"and a
typical 70 = 10' K,"

e/B, = —'T", (2.39)

which is about 0.25 for T =300 K and 0.16 for T
=50 K. Thus for temperatures as high as 300 K,
the temperature dependence (2.38) can be expected
to hold. Indeed, the percolation models have been
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successful in interpreting the data up to 5QQ K."
A justification for the applicability of percolation
models to such high temperatures has also been
given by Pollak. 4P

Finally from a detailed numerical study of vari-
able-range hopping conduction in three dimensions
Seager and Pike" concluded that a good fit to the
T ' ' law, Eq. (2.38), is obtained if the prefactor
has a temperature dependence of approximately
T ' '. The calculated prefactor has a temperature
dependence T '+~ =T 'I' for g =2.' This implies
that the value of g for the sparse longer-range
hops of the type which occur in variable-range hop-
ping in three dimensions cannot be very different
from 1.5. A prefactor of T ' ' has also been ob-
tained by Ambegaokar et al, ."from scaling argu-
ments.

III. QUASI-ONE-DIMENSIONAL CONDUCTORS

A. Introduction

The quasi-one-dimensional conductors consist
of long parallel columns or chains of large
planar molecules like TCNQ, or molecular com-
plexes like Pt(CN)„stacked face to face with a
typical separation of 3-4 A. ' Transverse to the
chain axis the lattice constant is typically 10-15
A. ' In particular, for NMP-TCNQ the three lattice
constants g, b, and c are 3.87, 7.78, and 15.'l4 A,
respectively. " Because of the directional nature
of the v molecular orbitals (their lobes point and
overlap along the chain axis) and the anisotropic
lattice structure, the intrachain transfer integral
t}( is a factor of 30-50 larger than the interchain
transfer integral t~."'" Consequently the hopping
rates for intrachain and interchain hops and the
conductivities along different directions are highly
anisotropic. Thus, the expression (2.5) for f&;
must now be generalized. The form of f„and,
consequently, the temperature dependence of hop-
ping conduction, depends on the nature of the local-
ized eigenfunctions in an anisotropic disordered
system.

8. Two-dimensional case

To bring out the essential features attributable
to anisotropic hopping rates we shall first investi-
gate the simpler two-dimensional cage where the
lattice constants are R, and Sp++Rp This model is
appropriate for QOD conductors when couplings
along one of the three anisotropic directions are
too weak to partake in the construction of a critical
percolation subnetwork. The R axis would then be
identified as the highly conducting chain axis.

An investigation of' localization in a two-dimen-
sional anisotropic disordered system, with trans-

fer integrals t~ and t~ &t„,shows that the critical
disorder 5, for localization of all eigenstates is
given by

5, - (tst~)' ' (3.1)

as contradistinguished from the isotropic case
(t„=tz=t) where 5, -t Th. us, ts &5, &t~ and we
expect a strong localization along the transverse
(S) direction and a weaker localization in the lon-
gitudinal (R) direction. If we now ask for the over-
lap between two anisotropically localized wave func-
tions centered at sites i and j, a distance Q,,&

apart, and make an analogy with the decay of a
bound state with an anisotropic mass, we expect
the following form for f,&.

fi, = ((~sRi, )'+(~sS;y)'1 "+(IF(E;,Eg) (3 2)

Here &~ and o~ characterize the decay of the wave
functions in the R and S directions, respectively,
and PF(E&,E, ) is as in (2.6). R,&

and S;& are the
projections of (R;„along the two directions R and
S, respectively. In general, the prefactor y, of
the hopping rate (2.3) would also be anisotropic.
However, y, depends on the details of the wave
functions about which we have no information. For
the present, therefore, we shall assume that the
anisotropy of y, can be approximated by an appro-
priate adjustment of zR and a~.

One can now order all conductances G,&
= G,

&:exp ( f„)ina dec-rea. sing order, construct a
critical subnetwork consisting of all conduetances
G;&~ G, and determine G, as in Sec. II. As long as
this network includes intrachain (R,&

&O, S,&
=0) as

well as interchain (R;, &0, S„&0)hops, it is a two-
dimensional network and therefore amenable to a
percolation analysis. However, an evaluation of
G, requires a value for B„the average number of
bonds at a site. For an isotropic d-dimensional
percolation problem (d &1),B, =d/(d —1) when only
nearest-neighbor bonds are considered, Eq. (2.22).
With increasing bonding radius, B, increases" and
saturates at the values given in (2.23). There are
no estimates of B, for a percolation problem in
which (i) because of the anisotropic hopping rates
the number of, or equivalently the probability P~
for an interchain hop to be allowed is different
from p~, the probability for an intrachain bond to
be allowed; and (ii) because of the anisotropic lat-
tice structure, the bonding distance compared to
the underlying lattice constant is small for inter-
chain hops and large for intrachain hops.

For purposes of establishing the temperature de-
pendence, the exact value of B, is not really nec-
essary. All the same, an estimate of B, can be
obtained as follows: (i) With only nearest-neighbor
bonds, the critical probability for percolation on a
square lattice (coordination number equal to 4) is"
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p, =0.5 and therefore B, =2. Sykes and Essam44

have shown that when bonds are allowed with dif-
ferent probabilities p„andp~ along directions R
and S, respectively, the critical percolation con-
dition is

pI +ps =1 . (3.3)

r, & ~([I —F(e„e&)]' —s,'& ) ' ' (3.4)

Thus there is no unique critical probability P, .
However, it is straightforward to show that there
exists a unique B, and that it has the same value,
2, as for the isotropic case. Even though this in-
variant result is for a specific lattice we may ex-
pect it to be generally true to within a few percent.
(ii) The effect of different bonding radii in differ-
ent directions is not very clear. If all interchain
hops were near neighbor and intrachain hops were
long ranged a crude estimate for B, could be the
mean (1.50&&2.80}' ' =2.05 in two dimensions and
(1.50X 1.50X 2.80) '~' = 1.85 in three dimensions.
However, interchain hops have a longitudinal com-
ponent as well, Furthermore, with increasing
bonding radius, B, increases very rapidly from its
value (2.22) for nearest-neighbor bonding only to
its saturation value (2.23). Therefore, as an ap-
proximation, we shall continue to use the values
(2.23} for B,

To evaluate C, we express the condition G,&
& C,

in a dimensionless form:

chain hop. v = 1 is a hop to either of the two near-
est-neighbor chains. For a given b„let v(a) be
the largest integer such that v(b, } & a. Then v(a)
represents the farthest accessible chain in the
critical network and the set of numbers f v)

=0, 1, 2, 3, . . . , v(a) represent all accessible chains
for a given b, . Of course, for ve0 there are two

equivalent chains. We shall represent this by as-
signing weights 8'„such that Wo =1 and W„=2for
v&0.

In a given chain v, i.e. , for a given transverse
hopping distance s,&, an electron can hop along the
chain axis for a maximum distance R;, as given by
(3.4). Thus if p, is the energy-independent density
of states in each chain, the number of accessible
final states or equivalently the number of allowed
bonds is

Em
dE& (2R &)P,e(R,&)e(R -R,. ) . (3.8)

-E

Averaging over E& and summing over all accessible
chains v gives the total average number of allowed
bonds. This then must equal critical percolation
value B,. Thus

B.=E.(G.)R.(G.)p, g (~(G,)),
where

(3.9}

v(g) + & +1
g(6) Q p W de ' tfeg (2r( )e (r„)e(1 r„)-

v=o -1 1

Here

s~g =So/S~, r(f =Rgy/R

S = (I/2 )of„sR = (1/2ns)f,

f, = ln(G, /G, )

(3 5)

Pi -SOP2 ~ (3.11)

(3.10)

For the assumed uniform spacing of chains p, is
related to the two-dimensional density of states
p, by

and

~=S /S,

v =S,.&/S, .

(3.6)

(3.7)

~ is the maximum transverse hopping distance
measured in units of the interchain separation S„
and is a continuous parameter which increases
monotonically with dec reasing temperatures. v is
the actual transverse hopping distance in units of
S„andis a discrete parameter. We have sup-
pressed the subscripts on the left-hand side of
(3.7) and measured v relative to the chain contain-
ing the initial site i. Thus v =0 implies an intra-

and the e, are defined as in (2.11). At very. low
temperatures when both R and S are much larger
than the respective lattice constants R, and S, we
expect the anisotropy effects to be unimportant.
These effects are most significant when, at some-
what higher temperatures, R»Ro but S a S,. To
investigate this region we define

Substituting for r&& from (3.4) with s,&
= v/c. , we ob-

tain

g(~) =P W„ 1+, 1—
v.=o b

-3 —cosh '— (3.12)

g(~) =-'s~, (3.13)

which on substitution in (3.9) gives the two-dimen-
sional temperature dependence'6" [(2.20)], with

Equation (3.12) can be numerically evaluated for
arbitrary values of A~ 1. As shown in Fig. 2,
g(h) is a smooth and monotonically increasing
function of ~.

In principle, (3.9) and (3.12) determine the criti-
cal hop G, . However, a and therefore g(a) is it-
self a function of 6, . For asymptotically large ~,
i.e. , S»S„g(6)has a simple functional depen-
dence on a:



2604 V. K. S. SHANTE 16

atures .In the first interval, 1 & d, &2, g(d) has the
form

g(a)

g(~) =~'",
which implies

ln(GQG, ) = (T,/T)'~'",
where

T, = (2a„a,/ep, ) (2a,s,)'"

(3.18)

(3.19)

(3.20)

This temperature dependence would hold as long as
a = (I/2asSo) f, stays in the range 1 & a & 2. The
extent of this temperature region is T» - T - T,„,
where

l

0 I T,„=6.5T,i =T,/(2asSo)" (3.21)

FIG. 2. Function g(A), Eq. (3.12), for the two-
dimensional case. For A»1, g(b, ) has the asymptotic
form (dashed line) 4mb, . Deviations from the asymptotic
form, for small b, lead to temperature dependences of
the general form (3.16) with parameters as in Table I.

T =16B,a„a~/vkP, . (3.14)

In the isotropic limit o~ =o.~ this is exactly equal
to the previous result (2.21).

We are interested in the region where ~ is
small. For d, & 4, g(a) deviates from its asymp-
totic form, Fig. 2, and has no simple dependence
on ~. We therefore adopt the following approxi-
mate procedure: Consider the various ranges v&

& b, & v&, „where v, is the jth member of the or-
dered set (v)=1, 2, 3, . . . , v(a}. (We do not con-
sider the range 0 ~ ~ & 1 because in that case S
&S„i.e., there are no interchain hops, and we
cannot construct a two-dimensional percolation
channel. ) In each of these ranges we approximate
g(&) by

g(&) =o 84(&)'", (3.22)

which implies that m =2.94 and

T, =T,(2 ~aS) '"/0. 84 (3.23)

is known in terms of T, and 2z~S, . The extent of
this temperature region is T» &T &T,„,where

For temperatures T & T,„,6 & 1 and, as remarked
earlier, the two-dimensional. percolation construc-
tion breaks down because there are no interchain
hops. The conductivity would then follow the acti-
vated form (1.2). For T &T,„,the conductivity is
of the form (3.19). Thus T,„canbe identified from
the data. T, can then be obtained from a fit to
(3.19). The present two-dimensional model is not
directly applicable to any real physical system,
but for the sake of argument let us consider, T,

4 x 10 K and 2~$SO 15 Then T I 269 K and
T„=41K.

As the temperature decreases below T», ~ be-
comes larger than 2 and the temperature depen-
dence changes as in (3.16). In the region 2 & n, &3,

g(a) =A,a"i =g(d, ) . (3.15} pg T» T» ~ (3.24)

In(G+G, ) =(T,/T)' i,
where

T, = (a„/IP,)(2a, S,)"~2B./A, ,

(3.16)

(3.1"I)

and m& =2+n& has the maximum value 3 for asymp-
totically large ~, i.e., asymptotically low temper-

The two parameters A& and n& are determined by
requiring thatg(v) =g(v) for v=v& and v=v&+, . For
instance, g(1) =1 implies A, =1 and g(2) =1.622 im-
plies n, =0.698. With these boundary conditions,
g(a) is a continuous piecewise-smooth function and
is a very good approximation to g(a). Substituting
(3.15) in (3.9) gives a temperature dependence of
the form

Successive lower temperature regions can be ana-
lyzed as above. The range of some of these re-
gions and the corresponding temperature depen-
dences are summarized in Table I.

In deriving (3.9) we had made a continuum ap-
proximation for the distribution of states within a
chain, i.e., for a hopping distance 8;&, the num-
ber of available states was approximated by
2A'„p,. For interchain hops, we had a proper dis-
crete sum, Eq. (3.12). Table I shows that for g
=S /Sot 3, the results are indistinguishable from
that for a»1. Similarly, we may expect that (3.9)
would be valid for R /R, &3. This condition is
easily satisfied, even when ~ =1, because of the
anisotropic hopping rates and the lattice constants.
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TABLE I. Anisotropic two-dimensional case, Sec.
III B. For different ranges of the maximum transverse
hopping distance, &, A, and m are the coefficients de-
fined in (3.15) and (3.16), respectively, T„and T, define
the temperature region where 4 is in the specified
range and can be evaluated from equations like (3.21).

Range
of 4

/
//

r

1—2
2—3

4
4 5
5—6

29—30

1.000
0.844
0.810
0.798
0.793

0.785

2.698
2.943
2.981
2.991
2.995

3.000

6.489
3.298
2.357
1.949
1.726

1.111

FIG. 3. Function g(b), Eq. (3.12), for the three-
dimensional case. For b, »1, g(4) has the asymptotic
form (dashed line) ~ &b . Deviations from the asymptotic

5
form lead to the temperature dependences of the general
form (3.16) with parameters as in Table II.

C. Three-dimensional case

An appropriate generalization of (3.2) for an an-
isotropic three-dimensional conductor would be

f„=2[(aaR(,)'+(a,X„)'
+(a,Y(()']'('+PF(E(, E, ) . (3.25)

X = (1/'2 a, )f„Y= (1/2 a, )f,

f, =ln(G JG, )

and

(3.26)

a„=R/R„s„=X/X„
d,„=Y /Yo, v„=X,(/Xo, v, = Y((/Yo .

(3.27)

Consider a system in which the conductivities are
such that

Here X&& and Y,&
are projections of the actual hop-

ping distance 4,&
along the two transverse direc-

tions X and Y, respectively. As before, we repre-
sent the highly conducting chain axis by R. The de-
cay rates of the anisotropically localized wave
function along different directions are represented
by corresponding subscripts to z. Let Rp Xp and

Y, be the three lattice constants and define

The intersections of the chain centers with a plane
normal to the chain axis define the (X, Y') lattice.
Consider a hop from a localized state centered at
a site i of a chain a to another localized state cen-
tered at a site j of any chain b. Then v„,v, are the
coordinates in the (X, Y) lattice of the point of in-
tersection of chain b with respect to the point of
inte rsec tion of chain a. Thus both v„and v, can
have the values 0, 1, 2, . . . , etc. We shall assume
that the set of numbers (v) defined by (3.30} have
been arranged in an increasing order. Thus, fo.
g=1,

(v]=0, 1,v 2, 2, 5, . . . , (3.31)

and for g =2,

(v] =0, 1, 2, &5, ~8, . . . , etc. (3.32)

In terms of these parameters, the condition g,.
= G, exp(-f () ~ G, for constructing a critical per-
colation subnetwork can be expressed as

r„&([1 —F(e„e,)]' —(v/z) ') '(', (3.33)

where r, e, a.nd F(e;, e, ) are as defined in (2.8).
The number of allowed bonds is again given by
(3.9) and g(b, ) has the same form as (3.12) except
that now b, and v are as defined by (3.29) and (3.30),
respectively. Also, the weight factors W„are to be
reevaluated for every set(v]. Furthermore, the
linear density of states, p„in (3.9} is related to
the volume density of states p, by

g&&&g &g (3.28) XpY (3.34)

v =vg +'g vy (3.30)

i.e., of the two transverse directions, it is easier
to hop along the X direction. Thus,

(3.29}

where g ~ 1 for g„~g, ." Further, let us define

For asymptotically large a, g(A) canbe expressed
as (see Fig. 3)

(3.3 5)

where 6' =A„A„(}.Substituting (3.34) and (3.35) in
(3.9) gives the three-dimensional temperature de-
pendence (2.18) with
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T, =40B,aaa, a,/vP, k . (3.36)

In(GJG, ) =(T,/T)' ' '

with

(3.39)

(3.40)

where QgSo=a, Xo=a„Y,for the case g =1. As in
Sec. IIIB, the temperature region T» ~ T ~T,„,
where (3.39) is appropriate can be determined to
be

T,„=2'74T„=T.,/(2n~S, )'" (3.41)

Successive lower-temperature regions can be in-
vestigated as in Sec. III 8. The parameters char-
acteristic of different temperature regions are
summarized in Table II.

Next we consider the case where the two trans-
verse directions are inequivalent. In particular,
consider g =2, i.e.,

(3.42)

In the isotropic limit, z„=o.=~„,this is identical
to the previous result (2.19).

With increasing temperatures, 6 becomes small
and g(b, ) deviates from its asymptotic form (3.35).
When n lies in the range v&

& a & v&+„where (v}
is the previously defined ordered set, g(n) has the

general form

(3.37)

where z is an appropriate combination of ~, and
Consider first the isotropic case b„=h„=-h,

i.e., ii=1 in (3.29). In the range 0&n, &1, there
are no interchain hops, and the percolation con-
struction breaks down. Thus the first interval that
we shall consider is 1 & ~ & 2 for which

(3.38)

and therefore

As usual, we do not consider the region 0 & g & 1

because then there are no interchain hops. The
next lower-temperature region, 1 &~ & 2, is inter-
esting because whereas ~„&1,~„is less than one.
Thus there are no allowed hops in the 7 direction
and the percolation channel is rigorously two di-
mensional. Indeed, g(a) has the form (3.18) and

the temperature dependence is the same as in

(3.19)-(3.21) with 2n, X, replacing 2aaS, .
The next lower-temperature region corresponds

to 2 & n, &W2. In this case both a„and n.„are
larger than one and the percolation channel is
three dimensional though most of the hops are con-
fined to the R-X planes. Table III summarizes the
relevant parameters for different temperature re-
gions in this case.

D. Corrections to percolation conduction

The above analysis shows that for asymptotically
low temperatures, T-O K, the temperature de-
pendence of hopping conduction in an anisotropic
system is indistinguishable from that of an iso-
tropic conductor. With increasing temperatures,
the transverse hopping distances become small
and they begin to sample the discreteness and the
anisotropy of the lattice. Correspondingly, the
temperature dependence deviates from its iso-
tropic form.

As observed in Sec. II, for all finite tempera-
tures hops more difficult than the critical hop also
contribute to the conductivity. However, the argu-
ments of Sec. II 8 can be easily generalized to
show that these hops contribute only to the preex-
ponential and that the dominant exponential tem-
perature dependence is always determined by the
critical hop which, as we have shown above, is
sensitive to the details of the anisotropy. Simi-
larly, the lower bound to the conductivity as de-

TABLE II. Three-dimensional case, Sec. III C, when
the two transverse directions are equivalent (see Table I
caption).

TABLE III. Three-dimensional case when the two
transverse directions, X and Y, are inequivalent and
the corresponding maximum hopping distances are re-
lated by n, =26 (eee Table I caption).

v2 —2

W5—W8

W8-3

1.000

0.717

0.743

0.661

0.651

2.905

3.867

3.814

3.960

3.973

2.737

3.820

1.530

2.536

1.264

Range
of &

1—2

2-v 5

v 5-vS

1.000

0.842

0.517

0.373

0.326

2 ~ 698

2.947

3.553

3.866

3.988

T„/Tg

6.489

1.389

2.305

1.256

2.082

0.628 4.000 1.515 0.314 4.000 1.346
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f(B) = (T./T)'~ (3.43)

where m =n +2 and T„is of the form (3.17) with B,
replaced by B. Near the percolation threshold,
i.e. , B -8, =e small, the conductivity can be ex-
pressed as in (2.26):

termined by the percolation construction can be
strengthened by the "chain correction" introduced
in Sec. IIB.

Inclusion of hops more difficult than the critical
hop increases the cutoff f= In(G, /G) and the average
number of bonds at a site 8 to values somewhat
larger than the corresponding critical values f,
= ln(G, /G, ) and B„respectively. Thus, instead of
the general form (3.16) we have

@=Kit G,e '"'[C/L(B)] (3.44)

Here C represents the chain correction introduced
by Kirkpatrick" and discussed briefly in Sec. IIB.
K isaproportionality constant a.nd L(B) is some
characteristic length. In writing (3.44} we have
assumed that just as in the isotropic case, the con-
ductivity has a threshold behavior of the kind (2.1).
We have no information on the exponent g for the
anisotropic case. For the isotropic case with
nearest neighbor hops only, ( =1.5 in three dimen-
sions. "

The chain correction can be evaluated as in
(2.29) with an appropriate generalization for P(f).
For instance, when the two transverse directions
are equivalent, i.e., n„X,=n, F,=-e,S„

P(f) = dd d'2 dE, JSE,P(E)P(S)P(E,)P(Et)2(f —2 E —2„,S —SP(E, E))), , (3.45)

where P(R), P(S), and P(E) a.re distribution func-
tions for A, S, and E, respectively. If, as in Sec.
II, we take P(E) = &E„P(R)=p,SO(2E,), and P(S)
=p~, (2E,),

e'/kT. Equation (3.49) shows that, as for the iso-
tropic case, the hops more difficult than the criti-
cal hop do not affect the major exponential temper-
ature dependence determined by the critical hop.

P(f) = ss(PE/E,—c(suE }(kTPf (3.46)
E. Multiphonon processes

ii +
j +R 0 +S avi

(3.47)

where r„dasn,„aredimensionless numbers R,&/
R and S,„/S, respectively. Thus I (B) again
scales with f(B) because both R and S scale with
f(B). Obviously a similar result would hold when
the two transverse directions are inequivalent.
Substituting L(B) and the chain correction in (3.44)
leads to

a=os e B1 7 (3.48)

where we have absorbed all inconsequential factors
into p, . The conductivity can now be optimized
with respect to z to obtain

o= o,(e'/N')(T/T„)t exp[-(T„/T)' ], (3.49)

where, as in (2.38), we have restored the factor

after the substitution (2E,}(SQ,)ps =1. For the iso-
tropic case, as =~E, this is identical to (2.33).
As in (2.34) the chain correction is proportional to

).
For the isotropic case, the characteristic length

was shown to scale with the maximum hopping dis-
tance, R =(2afd) 'f(B), Eq. (2.35). In the present
anisotropic case there are two length scales: 8
and S„=(2oE) 'f(B). An appropriate generalization
of (2.35) for L(B) is

I I
L(B) = QRgf ++S;E

avi

For the transition rate characterizing a phonon-
assisted hop we have considered a form, Eq. (2.3),
which is essentially the same as applied by Miller
and Abrahams" (MA) to hops between shallow im-
purity states and by AHL" to the percolation model
for amorphous materials. This corresponds to
hops in which only one acoustic phonon is emitted
or absorbed and is obtained by a perturbative cal-
culation to lowest order in electron-phonon coupl-
ing constant. This imposes an asymptotically low-
temperature condition: kT & ~E; Ef ~

&k(2)D, the-
Debye energy. AHL argued that (2.3) may also be
valid, under suitable conditions, for energy differ-
ences ~E, E&~ large c-ompared to k(dD. [A more
detailed discussion of the hopping processes in
various regimes where (2.3} is valid is given by
Holstein". ] An exact calculation of the transition
rate by Emin" shows that whereas (2.3) is appro-
priate for the case discussed by MA, it consti-
tutes an inadequate representation, at high as well
as low temperatures, of the elemental two-site
jump rate in general and for amorphous german-
ium and silicon in particular because the rnulti-
phonon processes, not included in (2.3), provide
a strong temperature-dependent contribution. We
argue below that for QOD conductors (2.3) is ade-
quate at low temperatures and that its generaliza-
tion to include temperature-dependent multiphonon
contributions at high temperatures does not sig-
nificantly alter the basic temperature dependences
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derived from (2.3).
Emin analyzed the jump rate in three different

temperature regions, which we denote by TR 1 etc.
In the low- and high-temperature regions, TR 1
and TR 3, respectively, the jump rate is simply
activated and can therefore be represented as in

(2.3). The jump rate is nonactivated in TR 2 but,
as we shall see, contributes insignificantly to the
total temperature dependence. The low-tempera-
ture (TR 1) jump rate [Eq. (4), Ref. 35] is

where 2s, =3y(u /uD)', B(b) =3y(b/%us)', and n

is the number of phonons involved. Here coD is the
Debye frequency, & the maximum-energy phonon
with which a carrier can interact, L a typical
intersite energy difference, and y =z'/Mu'bun,
where z is the deformation potential constant, g
the sound velocity, and M the atomic mass. (For
amorphous Ge and Si, y = 10'.") Further, let a
and x represent the lattice constant and radii of the
impurity states (Localized wave functions), respec-
tively. The MA approximation (also used by
AHL"), in which one neglects all but n =1 terms
and replaces exp(-2s, ) by unity, requires 2s, «1
and B(a) & 1. According to Emin these conditions
are nearly met in the MA case, since ~ /vs=a/r
& 10 ' and ~ = 10 '-10 ' eV, but are grossly vio-
lated in noncrystalline solids were a = r, and b,
= 10'-10 ' eV." For QOD conductors, however,
the wave functions are not as strongly localized as
in Ge and Si. Typically, r - 10a." (Because of the
anisotropic localization" and consequent aniso-
tropic shape of the wave function, one should really
define some average r. However, this would not
qualitatively change the order of magnitude esti-
mates of this section. ) In amorphous Ge and Si
states are localized near charged traps whose
density is very small: typically, p ~ 10"
eV 'cm '." In disordered one-dimensional con-
ductors all states are localized" " and therefore
their density is large: p = 10 ' eV ' cm" . Also
the bandwidths and disorder are very small. Thus
A = 500 K. Furthermore, y is much smaller be-
cause the atomic mass M has to be replaced by
molecular mass, of TCNQ for instance. v and ~~
have the same order of magnitude. Thus y = 10
rather than =100. These values of a/r, 6, and y
are consistent with Emin's criterion for validity of
(2.3).

As the temperature is raised beyond the region
of validity of (3.50) various kinds of multiphonon
processes contribute to the jump rate which is
"progressively less dependent on 6 and increases
with temperature in a nonactivated manner" in
TR 2 and is simply activated in TR 3, with an act-

ivation energy"

E~ = 0.25yff(d D((d~/(do} (3.51)

Thus the jump rate should, instead of (2.3) be
given by

y, , =y, F(T) exp[-2oR, & -p~E& -E, ~e(E& -E,)]

(3.52)

F. Comparison with experiments

Coleman equal. "have reported conductivity mea-
surements on high-purity NMP-TCNQ in which the

and a corresponding expression for the anisotropic
case. Here F(T) is the multiphonon contribution
to the temperature dependence of the elemental
jump rate (for E; =E;) and maybe nonactivated as
in TR 2 or simply activated with activation energy
(3.51). In either case, F(T) does not depend on i
or j and can therefore be absorbed into the factor
G, of (2.4). The percolation analysis can now be
carried out as before to obtain a temperature de-
pendent conductivity of the form

o(T) = o,F(T)T~ exp[-(T„/T)' ] (3.53)

instead of (3.49}. We now argue that for the QOD
conductors F(T} is very weakly temperature de-
pendent and can be ignored. The strongest 7 de-
pendence of F(T) is in the high-temperature region
TR 3 where it has an activated behavior. The
activation energy [from (3.51)] with typical values
cu /&gD= 10 ', ~s= 10"K, and y& 100, is E„~2'K
which is insignificant in the temperature region
50&1' &200'K of interest to us. (~ /vD= 10 ' is
probably an underestimate for a since u /+n
=a/r is not expected to be a good approximation
in this case. However, y~ 100 is an overestimate. )
Similarly, in the lower-temperature region where
F(T) is nonactivated, its temperature dependence
is too weak to mask the much stronger exponential
factor in (3.53). In any event (3.53) shows that the
total temperature dependence of the hopping con-
ductivity is determined by a percolation effect as
well as by the nonactivated temperature depen-
dence of the pairwise-hopping rate due to multi-
phonon transitions. The two contributions are
neither competing nor complimentary but are si-
multaneously present. Here we have discussed in
detail the percolation aspects of hopping conduction
and given a crude and by no means conclusive dis-
cussion of contributions from multiphonon pro-
cesses. We conclude that the temperature depen-
dence of the elemental jump rate due to multi-
phonon processes, which maybe playing a signifi-
cant role in amorphous Ge and Si as observed by
Emin" is, subject to a more careful estimate,
irrelevant for QOD conductors.
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curve. ture in the plot of log„[o(T)/o(295 K)] vs T
is somewhat smaller than that in the earlier data
of Schegolev et al." From this Coleman et aL.
concluded that the intrinsic temperature depen-
dence was of the activated form (1.2) rather than
the form (1.1) proposed by BWV. ' The analysis of
this section shows that the hopping conductivity in
a quasi-one-dimensional conductor has a temper-
ature dependence of the form (3.49) where m is
weakly temperature dependent, being 4 for asymp-
totically low temperatures, T - 0 K, and 1 at high-
er temperatures when the percolation construction
breaks down. The intermediate values of m de-
pend on the details of the model and, in particular,
on the relative anisotropy of the two weakly con-
ducting transverse directions. Because of the very
small crystal dimensionsM (typically 5&&0.5&0.05
mm') the magnitudes and therefore the anisotropy
of the two transverse conductivities has not yet
been measured. We have therefore analyzed the
data of Ref. 48 within a model where the two trans-
verse directions are equivalent, Table II. In any
event, the values of m for this case are not sig-
nificantly different from those of a typical model
with inequivalent transverse directions, Table III.
Thus, we consider m = 1.0 (activated), 2.91, and
3.87 in successively lower-temperature regions,
which have yet to be identified.

Recently, Gogolin et aL."'"have investigated the
joint influence of structural disorder and phonons
on the transport properties of quasi-one-dimen-
sional conductors. At sufficiently high tempera-
tures when the effective electron-phonon inter-
action energy becomes much larger than the rms
random potential, the electronic states, localized
by the static random potential, become delocalized
by the phonons and consequently the conductivity
increases more rapidly with increasing tempera
tures than expected from the activated fit at lower
temperatures. We choose the point of inflection
in g vs T as an overestimate of the temperature
above which the activated form ceases to hold.
For NMP-TCNQ the point of inflection is 140 K.
The lowest temperature at which the conductivity
has been measured is 18 K." From a least-
squares analysis of the conductivity data in the
temperature range 18-140 K, we find that (3.49)
gives the best fit (minimum rms error) with the
following parameters:

for 38~T ~18 K.
The transition temperatures, 100 and 38 K, were

identified as follows: The data was least-squares
fitted to the activated form in the range 140 K ~ T
~ T, and T, varied over the entire range 18-140 K.
For T, & 100 K, the rms error increases sharply.
Similarly, m =2.91 was fitted in the range 100 K
& T ~ Tb and Tb varied over the range 18-100 K.
For Th& 38 K, the rms error increases signifi-
cantly. A final refinement was made by consider-
ing the entire range 18-140 K and varying T, and

Tb to minimize the total rms error.
Coleman et al."fitted their data to an activated

form (m =1) in the temperature range 18-70 K.
We find that this fit gives an rms error of 0.36.
In the same temperature range 18-70 K, a least-
squares fit with parameters as in (3.54) gives an
rms error of only 0.068. Over the entire temper-
ature range 18-140 K, an activated fit (Fig. 4)
gives an rms error of 0.49 whereas the best fit
(Fig. 5) as in (3.54) gives an rms error of only
0.057. Clearly, the activated form gives a poorer
fit to the data. Coleman et aL."had used three
parameters: E„,, upper temperature cutoff
(70 K), and a temperature-dependent gap above
70 K. We have used five parameters: E.„,.i, two
transition temperatures, 100 and 38 K, and T1 and

T,. Howeve r, there are two theoretical constraints
on these parameters; and, as shown below, they

I

i

I I

o -8—

0.05

(Kj

m=1.0 and E„&=509 K

for 140 ~ T ~ 100 K,

m =2.91 and T, =1.33X10' K

for 100 ~ T ~ 38 K, and

m =3.87 and T, =6.06X10' K

(3.54)

FIG. 4. Best fit (by the least-squares analysis) to the
NMP-TCNQ dc conductivity data of Ref. 48, assuming
that the conductivity is activated in the temperature
region 140-18 K. The activation energy is 450 K and
the rms error is 0.49. Figure 5 contains the best fit
according to the temperature dependences proposed in
this paper. The resulting rms error there is 0.057.
(There were 53 data points. Not all are shown in Figs.
4 and 5.)
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are adequately satisfied: (i} From (3.54) we iden-
tify the transition temperatures, 100 and 38 K, to
be the parameters T,„andT», respectively, of
Eq. (3.41). Their ratio, T,„/T„=2.63, is in good
agreement, with the theoretical value [Eq. (3.41)
or Table II] of 2.74. (ii) From (3.41) we determine
2cy~Sp =25.7. Substituting for 2ngSp and T, into an
equation analogous to (3.23), i.e.,

T, = T,(2~~So)/0. 72 (3.55)

gives T, =4.75&10' K which, considering the ap-
proximations made in the analysis, especially the
assumed equivalence of the two transverse direc-
tions, is in fair agreement with the value obtained
from a. least-squares fit to the data, Eq. (3.54).

IV. SUMMARY AND DISCUSSION

We have investigated the temperature dependence
of the phonon-assisted dc hopping conductivity in
a model in which hopping rates along the chain
axis 8 and the two transverse directions, X and
Y, are highly anisotropic. This simulates the
anisotropic conductivities, a~ »c, »cry observed
in disordered quasi-one-dimensional conductors
like NMP- TCNQ. ' Working within the usual per-
colation models" "we find that the conductivity
has the temperature dependence: In[ogo(T)]
= (7' /7')'/, where m and o, are weakly tempera-
ture dependent. For T-0 K, m =4 for an aniso-

FIG. 5. Best fit (by the least-squares analysis) to the
NMP-TCNQ dc conductivity data of Ref. 48 according to
the temperature dependences proposed in this paper.
The data points are indistinguishable from the best-fit
lines and the rms error is only 0.057. The three regions
are distinguished by different values of m in Eq. (3.49)
and have different scales along the horizontal axis. The
best-fit parameters are given in Eq. (3.54). The temper-
atures 100 and 38 K, which separate the three regions,
were determined so as to minimize the rms error.
(The raw data for this analysis were kindly provided by
Dr. Coleman. )

tropic three-dimensional conductor. With inc reas-
ing temperatures, the ranges ~„,~„,of the trans-
verse (interchain} hops, measured in units of the
corresponding lattice constants, X„Y,(which are
also anisotropic) decrease and accordingly m de-
creases to 2.70 or 2.91 depending on the details of
the model. For D„&~, & 1 and 4„&1, the percola-
tion channel becomes two dimensional and confined
to the Fi,'-X planes. At still higher temperatures
when both ~„and~~ become less than one, the
percolation construction would not allow interchain
hops. The percolation path would be one dimen-
sional, which is impossible, and therefore the per-
colation construction would break down. The con-
ductivity would then be activated. At still higher
temperatures, when the electron-phonon inter-
action energy becomes larger than the rms random
potential, the electronic states, localized by the
static random potential, become delocalized by the
phonons" "and consequently the conductivity in-
creases more rapidly with increasing temperatures
than expected from the activated fit at lower tem-
peratures.

The temperature dependence of the observed
conductivity of NMP-TCNQ" is in good agreement
with these results. In the temperature region
100-140 K the conductivity is activated with an
activation energy of 509 K. In the regions 100-38
K and 38-18 K (the lowest measured temperature)
the conductivity has the form in[a, /o (T)]
=(T /T)'/, with m =2.91 and 3.87, respectively,
and T =1.33X10 and 6.06X10' K, respectively.
This fit. is shown in Fig. 5 and has an rms error
of 0.057. The best activated fit over the entire
region 18-140 K is shown in Fig. 4 and has an
rms error of 0.49.

The change in the temperature dependence from
T ' ' to T ' '" or T ' '" is a purely geometrical
effect reflecting the anisotropy of the lattice and/
or the hopping rates. A somewhat similar change
of temperature dependence due to the geometric
constraints on the system was theoretically pre-
dicted"'" and subsequently established" for thin
amorphous films: At very low temperatures,
when the maximum hopping distance A is much
larger than the film thickness t the hopping con-
ductivity has a temperature-dependence charac-
teristic of a two-dimensional system, m =3 in
(1.3). With increasing temperature, as ft be-
comes ~t, the temperature dependence changes to
that of a three-dimensional system, m =4. Thus,
in thin films m increases with increasing temper-
atures whereas in QOD compounds m decreases
with increasing temperatures. This is because in
thin films one compares the maximum transverse
hopping range with the maximum transverse
length, the film thickness, whereas in QOD con-
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ductors one compares it with the minimum trans-
verse length, the interchain separation.

The various values of m (Tables I-III) suggested
to characterize the temperature dependence ac-
cording to Eq. (3.49) were obtained by an approxi-
mate decoupling procedure, and may be regarded
as values averaged over individual temperature
regions determined by various ranges of inter-
chain hopping distances. In principle, the criiical
hop G, and its correct temperature dependence is
to be determin .d from (3.9) and (3.12). m would

then vary continuously with temperature rather
than discontinuously as in Tables I-III. (3.9),
however, cannot be directly solved since h and
therefore g(a) is itself a function of G, . We have
therefore considered various specific ranges of ~,
approximated g(a) as in (3.3I) and thereby de-
termined m. A different decoupling procedure in-
volving different ranges of ~ would give somewhat
different values for m. Ilowever, as long as the
percola. tion construction (two or three dimensional)
is valid, the lowest value of m would be 2, cor-
responding to the interchain hopping range 1 & ~
~ 1+0+. The extent of the temperature region in
which m=2 would hold would, however, be ex-
tremely small. In fact, m =2 holds only at one
particular temperature when ~ = 1. At higher tem-
peratures, when 6 & 1, the percolation construction
breaks down and the temperature dependence can-
not be determined by this analysis. At lower tem-
peratures when g&1, m becomes larger than 2.

A temperature dependence of the form (1.3) with

m =2 has also been observed in three-dimensional
energy-band tails. " Redfield attributed this to
possible formation of QOD filamentary paths of
least impedance. Formation of filaments requires
some anisotropy in the magnitudes of resistances
along end transverse to the filaments, and there-
fore considerations similar to those of Sec. III
would lead to an exponent m somewhere between
2 and 3 depending on the details of the filamentary
structure. Alternatively, Shklovskii" and Pollak"
have shown that under suitable conditions a tem-
perature dependence of the form (1.3) with m =2
can be observed even without the formation of
filamentary paths. Thus, whether or not filaments
are formed during conduction in energy band tails
may be determined from the exact form of the
temperature dependence —m =2 over an extended
temperature region would imply the absence of
filaments. However, it is very difficult to dis-
tinguish between various values of m in the range
2-3.
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