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Critical exponents for percolation conductivity in resistor networks*
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The conductivity of two-dimensional and of three-dimensional cubic binary random resistor networks is shown

to obey a power-law dependence on the conductivity ratio at the percolation threshold. The relation recently

derived by Straley between the exponent of this power law and the other two critical exponents of the

conductivity above and below the percolation threshold is accurately obeyed. Extension of the scaling laws for
a complex dielectric function of a binary network is provided.

The macroscopic conductivity of a random binary
medium of local conductivity values oo and g, in

the case where gy «go ls characterized by the fol-
lowing power law" above the percolation thresh-
old.

ductivity ratio o, /oo

g cf- goX

where r is related to q and p by

r=p/(q+p) .

(3)

(4)
v ~ o~(C —C*)',

where C is the volume fraction of the high-con-
ductivity component and C* is the percolation
threshold. This behavior was first established by
Kirkpatrick' for simple-cubic resistor networks
undergoing bond percolation and site percolation
transitions and, more recently, by the present
authors' for correlated resistor networks in which
a continuous percolation occurs. The conductivity
of a binary medium for which gy «go rises steeply
as C approaches C* from below. We have found'
that below the percolation threshold the conductivity
of uncorrelated and of correlated cubic resistor
networks follows the power law

In this paper, we shall present an alternative
derivation of the power laws (1)-(3) and of the
scaling relation' (4) and test these relations by
confronting them with the results of numerical
simulations of the conductivity in two-dimensional
and in three-dimensional cubic resistor networks.

We shall first present an alternative derivation
of Eqs. (1)-(4) based on a scaling assumption which
differs somewhat from the scaling assumption used
by Straley. ' We introduce the following scaling as-
sumption concerning the dependence of g on e, go,
and g,

(5a)

cryo, (C* —C) ' . (2)

The power laws, Eqs. (1) and (2) in the limit
g, «g„also hold for the effective-medium theory
(EMT)'' throughout the entire range of C, and for
Bethe- lattice networks' ' in the percolation transi-
tion region. The exponents p and q for various
systems, together with the corresponding values
of C*, are summarized in Table I. Relying on the
analogy between critical phenomena and percola-
tion processes' Straley' has recently proposed that
the conductivity of a binary random medium near
the percolation threshold can be expressed as a
generalized homogeneous function of ~ =C —C*, g„
and cro. ' The power laws, Eqs. (1) and (2), can be
deduced from this assumption in the limit g, /uo-0 although no information on the values of q and

p can be obtained. ' Straley' also deduces a power
law dependence of g on g, and g, at C = C*, which
can be recast as a power law in terms of the con-

(5b)

o(e, 0) =(Toe p(1,0), e &0

o(e, 0) =g, (-e) 'g(1, 0), a&0

(6a)

(6b)

where

and

(7a)

where v, ILi, , q, and 8 are scaling exponents. Note
that if both g, and g, are scaled by the same num-
erical factor, the conductivity o, given by Eq. (5),
is multiplied by the same numerical factor, since
the right-hand side of this equation is invariant
under this scaling transformation.

In the limit x-0, by choosing X =
( e ('~' for e &0

and X =
( e (

'~" for e &0, we get
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TABLE I. Critical exponents of percolation conductivity.

p
0+I

Three-dimensional
Bond percolation

0.25 0.9+ 0.1 1.6 + 0.1 0.64 + 0.04 0.67 + 0.08

Three-dimens ional
Continuous percolation "

0.145 + 0.005 0.9 + 0.1 1.4 + 0.1 0.61 + 0.05 0.65 + 0.05

Two-dimens ional
Bond percolation

0.48 + 0.02 1.0 + 0.1 1.1 + 0.1 0.52 + 0.05 0.51 + 0.01

Three-dimensional
EMT

Two-dimensional
EMT

Bethe lattice of
coordination number z"

0.33

0.5

0.5

0.5

0.66

0.5

0.5

&0.6

~References 1, 2, and this work.
Reference 2 and this work.

'This work and Ref. 8.
References 4 and 5.

q= 1/r) .
At percolation threshold C =C*, we obtain

o(0', x) = o,x "di(0, 1),
o(0, x) =cr,x' aIIi(0, 1),

(Vb)

(Ba)

(Bb)

Similarly, from the continuity condition of the
derivative

where r =1/tu.
From the condition of continuity of the conductiv-

ity at e =0, o(0', x) =o(0, x), the following identity
results

studied in detail the conductivity of noncorrelated
two-dimensional square networks at the percolation
region. From the log-log plots of &r/oo vs (C* —C)
and of o/o, vs (C —C*) below C* (Fig. 2) we find
that the power laws, Eqs. (1) and (2), hold for this
two-dimensional system with q = 1.0 ~ 0.1,
p =1.1 +0.1, and C* =0.48 + 0.02. Our value for p
is in agreement with simulations of Kirkpatrick'
and with a renormalization-group analysis by
Stinchcombe and Watson. ' Simple symmetry argu-
ments' show that for two-dimensional bond perco-
lation C* =0.5. The discrepancy between our num-
erical result for C* and this latter value is due to
the small size of our two-dimensional networks
(30x30). Our results for q and p given in Table I
are in agreement with a theoretical prediction of

we deduce the identity

(1-»~ 1+(1+~) /e (10)

The power law Eq. (3) results from Eq. (8}, while
the relation r =p/(q+p}, Eq. (4), follows from Eqs.
(7), (9}, and (10). Numerical simulation methods
have been utilized" to study the x dependence of
the conductivity at C =C* for simple three-dimen-
sional cubic networks (C*=0.25)' and for corre-
lated cubic networks which simulate a continuous
percolation transition' (C* = 0.145 +0.005). The
plots of logo/o, vs logx presented in Fig. 1 reveal
that the power law Eq. (3) holds for values of
x ~0.1. The values of q, p, and r summarized in
Table I are in agreement with Straley's scaling
relation, Eq. (4).

As numerical data for the two-dimensional
percolation conductivity are scarce, ' we have also
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FIG. 1. Log-log plots of the conductivity of three-
dimensional cubic resistor networks at the percolation
threshold C =C* vs the conductivity ratio x: g) bond
percolation, C*=0.25; g) continuous percolation, C*
= 0.145.



16 CRITICAL EXPONENTS FOR PERCOLATION CONDUCTIVITY. . . 2595

IQ IQ 10 IQ IQ

-I,
b- IQ;
b

i i l

Bond Percolation in Square Networks

loq ~~vs, log(C-O, X-0

log+ vs. )oq(C'-C}, X =a

a loq+ vs. loijX, C=C
-IQ

2

I

1

IQ
I

IO—

3
b I02

IO—
—numerical simulation
--EMT

IQ I-

I I I I

IQ 5 IQ IQ 5 lo I

C-C or C-C

FIG. 2. Conductivity of two-dimensional square re-
sistor networks near the bond percolation threshold,
C*=0.48, network size: 30x 30. (6) log-log plot of
o/(To vs (C —C*) for C &C* and x=0; (C) log-log plot of
o/o& vs (C*-C) for C&C* andx=0; g) log-log plot of
o/oo vs x at C=C*.

Straley, " that q =p for bond percolation on a square
lattice. Straley's argument is based on the identity
of the bond percolation problem on a square lattice
to the bond percolation problem on the dual square
lattice. The result C* =0.5 also follows from the
same duality argument. These relationships were
first demonstrated for a continuous two-dimension-
al system, ~'" so that q =p should also hold in the
case of continuous percolation in two dimensions.
The log-log plot of o/ere vs x at C =C* is presented
in Fig. 2. The values of the exponents summarized
in Table I confirm the validity of Eqs. (3) and (4)
in the two-dimensional case.

It can easily be verified that the explicit ENT
result" ' for o(e, x) for both two-dimensional
and three-dimensional system is a generalized
homogeneous function of e and of x being of the
form given by Eq. (5} throughout the entire range
0 &C ~1. The EMT results in q=p=1 for x&0.1.
Accordingly, the power laws Eqs. (1) and (2) hold
in this case for 0 & C ~1 in the limit of small x.
Note that in contrast to the three-dimensional case,
in two-dimensional systems the EMT predicts the
correct value of C*. Also the EMT value of p=1
is close to the numerical value p =1.1+0.1. Thus
for a two-dimensional inhomogeneous medium the
EMT is quite accurate for all values of C and of x.

The scaling arguments tested herein do not pro-
vide information on the magnitude of the critical
exponents q, p, and r. It is interesting to note that
the exponent q has values that are close to unity
for all the systems considered here and, in par-
ticular, being independent of the dimensionality of
the system. The relation

c(C) = u, C*/(C* —C)

I
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FIG. 3. Results of numerical simulation for the fre-
quency-dependent conductivity of a metal-nonmetal in-
homogeneous medium at metallic volume fraction C
=C*, the percolation threshold. eo(u) is given by a
Drude type dielectric function eo(cu) =1+&sJt[Q~+iy)]
with y= ~6 and w& = 1, while e (cu) = 40+ 20i. The values
of a.(~) are normalized by o. =o.(=0, C=l). ( )
numerical simulation on bond correlated networks at
C = C = 0.145; (----) EMT, C = 3.

e(tc) ~ e'(ui)(c —C'}', C &C*

e(tc) ~ e'(u )(C* —C) ', C & C*

while at C =C*

e (~) ~ e'(tc)x((c)" .

(12a)

(12b)

(12c)

In particular, consider a binary medium made
up of a dielectric with c' =1 and a metal character-
ized by a Drude-type dielectric function ec(a). For
frequencies much smaller than the reciprocal
Drude relaxation time, e'(tc}~ qi/&c so that at C = C*

o(~) =to e, ((c}~ui",
t(&I)cue (d

". (13a)

(13b)

Figure 3 presents a. plot of o(&c) vs tc for a Drude
metal-dielectric system obtained from numerical
simulations of the complex dielectric function" of
a binary medium at C =C*. The numerical results

can be given the following simple interpretation.
If we assume that below the percolation threshold
the medium is represented by a one-dimensional
channel with a fraction C/C* of high-conductivity
regions and (C* —C)/C* of low-conductivity re-
gions, then the conductivity of the channel is given
by Eq. (11). The result q-= 1 is thus an indication
of the quasi-one-dimensional nature of the con-
ductivity below the percolation threshold.

The foregoing scaling arguments are valid for the
more general case of the complex dielectric func-
tion of an inhomogeneous medium undergoing a
percolation transition. " Consider a random binary
system with local dielectric functions ec(&c) = ec(tc)
+ ie, (&c) and e'(&c) = eI(tc) + ie,'(&c) In the. limit x(tc)
= c'((c)/e'(tc) - 0
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are in agreement with Eq. (12c) resulting in the

value r =0.75*0.05, which is consistent with, but

may be slightly higher than, the value r =0.65
+0.05 obtained (Table I) for the conductivity
o(~ =o).

After this work was completed, a manuscript
was received from Dr. J. P. Straley covering sub-
stantially the same ground with substantially simi-
lar results. We are grateful to Dr. Straley for
informing us of his work.
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Materials Research Laboratory of the National Science
Foundation at The University of Chicago.
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