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The generalized pseudopotential theory of d-band metals is rederived using the self-consistent-field

equations of Kohn and Sham as the starting point. The basic features of the original theory are recovered,
but a number of important and unifying refinements are achieved. Central to the development is the careful
approximation of the total exchange and correlation potential in the form of a constant plus a sum of
overlapping, but structure-independent, intra-atomic potentials. This result, combined with our previously
introduced zero-order-pseudoatum technique of defining core and d states, permits and accurate first-

principles evaluation of all matrix elements entering the theory, including direct d-state overlap integrals. In
addition, the structure dependence of the hybridization potential, which has been previously ignored or only
spherically averaged, is now treated explicitly. As a result, new second-order terms in the total energy are
uncovered, leading to a modified energy —wave-number characteristic and d-state overlap potential. Also
derived is a moderately simple, but very accurate (to within 3%), formula for the binding energy of the
metal. Partial application to copper and full application to nineteen other simple and d-band metals are
discussed.

I. INTRODUCTION n r = n„n«+ n„„r- r;

There are two principal ingredients in the pres-
ent work. The first is the Kohn-Sham density-
functional formalism' as applied to the case of a
pure metal. In this theory, the electron density
n(r) is isolated as the basic variable of the system
and both n and the total ground-state energy E„,
can be expressed (exactly in principle) in terms
of the solutions of a set of one-electron self-con-
sistent-field equations. When n(r) is sufficiently
slowly varying or sufficiently large, the effective
exchange-correlation potential p, „,entering these
equations is well approximated by the local
functional

+g 's(q)rn. ..(q)e"'. (2)

The quantity n„„includes the contributions from
localized core and (filled) d states, while 5n„, (q)
represents the remaining orthogonalization hole
and self-consistent screening contributions of the
valence electrons. The density 5n„„ is developed
as a simultaneous expansion in a pseudopotential
1tvo and a hybridization potential &. To fir st order
in B)o and ~', both n„„and 5n„~ are independent
of the positions of the nuclei, r„and all struc-
ture dependence is explicit in Eq. (2) through the
summation over i and the structure factor

where e„,(n} is the total exchange and correlation
energy of a free-electron gas of density n. In the
case of solids, Kohn and Sham proposed the use
of Eq. (1) for the entire system, and in this form
the scheme has enjoyed wide-spread popularity
and considerable success in calculations on both
simple and d-band metals.

The second ingredient here is the generalized
pseudopotential theory, ' ' formulated for d-band
metals by Harrison' and the present author' and
developed by the latter in a series of papers. ' '
As in the Kohn-Sham formalism, the electron
density and the total energy play fundamental roles
in this theory. One seeks an analytic decomposi-
tion of n into a sum of uniform, core, and oscil-
latory terms"

s(q) =N 'pe '~ ~&

A similar decomposition of E„, into volume, elec-
trostatic, band structure, and d-state overlap
terms yields"'

E...= E,+E„+&g Is(q) I'F(q)

+ — v„r,. —r&
i, j

where to second order in ze, and 4', the charac-
teristic functions E„F(q), and v„(r}are also
independent of structure. In the limit &-0, the
generalized pseudopotential formalism reduces
to conventional nonlocal pseudopotential theory,
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so that both simple and d-band metals are covered
by Eqs. (2) and (3).

For any metal, the characteristic functions n„„,
6n„„, E„F(q), and v„(r) all depend on the pre-
cise nature of the total self-consistent potential
V(r) in the solid. Of particular importance here
are the structure dependence of V(r) and the ap-
proximations made for exchange and correlation.
The central objective of this paper is to reformu-
late the generalized pseudopotential theory using
the Kohn-Sham equations as the starting point. The
result will be a refined and highly unified version
of the theory with several important new features.

The rigorous separation of n and E„, into volume
and structure terms requires that the total poten-
tial be expressible in the form

V(r) =Q v(r —r,.),

where v(r) is independent of structure. In Sec.
II, we show that, in spite of its nonlinear depen-
dence on pg, the exchange-correlation potential
p„,(n) is well approximated in metals as a con-
stant plus a sum of overlapping potentials as in
Eq. (4). The most remarkable feature of this re-
sult is that it remains true even when there is
significant overlap between neighboring cores, as
in d-band metals with filled d states. This leads
to a formally simplified set of Kohn-Sham equa-
tions consistent with Eq. (2)-(4).

In Sec. III, we begin to systematically develop
the generalized pseudopotential theory from the
simplified Kohn-Sham equations by first introduc-
ing a zero-order pseudoatom, as we did in Ref. 8
(hereafter referred to as paper I). The zero-
order pseudoatom precisely defines core and d
states, and their energy eigenvalues, and permits
accurate evaluation of all matrix elements of both
the pseudopotential wo and the hybridization po-
tential &. Particular attention is paid here to the
structure dependence of 4, which has previously
been neglected' ' or only partly averaged. ' Then,
in Sec. IV, the generalized pseudopotential theory
is rederived and it is shown that the structure-
dependent parts of 4 lead to new second-order
terms, and hence, a modified energy-wave-num-
ber characteristic F(q) and overlap potential
v„(r). We also derive in Sec. IV a relatively
simple yet very accurate formula for the binding
energy of the metal. Application of the refined
formalism to 19 metals is discussed in Sec. V
and concluding remarks are given in Sec. VI.

II. SIMPLIFIED KOHN-SHAM EQUATIONS

For a metal of atomic number Z, the Kohn-
Sham equations may be written as follows. The

one-electron Schrodinger equation, to be solved
self-consistently for occupied states n, is

[T+ V(r}]g (r) =E P (r),
where T is the kinetic-energy operator and

(5)

V(r) = -Q ' +, dr'+ p„,(n(r)).
Z,e' e'n(r')

The nuclear term involving Z, in Eq. (6) is the ap-
plied external potential in the general Kohn-Sham
formalism. ' In terms of g (r) and E„ the elec-
tron density and total ground-state energy are
given by

n(r) =gg,*(r)g (r) (7)

and 1, (Z.e)'
r,. —r,.

1 e'n(r)n(r'}
2 Ir -r'

I

+ nr 6(nr) —p„, nr d&. (8)

where the exchange potential is'

g„(n) = -2e'(3n/8v)' ' (10)
'The correlation potential does not have simple
analytic representation, but accurate interpola-
tion formulas, valid in the range of metallic den-
sities, have been obtained by fitting to computed
values of e„(n) and using Eq. (1). One such for-
mula has been developed by Hedin and t.undqvist"
using the correlation-energy results of Singwi
et al. ":

p, (n) = —g, in[1+ ro(—', vn)' '],
where p.,=0.045 Ry and r, =21 a.u.

The precise details of g, (n) and p, (n), however,
will not affect our manipulations of Eqs. (5)-(8)
and only Eq. (1) linking e„, and p„, need to be
assumed. In this regard, closely related treat-
ments of exchange and correlation, such as in
Slater's Xa method, "will also be covered by our
formal results. In the Xa scheme, the correla-
tion potential is omitted and the exchange poten-
tial is taken in the form —,'a p,„(n), where a is a con-
stant to be determined separately.

To develop the desired approximation for V(r),
we first decompose the electron density as in Eq.

The functional p„(n) entering Eqs. (6) and (8) can
be separated into an exchange and a correlation
potential:

(9)
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(2}. We then add and subtract a term g„,(n„,}
from p,„,(n): .0

0.3
I

0 g
I

0.5
I

0.6
I

0.7
I

where

(12)
-0. I—

Itgf+ ~+ e,g

and we have introduced the shorthand notation

I

5n„„=-g S(q)5n„„(q)e"'.

The term p,„,(n„,) plays the role of a valence-elec-
tron exchange-correlation potential. Since 5n„„ is
a small (first-order) quantity, one can expand this
potential as

d &xc(&uai r}
l xc(oval) l xc(sunif}+ 5sval

ding

(14)

0
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O
CL

X
m -0.~-
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O
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-0.6—

The last two terms in Eq. (12), on the other hand,

together play the dual role of a core-electron and

a valence-core exchange-correlation potential. To
remove the summation over i from inside the argu-
ment of the first of these terms, we consider the
region of space where n,'„,«n, ~, i.e., outside the
core i, and expand in powers of Q&n,'„Jn,~. Then
we isolate all core overlap terms and analytically
continue the result to the whole solid by resum-
ming the remaining terms. This yields

-0.?-
FIG. 1. Valence-core exchange-correlation potential

for zinc and for copper along a [110] direction in the fcc
lattice, where d~ is the nearest-neighbor distance. The
solid lines represent the left-hand side of Eq. (15) and
the dashed lines the linear-superposition approximation
given by the first term on the right-hand side of that
equation. In both cases nyz has been set equal to n„,&z

and the d states used to compute n~~ are the same as
those employed in Table II.

4 xc ~ye, y + ~ core P'xc +ye, ].

~xc +ya, g
+ core ~xc a].

+
2 d ' ~ n(PPyn„~+ ~ ~ ~ . (15)

If the cores do not overlap, then the first term on
the right-hand side of Eq. (15) represents an

exact result, as is physically obvious. For small
first-order overlap, the leading correction to
this result is formally second order. The ac-
curacy of the linear superposition represented by
the first term is illustrated in Fig. 1. Here we
compare this term with the left-hand side of Eq.
(15) along a nearest-neighbor direction in the fcc
lattice for copper and for zinc, with 5n„„=0 in
both cases. In zinc, the error is about 5% at the
point of maximum overlap, where Z, n,'„,—~3„,«.
In the extreme case of copper Z, n,'„, -n„,«2t-a
this point, yet the error is still only 15% owing
to the slowly varying nature of g„(n). The latter

error is tolerable for computing most properties,
although the d-state matrix elements and charac-
teristic functions in copper are sensitive to the
choice of exchange-correlation potential.

In the usual way, ' ' calculation of the electron
density to first order and the total energy to second
order only requires a knowledge of V(r) and hence

p„(n) to first order. We may thus drop the se-
cond-order terms in Eqs. (14) and (15). As a
practical matter, it is also convenient to make
the decoupling approximation 5n„„=0 in Eq. (15).
This removes completely any nonlinear dependence
of p,„(n) on structure and also permits the self-
consistency of the core and valence states to be
handled separately. This approximation becomes
an exact result in both the limits n,'„,-0 and

n,'„,-~, and since n„,«» 5n„„, it should be a
good approximation everywhere in the metal. We
are thus led to an exchange-correlation potential
with the desired linear dependence on structure

g„(n) = p„,(n„„,)+ "' ""' 5n„, + g v„', , (15)
dn
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where

i / f
uo l rec(~uuii+ ncore) P ou(nuuif ) r

with v,', -=v„,(r —r,.). Equation (17) has the same
form as the valence-core exchange-correlation
potential introduced by the author previously, ' '
but the fact that such potentials can be directly

superimposed in the case of overlapping cores is
an important new result.

The final exchange-correlation terms in Eq. (8)
for E„, can be handled in an analogous manner.
Developing n&„(n} to second order in powers of
5 n„„and n,'„.and using Eq. (1), then subtracting
off nli, „(n) as given by Eqs. (2) and (16) and re-
summing leads to

n[6„,(n) —p„,(n)] = n„„;;[f„,(n„„;;)—g„,(n„„;„)]—— (5n„,)
1 &V.,(n..~)

+ ~ n„„[&„o(neore) geo(nuuii) 5n,.i - v„,] ——~ n,.„v„..
S n

& ~ 2

(18)

This result is again consistent with the depen-
dence on structure assumed in Eq. (3).

The use of Eqs. (2), (16), and (18) in Eqs. (6)
and (8) yields the formally simplified results
for V(r) and E„,we desire. The total self-con-
sistent potential can now be written

express E„„onthe other hand, also requires
the sum over one-electron energies Q E . We
may anticipate from Eqs. (2) and (5) that this sum
will have the form

Q E = T(n„„o}+n„„~V

V(r) = V„„&+ g(v', „,+ v,'„.+ v' )+ 5V„„
i

+ g [T(n,'„,)+n' „V]+g 5E (20)

(n„„ii)+ ~ 6n ai + Duo(nuoir) rdn

where v',„,= Ze'/~r —-r,
~

and V,„;f, v,'„„and 5V„i
are the direct Coulomb potentials arising from
n„„„., n,'„„and 5n„,&, respectively. To similarly

where T(n) is the kinetic energy of the density n
and where we have introduced the further short-
hand notation nV—= 1 n(r)V(r) dr. Using Eq. (20)
together with the above results, one can combine
the principal electrostatic and exchange-correla-
tion terms to obtain without further approximation

E =n . -~+~3 Z —Z..( ...)+Z .„.~,...~,.
I

$yJ a i, j a 0
(21)

where we have defined a structure-independent
core energy

of point ions of charge Ze immersed in the uniform
background

(22) n„„,. = Zin, . (24)
and an Ewald or electrostatic energy

E Z =— Z
eu( } anuuiiVuoif + Z nuuii g vu„o

a
2

n' v'1 ZTz0 g ~ g
(23)

'The quantities Z, Q„and a~ are just the valence,
atomic volume, and free-electron Fermi energy
of the metal, respectively. Also note that n,'„,

Z, 6(r —r;} an-d that the last group of terms in
Eq. (21) is identically zero unless the core den-
sity n,'„, overlaps a neighboring nucleus j. Such
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with

S(q)[1 —G (q)] 6n „,i (q)e"', (25)q'

)
'0 4 xc( unif )

4me' dn
(26)

Equation (26) for G(q) has been previously noted
for simple metals by Hedin and t,undqvist" among
others, although this form has not been used in
practice. Instead, various external G(q) have been
put into the right-hand side of Eq. (25) in a slighly
ad hoc fashion. Most of the forms used have been

1.2

1.0
GT

terms are most naturally included in the overlap
potential of Eq. (3), and the term involving

n,'„,v'„„, insures that v„(r)-+~ as r 0-.Near the

equilibrium lattice spacing of any common struc-
ture, however, this last group of terms is en-
tirelyy

negligible.
There are three novel features in Eqs. (19) and

(21). The first we have already mentioned, name-

ly, the direct superposition of the potentials v„',

in V. The second related feature is the appearance
of the exchange-correlation overlap term z', v„',

in E„,. This term is entirely new and has not

been previously anticipated in this form. From
Eqs. (10) and (11}it is clear that n' „v'„, is an in-
herently negative quantity which subtracts from

v„, although it will only contribute significantly
if n,'„, includes filled d states.

The final new feature is the form of the valence
exchange-correlation potential. In the usual no-
tation, one can write

6V +""*(""""}5vs +
dn val

inferred from independent studies on the interact-
ing electron gas. In Fig. 2 compare Eq. (26) with

both the Singwi et al. (SSTL) function, "which we

have used in most of our previous applications, ' '
and with the Geldart and Taylor (GT) function" at
an electron density corresponding to aluminum.
The latter G(q) arises from a full many-body treat-
ment of the electron gas and would seem to repre-
sent the most rigorous form yet obtained. Note
that Eq. (26) and the GT G(q) are virtually identical
for q & 2k~, but unlike Eq. (26} the latter approaches
a constant as q -~. The agreement at small q is
quite satisfying since Eq. (26} is presumably exact"
in the long-wavelength limit q -0. The correct
behavior of G(q) at large q, however, is not well
established even by the work of Geldart and Tay-
lor. Fortunately, this uncertainty has little conse-
quence in practice, as we will demonstrate in
Sec. V below.

III. ZERO-ORDER PSEUDOATOMS AND HYBRIDIZATION

The total external input to our proposed solution
of the Kohn-Sham equations will consist of three
numbers: the atomic number Z„ the valence 2,
and the atomic volume 0,. In terms of Eqs. (2)
and (21), this leaves three principal quantities
tobe determined: n„„,6n„„andZ 6E By con-.
struction, n„„is tobe defined and 6n„, and 5, 6E,
will depend self-consistently on the definition
through the pseudopotential se, and the hybrid-
ization potential &. 'The general objective is
to optimize ni, and & so that a first-order cal
culation of 5n„„and a second-order calculation
of Z 6E is as accurate as possible. As demon-
strated in paper I, this can be accomplished very
systematically by introducing a neutral pseudo-
atom whose electron density is just the zero-order
density in the metal. This zero-order pseudo-
atom is defined by the self-consistent Schrbdinger
equation

0.8

sr 0.6
C9

STL

[&+v,.(r)+ v...(r)]Vi (r) = E"y (r),
where the total pseudoatom potential is

v„(r) = v„„v(r)+ v,„,(r)+ v „(r)+v„(r)

(27)

(28)
0.4

0.2

.0
,0 I.O 2.0

I

3.0

and v„„;f is the Coulomb potential arising from that
part of n„„;;contained within Q,

v„,«(r) = —,'Ze'(3 —r'/R2~~)/R ~z, x&R~z,
(29)

= Ze'/r, x&Rii,~,
FIG. 2. Valence exchange-correlation function Q(q) as

given by the density-functional formalism [KSHL, Eqs.
(10), (11), and (26) of the text] and as determined by
Geldart and Taylor (GT, Bef. 13) and Singwi et gl.
(SSTL, Bef. 11). All results correspond to the valence
electron density in aluminum.

with Qo= —,
' mR~~. For convenience, the constant

p„,(n„„,) is omitted in the definition of v„[and
also in V in Eq. (31) below]. This places the zero
of energy in Eq. (27) at the bottom of the free-
electron valence band inthe metal and, of course,
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has no effect on the wave functions q (r). The
localization potential v„, is an applied potential
which is designed to shape the tails of the localized
states y in some optimum way. These states then
define the core density:

&&{n..it(q) —[I-G (q)]6n, , (q)) e"', (31)

n,...(r) =g q,*(r)q' (r); (30)
a

where the sum is over occupied core and d states.
Equation (27) also defines any required unoccupied
states, such as the d states of metals with empty
d bands just above the Fermi level.

The difference in potential seen by an electron in
our zero-order pseudoatom (centered at site i = 0)
and in the metal is then exactly

5V(r) = v„,(r)+ v (r) —V(r),

4me'= v, (r) -Q v~(r r, ) +Q— '
S(q)

Ho 4

small, i.e., first-order quantities. A general
form for v, which accomplishes this goal is the
.barrier potential

v„,(r}=0, r &Ro

=f(r), r&RO
(34)

where R, ~Rvz and f(r) &0 as r-~. The atomic
character of @~A inside fi, is essentially unaf-
fected by this potential, while the tails of these
states can be contracted such that the effective
strength of 4 is minimized. In the vicinity of this
minimum, there will be considerable insensitivity
in the matrix elements of ~, and consequently in
n and E„„to the precise nature of f(r). This is
because the v„, added to the pseudoatom potential
to define y~ is subtracted from the metal potential
in the definition of ~. If one were to calculate n
and E„,to all orders in ~o and 4, the results
should be exactly independent of v„, and f(r).

For the low-order expansions we seek here,
a near-optimum form for f(r) now appears to be

where (4ve'/q'}n„, «(q) is the Fourier transform of f(r) = V, (r/Ro —1)', (35)

Si,(qRws} Z
nuaf~qJ- R 0w's o

(32)

with j, the familiar l= j. spherical Bessel function.
The last form of 5V given in Eq. (31) has been
obtained by using Eqs. (19), (25), and (28) and then
subtracting and adding E, v„~,(r —r, ). The term
involving n„,«(q) arises from the distinction be-
tween v„,«and V„,«, the latter being the potential.
associated with the whole electron gas.

'The inner-core electrons are very tightly bound
by v„alone, and in the absence of any localiza-
tion potential the effective strength of 5V(r) is
negligibly small for these states. Setting v„,(r)
= 6V(r) =0 is a small-core approximation, in
which the p, (or more properly Block sums of
the p, ) become exact eigenstates of the metal
Hamiltonian. For the d states of d-band metals,
on the other hand, 6V(r) becomes very significant.
In this case, the d states y, (r) are only weakly
bound (if bound at all) by v, and such states are
generally not good eigenstates nor even useful
basis states. A strong (formally zero order} lo-
calization potential is implicitly required to obtain
a y„and a hybridization potential

n = 6v (q,
~

5v
~
q, ) (33)

with the properties required in the generalized
pseudopotential theory.

Two of the most important optimization criteria
in selecting v„, are that (the square of} the plane-
wave hybridization matrix element (k

~

h
~ y,) and

the d-state overlap matrix element (y,'~n~y,') be

This type of localization was introduced and used
successfully by us in paper I. Its principal ad-
vantage is that it leads to an exact analytic form
for the pseudoatom portion of the hybridization
matrix element

with

= -4vn„(k)Y, (k), (37)

(38)

where P, (r)/r is the radial part of y, (r) and j,
and T, are the usual l = 2 spherical Bessel func-
tion and spherical harmonic, respectively. As can
be inferred from our studies in paper I, the op-
timum value of R,/R~~ in this case is near 1.0 for
metals with empty d bands and in the range 1.25-
1.V5 for metals with filled d bands. In the latter
range the radial wave function P,(r} is very close
to that of the corresponding free atom for r &R~s
(see Fig. 8 of paper I). The long-range tail of

(k), which falls off only as sinkR, /k at large

where the constants V, and R, taken as a pair de-
pend primarily on the number of d electrons in
the zero-order pseudoatom. For finite V, and
R„Eq. (35) leads to Gaussian-like tails for the
d states, because the total potential in Eq. (27)
varies as+r' as r-. In the limit V, —,ap-
plying v„, to the d states is equivalent to impos-
ing the boundary condition

(36)
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I.5 yf (r —r,.)[v „,(r —r, ) —v„(r —r, )]

& iaa(r —r,.)d r+ ~ ~ ~, (39)

IL
EV

0
0.5

O
Cl

-0.5

-I.O-

FIG. 3. Hybridization function g~(k) for copper based
on two different types of d-state localization potential.
The solid line corresponds to the set of parameters V()
= ~ and Ro/Rzs= 1.72 and the dashed line to Vo-—4.0 Ry
and Ro/Rws= 0

where the dots represent second-order terms.
The second-order terms in Etl. (39) lead to negli-
gible third-order contributions in both n and E„,
and may always be dropped. The remaining first-
order integral is the analog of the familiar two-
center transfer integral in tight-binding theory. In
the usual notation the m =0, 1, and 2 components
of &," (evaluated at the nearest-neighbor distance)
are denoted as -ddt, -ddt, and -ddt, respective-
ly. This identification permits one to make a di-
rect check on the accuracy of Eil. (39). The total
d-band-width of an fcc metal like copper is ap-
proximately's

k, can be made to decay more rapidly without af-
fecting & (k) at small k by using a finite value of
V, and a smaller value R, in f(r). For example,
replacing the set of parameters V, = ~ and R,/R»
= 1.72 by V, = 4.0 (Ry) and R,/Ras = 1.0 does this
very nicely, as shown in Fig. 3 for copper.

For any spherically symmetric localization po-
tential, solving Eq. (27) becomes a straightfor-
ward atomic self -consistent-field problem and
can be handled by standard techniques, as dis-
cussed in Paper l. Once the y (r) and E~ of in-
terest have been found, all of the relevant matrix
elements of the generalized pseudopotential theory
can be obtained. Qf particular interest here are
the consequences of the exact structure depen-
dence of 0V, which we have obtained in Eq. (31).
One important consequence is a simple unam-
biguous formula for the d-state overlap matrix
element:

For a given treatment of exchange and correlation,
the combined prediction of Eqs. (39) and (40) may
be compared against the result of a full self-con-
sistent band-structure calculation. We do this in
Table I for copper using three different choices of
exchange and correlation potential and two choices
of localization potential in defining y„. The insen-
sitivity of the results to v„, is clearly evident
here. For both a moderate and a strong localiza-
tion potential we obtain a quantitatively accurate
estimate of the d-band width, and hence of &„",
for each treatment of exchange and correlation.

To treat the structure dependence of (k~ &~ y, ),
it is convenient to divide the hybridization poten-
tial into pseudoatom, overlap, and screening plus
orthogonalization-hole contributions. The pseudo-
atom matrix element (k

~
&„~pa) is defined by Eq.

(3"I), while the overlap contribution to the hybrid-
ization is derived from the second term in Eq. (31)

TABLE I. Width of the d bands in copper as calculated from Eqs. (39) and (40) and as in-
ferred from full self-consistent band-structure calculations, in Ry. The notation KSHL
refers to the Kohn-Sham exchange potential, Eq. (10), and the Hedin-Lundqvist correlation
potential, Eq. (11). The quantity Vo relates to the d-state localization potential defined by
Egs. (34) and (35); in both cases Ro/Rw&=1. 0.

Exchange-correlation
potential

Present work
Vo

——4.0 Ry Vo
——25.0 Ry

Self-consis tent
band calculation

KSH L

Xn (n= 5)

Xn (n=1.0)

0.270

0.234

0,195

0.268

0.231

0.191

0.260

0.229

0.189b

' Reference 16.
E. C. Snow, Phys. Rev. 171, 785 (1968).
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i/0

where n,', -=n„(r —r,.) and

n„(r —r, )= -v„(r —r,.)+(v&~lv„(r -r, ) lp~&.

(41}

(42)

made as small as necessary with a sufficiently
contracted d state.

The magnitude of (k
I
n

I p, & near k = k~ may be
directly checked if the width Wd and position E„
of the l = 2 resonance of the corresponding band-
structure potential are known. To lowest order' '

Similarly, the screening and orthogonalization-
hole portion of the hybridization is Wq/Eq~ 200[ay, (kq)/Eq' ] (44)

g ' S(q), (n„„(q)—[1-G((I)]5n, , (q)]

x[&k -ql y~& —
& s'ul e'~'I e~&&"

I v'~&] (43)

'The key to treating the explicit structure depen-
dence in Eqs. (41) and (43) will be to assign these
quantities one higher order of smallness than
(k

I n~
I
y~&. In the screening and orthogonalization

hole contribution this is clearly valid since 5n„,(q)
is first order and n„,«(q) at nonzero reciprocal-
lattice vectors also behaves as a first-order quan-
tity. The size of the overlap contribution, on the
other hand, is variable, but in principle it can be

in Rydberg atomic units" where Ed =Qq. The form
given in Eq. (44) is especially convenient because
both sides of the equation are approximately inde-
pendent of the choice of the zero of energy. Using
our previously obtained values of Wd and E„ for
the Chodorow potential of copper, "we calculate
0.335 for W,/E,'~'. For the range of exchange-
correlation and localization potentials given in
'Table I, we obtain values varying between 0.303
and 0.352 for the right-hand side of Eq. (44).

Another simple test on the magnitude of
&k~ I n„

I y, & comes through the total occupied
valence-band width in the metal. To first-order
in se, and &' this width is

+(k lzv lk ) —(0lzo I0&+g
E~ -E„

= ~~+ g [(e~ -E )(k~ I v.&&a .Ik~&+ E &0
I y.& &9. I

0&]
e=cyd

TABLE H. Total occupied valence-band width of four metals as calculated from Eq. (45)
and as given by band-structure calculations, in Ry. The without hybridization column refers
to the limit pd =0 for metals with empty d bands (K and Ca) and to the limit 4p~ =0 for metals
with filled d bands (Cu and Zn) ~ The calculations both with and without hybridization relate to
the Kohn-Sham-Hedin- Lundqvist (KSHL) treatment of exchange and correlation, as discussed
in the text, and d-state localization parameters Vo

—— and Ro//&gg=l. o for K and Ca, =1.72
for Cu and =1.50 for Zn. The quantity &z is the free-electron Fermi energy.

Metal
With

hybridization

Present work
Without

hybridization
Band

calculation

K

Ca

CU

0.156

0.343

0.517

0.693

0.168

0.352

0.537

0.720

0.163

0.296

0.718

0.760

0.157

O.296 b

o.69o'

0.780 6

' M. J. Lawrence, J. Phys. F 1, 836 (1971). Self-consistent~ (n=1.0) calculation.b Reference 17. Self-consistent && (&=g) calculation.' Reference 16. Self-consistent KSHL calculation.
d G. E. Juras, B. Segall, and C. B.Sommers, Solid State Commun. 10, 427 (1972). Non-

self-consistent && (& =
&~) calculation.
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where the sum over a includes a sum over both
core and d states, either occupied or unoccupied.
Like Eqs. (39) and (44), this result is a function
only of the parameters of the zero-order pseudo-
atom. The net hybridization contribution to the
total bandwidth depends on the magnitude and sign
of k~ —E,"as well as the magnitude of (k

I n„l v), &.

In Table II, we compare Eq. (45), both with and
without hybridization contributions, with the re-
sults of band-structure calculations for several
metals. Note that in the limit of no hybridization
the shift away from e~ is always small and posi-
tive. When hybridization is included, however,
the shift can be either positive (K, Cu, and Zn)
or negative (Ca) and small (K), moderate (Ca and
Zn) or large (Cu), in complete accord with the
band-structure calculations.

matrix element [as in Eq. (45}]

(k+ q
I
n),

I
k& = v(q) + Q (ok —I;")(k+ q I y & ( p I

k&
fk =C ~ d

+g(&k+qln, .l~. &«.lk&+c c» (47)

with e~ = 8'k'/2m. The remaining task is to treat
the second-order terms in Eq. (46) and the struc-
ture-dependent parts of ~ fully and explicitly in

5n„„adnZ~5E~.

A. Electron density, self-consistent potential, and form factor

As usual, it is convenient to divide 5n„, into
separate orthogonalization hole and screening
contributions:

6n„al 5noh+ 6n„, . (48)
IV. GENERALIZED PSEUDOPOTENTIAL THEORY

&k+ ql w. Ik& =s(q)&k+ ql ~a
I
"&+ ' ' ' (46}

where the dots represent second-order terms, and
where (k+ q I

r(), Ik) is the structure-independent

We now proceed to obtain the quantities 5n
and 5 5E as explicit functions of go, 6 „and
the other parameters defined above. The initial
steps in this development are identical to our orig-
inal analysis in Ref. 3. The one-electron Schro-
dinger equation (5) is transformed exactly to an
equivalent pseudo-Schrodinger equation. A
pseudo-Green's-function G, is then introduced
for the latter and is expanded in a basis set

I
r)(&

of plane waves Ik& and localized d states
I y,&.

The resulting pseudo-Green's-function equations
may be readily decoupled and solved in terms of
total pseudopotential and hybridization potentials
Wp and &, respectively. By analytically integrat-
ing the appropriate functions of G, .(E) over en-
ergy, one may obtain the sum of one-electron
energies [for example, Eqs. (83)-(86) of Ref. 3]
and the total electron density [for example, Eqs.
(100)-(105}]in terms of Wo and n. This latter
step is only completely straightforward, however,
in the cases of empty or filled d bands where cer-
tain simplifications are possible. For this reason,
we shall now confine our attention to these cases
specifically. We may then infer the general forms
of 5n„„and Z 5E, directly from our previous re-
sults. "

At this point, however, both W, and & still con-
tain an implicit structure dependence. In the ease
of the hybridization potential, we have already
seen above how this dependence can be extracted
explicitly in the matrix elements (k

I
I

I (p, & and
(c)~

I
n

I y„&. Similarly, one can write (for an op-
timized choice of W, )

The former ean be written as a background density
plus a localized hole density n,'„at each site:

Z* —Z
~noh Z nunif + noh y

0

(49)

where n,'k: rr,„(r —r,.) and—

a, =c, d

The effective valence Z* is

Z * = Z — n,„(r)d r

2Q
(2(r)' (klplk&d k. (51)

The total electron density j.s thus from Eqs. (2) and
(49)

n(r) = —n„„r+P[n„„,(r —r, )+ n,„(r—r, )]

+ Q' S(q)n„„(q}e"'. (52)

The screening component n„„(q) may be obtained
to first order from our previous results' by set-
ting 6= A„and using Eq. (46):

4 r()o(k) q)
k&k ~ a ~)(+a

n, k(r)= —
2 )', [(rlplk&(klr&+c. c.

(r k&kF

-&rlplk&&klp ra]dk, (50)

with
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where we have set f(),(k, q) -=(k+ q ~ff), ~k) and have further defined

~&k+ Z] ~,.l ~, & &q. ln..lk)
tf, k,q =Z 8PR

d d
(54)

&kl q) ) &(P le '(f'lq) )(q)dl ~„lk) -(k+ql P(, ) &q)l &~lk) (k ln lgd) &q)die
'

lq)d) &q)did Ik) (55)

The second integration in Eq. (53) is outside the Fermi sphere with a minus sign if E„"& er (filled d bands}
andinsidetheFermispherewith a plus sign if Ed'&sf (empty d bands).

The Fourier component of the self-consistent potential v(q) is obtained in the usual way' ' from Eqs. (19),
(25), (4"/), and (53). This now takes the form

v(q) =, ' + n„„(q)+[1-G (q)][n,„(q)+nff (q)] + v„,(q) [&*(q)]2 g COre (56)

with

n„(q) =n.„(q)+,[e(q)-1]v(q),

and where e*(q) is related to the Hartree dielec-
tric function e(q) by

An additional nice feature of the Kohn-Sha, m
formalism is that p„, is the appropriate exchange
and correlation potential seen by an electron at
the Fermi level. Thus, in addition to n(r) and

E„„one may rigorously construct the pseudopo-
tential form factor

e*(q}=&(q)-G(q}[e(q) —1]. (5V) w(q }= w, (k„,q) + tf, (k~, q), (58)

In Eqs. (47) and (56), as in Eq. (32), the Fourier
transform of t(r) is understood to be

with q ~2k~, for the calculation of electronic
properties, as we have done previously. ' "

t(q) = II t(r)e f~ "dr' B. Components of the total energy

In all cases of interest t(r) is spherically sym-
metric and the result depends only on the magni-
tude of q.

'The completion of the total energy calculation is
somewhat more difficult because one must obtain
the result to second order. From Eq. (83)-(86)
of Ref. 3 one may infer the general relationship

I kk, N' f ((k/w, —=r/k)+(k/ w/k)( k/P/k)) dkT J g ' dk} ~, (59)
tX ikdnfk k+kp d

where the dots again represent second-order terms The sec.ond-order terms in Eq. (59) will go over to
their final form directly by using Eq. (46) and the replacement n= hn~ as in Eq. (53). The terms involving
8'0 may be exactly manipulated 0 into the form

N
k

'.f «I I»l( «lk l»)dk- .. g .'.; ~ k .'..)f)dna

unif~ z nuc+ core+ rc + on ~ z unif+no)k nnr ( )
0

using Eqs. (19), (28), (31), (50), and (51). The pseudopotential foo~ denotes f()o with v replaced by v in
Eq. (4'I). The second group of terms in Eq. (60) is just N(f)„,«+ v,„,) =N ,', (Ze)n/R», usi—ng Eq. (29), while
the third group of terms exactly cancels that in the total energy, Eq. (21).

The final orthogonalization hole terms in Eq. (60} are most conveniently grouped into four separate con-
tributions. The terms involving 5ff„, are readily combined with those in Eq. (21) to give
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[6n,„——,5n„,] 5V„,+ *d "' 6n„„=k5n, „5V,„+ " "' 6n,„—k6nso, 6V„,+ "' "' 5n;„. (61)

The exchange-correlation and screening terms in Eq. j61) may be absorbed into the band-structure energy
in the usual way. ' '

The term k6,„5V,„p]us thc remaining orrhogonalization hole terms in Eq. (60) may
then be exactly rearranged into: (i) structure-independent contributions —roo&N(Ze)'/R~e and NE,„, where

9 (Z*- Z)'e' 1 (Z* Z)e'-r' 1 ~, 3 r' 2

R WS WS
WS

with u,„(r)= 4vr n,„(r); (ii) electrostatic contributions which can be combined with E„(Z) to give the sec-
ond-order structure-dependent energy

NE"'"' = E (Z*}+-'N(Z*e)'/R(()e, (63)

where E„(Z")is the electrostatic energy of point charges Z*e in a uniform compensating background; and
(iii) an overlap contribution

Zo Z j j J 1 j Z +Z
q

Z Z
g 5 o1' c 2 Oh g oQ ga 0 a

(64)

The overlap terms have been previously neglected and are obtained here for the first time.
The implicit structure dependence of the first-order hybridization term in Eq. (59) can be extracted by

using the results of Sec. III and noting from Eq. (31) that

E =&e'ul T+ VI &u& =Eu &Wul v —V &65)

where we have now conveniently subtracted off the tiny structure-independent constant &y, lv, Iy, & in the
definition of E~" [This. subtraction has been done implicitly in Eqs. (44)-(63) above. ] We then expand
(z„- Ee) ' in po-wers of (k; E,") ' a-nd use Eqs. (31), (41) and(43)to obtain, inadditiontoh, (k, 0), thesecond-
order structure-dependent term

4me'')qI; Is(q&&* '. ( „( - q&- („((.q)oI..&.(q) ~ .„(q&&j q"', s, (s, rI&q(s)
4

q2 unif
k ok'

(66)

which can be readily absorbed into the band-structure energy, and

I &, & &c',
I
&'., Ik&+ c.c.~ ~

(67)

which can be readily absorbed into the overlap energy. In Eq. (67) both h„and y, are centered on the
site r, .

The total energy E„, can now be put in the form of Eq. (3}. If one identifies E„ in that equation as the
second-order structure-dependent electrostatic energy NE',""', then the structure-independent contribu-
tion can be written

Eo = NEse+ g coro s (68)

where the free-electron energy (per atom} E„is, from Eqs. (21), (59), (60), and (62), and Eq. (83) of Ref.
3

Ef e ~F+ coo(noo(f) +
o&)

3 (Ze)'
WS

+
2 ~0 k 0 1 +P k dk+ A1 k {) 1 +P k

k&kr
(69)

with P(k}=&klp lk&. This result is now exact to second order, and as we shall see bel. ow, considerably
more accurate than our previous approximate formulas. "

From Eqs. (61) and (66), and Eq. (85) of Ref. 3, the energy-wave-number characteristic now takes the
form
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20O [wp(k, q)]'Fq=
& - ace &f —&i&F

2h, (k, q)so, (k, q)+ [h, (k, q)]' 6ve'
{n„,«(q) —[1-G (q)] [n„,(q)+ n~(q)]}h,(k, q) d k

2me'Q
3 '{G(Q&[s.h(Q&]'+ [1-G(q&][n...(4&]'}, (70)

which is again exact to second order. The principal new feature of this result is the group of terms involv-
ing h, (k, q), which arises from the structure dependence of (k~8

~
W„). The effect of these terms on F(q)

will be discussed in Sec. V.
Finally, using Eqs. (21), (64), and (67), and Eq. (86) of Ref. 3, the overlap potential may be written

v„(
~
r,.—r&

~
)=g & 4S~"n~'8(er E~ -) — o, {S~"[(&-„—E~")h,"(k)+ 2h,"(k)]+&~"h,"(k)}dk

S~"h", (k) + ' ' -h" (k} d k
k~

' ' &k- dF

Z*-Z J++oh V oh w nuc
6

(71)

Su -=&&alv'u&

h~'&k&= &y&~k) &k) v,'),

h,"(k)=&ygk&&k)n.„)4,*'},

C. Binding energy

The total energy may also be written as

Et,~
=HE . + E„„, (72}

where E~ is the binding energy per atom of the
Z valence electrons:

E,.„=E„+E'„""'+ S q 'F q + — v„r, .

(73)

denotes the boo terms in large parens in Eq.
(67). The e function in the first term of Eq. (71)
has its usual meaning: it is plus one for z~ &E„
and zero for a~ &E~~. Also, as a matter of con-
venience only, we have dropped from Eq. (71)
the utterly negligible terms involving n,' from
Eqs. (21) and (64). The result (71) for v„ is
again otherwise exact to second order.

The primary quantities of interest in this result
are, of course, the final three second-order struc-
ture-dependent terms. But to the extent that E' „
differs insignificantly in the solid from its cor-
responding value in the free atom, Eb;„d can be
directly compared to the cohesive energy plus the
energy required to ionize the Z valence electrons
in the free atom. This comparison is physically
meaningful for nontransition metals, where Z is
clearly the same in the free atom as in the solid.
In principle, one should use free-atom d states
(through an appropriate choice of the localization
potential v„,) in computing Eb,„d for such a. com-
parison, but this is not crucial. The zero-order
terms in Eb;„d are, of course, independent of the
d states and the residual dependence on vg comes
indirectly through the hybridization and d-state
overlap matrix elements. To the extent that the
latter quantities depend weakly on v,.„one ex-
pects Eq. (73) to reflect the accuracy of a Kohn-
Sham calculation of the binding energy.

V. APPLICATIONS

%'e have made a full application of the density-
functional version of the generalized pseudopoten-
tial theory to nineteen simple and d-band metals.
This study complements that presented in Paper
I and we shall discuss here only selected results,
with emphasis on the effect of the refinements
introduced above on typical metals. In this re-
gard, it is convenient to discuss separately simple
metals, metals with empty d bands, and metals
with filled d bands, as was done in paper I.
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TABLE IG. Various quantities of interest for aluminum computed with the four valence
exchange-correlation functions G(q) discussed in the text. The quantities pL, and &~ are,
respectively, the resistivity of the liquid metal and the fcc phonon frequencies at Brillouin-
zone boundaries in the solid, computed as in Ref. 8. The quantities Ef~, ~bcc, and &he@

denote the (minimum) total energies of the fcc, bcc, and hcp structures, while E~~ is the

binding energy computed for the (observed) stable structure. All energies are in Ry, pL, is
in @&em, and the &, are in 10f Hz.

0.0 SSTL KSHL GT Experiment

( fff)
Xe(62pp)

ao(2A»)

+x(+s)
Ez(8k')

Ebmd

Stable
structure

@bCC E fCC

Eh~-Ef~

0.011
0.044
0.058

15.0

0.006 00
0.000 15
0.000 02

fcc

0.005 58
0.0013V

0.010
0.050
0.063

19.0

0.007 17
0.000 29
0.000 03

-4.175

fcc

0.007 08
0.0016V

0.010
0.052
0.06V

20.6

0.008 00
0.001 21
0.000 21

-4.192

fcc

0.007 56
0.00185

0.010
0.053
0.067

20.9

0.007 92
0.000 33
0.000 03

-4.1VV

fcc

0.008 18
0.002 14

O.O18 ~

0 056

24.2'

-4.166

r. [100]
x [100]
I [111]
T[1111

13.35
8.01

13.89
5.16

10.85
V.19

10.82
5.03

10.87
7.08

10.92
5.09

10.74
6.92

10.82
4.95

9.SV e

5.8I
9.64
4.18

Reference 21, p. 184. Values inferred from the measured Fermi surface. The quantities
Gf f f 1.54 Ap and 62pp

——1.77 kp are the magnitudes of the (111) and (200) reciprocal-lattice
vectors.

At melting temperature of the metal from Reference 22.' Reference 23.
Reference 24.

~ Measured at 80 oK by R. Stedman and G. ¹ilsson, Phys. Rev. 145, 492 (1966); and quoted
from M. A. Coulthard, J. Phys. C 3, 820 (1970).

A. Simple metals

A prior we include in the category of simple
metals only those elements with no d states of
interest to consider. These are lithium, sodium,
beryllium, magnesium, and aluminum. To these
we might add the metals in which the calculated
hybridization effects turn out to be very small,
for instance, the group-IIIA and IVA metals. 'The

simple-metal limit of our formalism is obtained
by setting y, (r) = 0 for empty d bands and b, = v„(r)
= 0 for filled d bands. In these limits there is only
one difference in the form factor w(q} and energy
wave-number characteristic F(q) obtained from
the present formalism and from that given in
paper I for simple metals. This is in the choice
of the valence exchange-correlation function G(q).
In Table QI we compare various calculated prop-
erties of aluminum for G(q}= 0 and for the three
G(q) functions plotted in Fig. 2. Although includ-
ing valence exchange and correlation is clearly

important, there is little to choose among the
three nonzero G(q) functions based on comparison
with experiment. The primary disadvantage of
using Eq. (26) for G(q) (the KSHL function) is that
it leads to a relatively long-range tail in the nor-
malized energy-wave-number characteristic

F~(q) = -(q'A, /4vZ~')F(q) .

Replacing Eq. (26) with the Geldart-Taylor (GT)
function" appears to be an acceptable solution to
this problem, and we have done this implicitly in
all the calculations discussed below.

'The relationship among the four sets of theoreti-
cal results given in Table III is fairly typical of
all the simple metals. The Singwi et al. (SS1'L)
function" was used in the calculations of paper I,
and the results presented for the simple metals
in Tables I, II, and VII of that paper remain rep-
resentative of the refined theory developed here.
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I.O
X IO

0.8

0.6

0.4

0.2

FIG. 4. Normalized ener-
gy-wave-number character-
istic for calcium computed
in three hybridization limits
(with Vp=~ and Rp/Rii, g
=1.0), as discussed in the
text. The small arrows on
the horizontal scale indicate
the magnitudes of the G f f f
and G2pp reciprocal-lattice
vectors in the observed fcc
structure.

.0

-0.2-

I

I.O

q kF

2.0 3.0

TABLE IV. Various quantities of interest for calcium computed in the simple-metal limit
of no hybridization (& =0), in the limit of a purely volume-dependent hybridization potential
(& =&pa), and finally, including the full structure dependence of the hybridization (& =&pz
+ b, ,t,„c). The quantities 7;, and Eph are, respectively, the fcc-bcc phase transition temp-
erature (in K) and the zero-point vibrational energy (in Ry), computed as in Ref. 7. The
notation and units are otherwise the same as in Table III.

+pa + +struc Experiment

~'(Gi i.i)
~«2pp)
u (2k+)

Ebind

Stable
structure

Eb c-Er
Ehcp-E fcc

Eph
p

0.011
+0.003
+0.004

9.8
-1.430

hcp (1.63)

0.000 34
-0.000 31

0.001 71

195

0.014
-0.056
-0.052

31.5
—1.475

fcc

0.001 67
0.000 80
0.001 75

660

0.0 14
—0.056
—0.052

31.5
—1.478

fcc

0.001 75
0.000 90
0.001 60

0.021
—0.056

33 Ob

—1.458

0.00164

721'

L [100]
T [100]
L [111]
V'[111]

5.91
3.99
5.92
2.43

5.92
4.24
5.77
2.57

5.37
3.88
5.22
2.36

Inferred from the self-consistent Xcz (u=&) band calculation of Ref. 17. The first band
gap at the I, point in the Brillouin zone is approximately ~2w(Gttt}~, while that at the X point
is approximately )2'(Gtoo)(. The t(uantitities Gttf 1.76hz and Gzoo —-2.03k' are the magnitudes
of the (ill) and (200) reciprocal-lattice vectors.

At the melting temperature of the metal from J.B.Van Zytveld, J. E. Enderby, and
E. W. Collings, J. Phys. F 2, 73 (1972).

c Reference 23.
4 Reference 24.

f
(Inferred from the observed Debye temperature T~ =230 K by the Debye formula E b =p {%'g g) ~

A. Jayaraman, W. Klement, Jr. , and G. C. Kennedy, Phys. Rev. 132, 1620 (1963).
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B. Metals with empty d bands

The metals with empty d bands just above the
Fermi level are the heavy alkalis: potassium,
rubidium, and cesium, and the heavy alkaline
earths: calcium, strontium, and barium. In these
metals one may conveniently work with nonover-
lapping d states, corresponding to V, = ~ and R,/
R~~ = 1.0 in Eq. (35), as discussed in paper L
Then, just as for simple metals, v„(r) =0 in the
total energy and the form factor w(q) is modified
only by the choice of G(q). The energy-wave-
number characteristic, on the other hand, is now
altered by the structure dependence of the hybrid-
ization as well as the choice of G(q). In Fig. 4,
we plot F„(q) for calcium in the limits y, = n =0
(the simple-metal limit}, n = n„(as in paper I)
and

pa struc y (75)

where the structure-dependent term 6„,„, repre-
sents the new screening and orthogonalization-
hole contributions considered above. A corre-
sponding set of calculated physical properties is
given in 'Table IV. From Fig. 4 we see that the
effect of both n„and n„,„,on F„(q) is most signif-
icant in the important region 1.5&q/kr &3.0, where
the first few nonzero reciprocal lattice vectors of
all the common crystal structures lie. The promi-
nent peak near q = 2k~ found in the limit 4 = 4„is
smoothed into a shoulder with a relatively deep
minimum to its right when ~„,„, is included. The
net effect of 4„,„, on the calculated properties
given in Table IV', however, tends to be only 10 jp
or less. In particular, the stability of the fcc
crystal structure is only modestly affected by the
structure dependence of the hybridization. In both
hybridization limits the theoretical predictions
match up very well with experiment, in sharp
contrast to the simple-metal limit of no hybridiza-
tion.

The effects of 4„and &„,„, in strontium and
barium turn out to be very similar to those in
calcium. (Compare Table IV, here, with Table V
of paper I.) In the heavy alkalis, on the other
hand, the effect of both 4„and &„,„, is quantita-
tively small, as can be appreciated by comparing
'Table IV of paper I with Table IV above.

C. Metals with filled d bands

In our final category are the metals with filled
d bands below the Fermi level. These include the
noble metals and all metals to their right in the
Periodic Table. In practice, however, the strength
of the d-state hybridization potential decreases very
rapidly as one moves away from the noble metals,
and beyond zinc, cadmium, and mercury the hy-

bridization is essentially negligible.
As discussed in paper I and above, an essential

feature of metals with filled d bands is the need
for spatially overlapping d states. In this case,
all three characteristic functions —w(q), F(q),
and v„(r) a—re affected by our explicit treatment
of the structure-dependent terms in the hybridiza-
tion potential. The potential b„,„,now represents
overlap contributions which modify v„(r) as well
as the screening and orthogonalization hole con-
tributions which alter F(q}. In addition, it is
4, alone, rather than a spherically averaged 6
as in paper I, which appears in the plane-wave
hybridization matrix element.

In Fig. 5, we plot F„(q) for zinc in the same
hybridization limits as in Fig. 4 for calcium, but
with d-state localization parameters Vo = 25.0 Ry
and R,/R~s =1.0 in each case. Again both n„and
b„,„,have a large effect on F„(q) in the vicinity
of q =2k~. Note, however, that the latter effect
tends to be of opposite sign from that in calcium.
The corresponding overlap potential is shown in
Fig. 6 both in the limits b =b,„and 6 =d „+4„
The contribution of b„, to v„(r) is clearly very
large for r&2R~~ with the sign of the function and
its first two derivatives being changed as ~ is de-
creased below 2R~~. This behavior reflects the
rapid increase in magnitude of the matrix element
(y, ~b~, ~k) as ~r, —r,.

~
is decreased. Also shown

in Fig. 6 is the contribution of exchange and cor-
relation to v„(r} in the two limits. Note that rough-
ly one-half of the effect of 4„,„,comes in the form
of exchange and correlation terms.

The importance of 4„,„, to calculated physical
properties of zinc is illustrated in Table V. As in
the case of calcium, the net effect of 4„, on such
properties is generally less than on the character-
istic functions themselves. One very interesting
result which does occur, however, is that the pre-
dicted stable structure is found to be hcp with an
axial ratio very near the observed value when

is taken into account. Furthermore, this
result is rather insensitive to the particular choice
of d state. The latter is very satisfying and in
sharp contrast to the sensitivity found in paper I,
where 4„,„,was effectively ignored. Both the
large peak in F„(q}near q = 2k' and the positive
slope of v„(r}for r&2R~~ resulting from n„,„,
appear to favor the distortion of the ideal hcp
structure toward one with high c/a axial ratio.

The calculated results for cadium and mercury
are, as in payer I, similar to those for zinc. In
particular, the observed stable structure of hcp
(c/a = 1.89) in cadium is well explained by the
present calculations. With V, = ~ and R,/R, = 1.40,
we obtain hcp (1.85), and with V, = 25.0 Ry and
R,/R~~ = 1.0, we find hcp (1.88).
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FIG. 5. Normalized en-
ergy-wave-number charac-
teristic for zinc computed
in three hybridization limits
(vrith Vo-—25.0 and Ro/Rz&
=1.0), as discussed in the
text. The small arrows on
the horizontal scale indicate
the magnitudes of the short-
est three reciprocal-lattice
vectors in the observed hcp
(c/a = 1.86) structure.

.0
I.O

Gt Gp

Ji
2.0 5.0

-0.2-

TABLE V. Various quantities of interest for ziae computed ia the same hybrjdigatioa limits
as in Table IV and with three choices of the d-state loeaBEatioa parsmehygi && aad Bo. The
notation and units are otherwise the same as in Table IH.

Vp (Ry)
R~s

0
25.0
1.0

Spa
25.0
1.0

25.0
1.0 1.25 Exper iment

w(G&)

u (G3)

ce(2k+)

Ebind

—0.021
0.043
0.058

18.3
—2.142

-0.040
0.068
0.105

38.9

-2.128

—0.040
0.068
0.105

38.9

-2.139

~0.044
0.071
0.111

42.8

-2.178

-0.038-

0.067
0.103

37.5

-O.OR2 ~

0.063 ~

37 4b

2 111c

Stable
s true ture hcp (1.64) hcp (1.72) hcp (1.94) hcp (1.89) hcp (1.92) hcp (1.86)

Ebm-E r~
Encp-E fcc

one

v . e
q e

L[100)
T[100]
L [111]
r [111]

0.003 11
—0.000 52

0.001 50

4.83
3.55
4.77
2.62

0.00546
—0.00109

0.001 58

5.33
3.48
5.55
2.77

0.005 60
—0.002 20

0.001 22

3.89
2.77
4.03
2.53

0.006 36
-0.002 52

0.00136

4.27
3.14
4.39
2.84

0.005 39
—0.001 86

0.001 23

3.98
2.78
4.13
2.50

' Reference 21, p. 183. Values inferred from the measured optical spectrum and Fermi
surface. The quantities G~ =1.62k& and G3 -—1.91k& are the magnitudes of the (0002) and
(1011) reciprocal lattice vectors.

At melting temperature of the metal from Ref. 22.
Reference 23.
Reference 24. The c/a axial ratio is in parentheses.

e Computed for the fcc structure.
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4.0-

3.0-

TABLE VI. Binding energy Ebind and its free-electron
(EI,), volume (E.oi) and structure (Esnuc) components, as
described in the text, for nineteen metals, in Ry.

Metal Ere
0 Evoi Estruc EexPt b

bind

2.0-

I.O-

tK
lO

I

.0
s

0

-I.O-

-2.0-

I I
I I l

.05 I.IO I I5 I

i& nn

Li
Na
K
Rb
Cs
Be
Mg
Ca
Sr
Ba
Zn
Cd
Hg
Al
Ga
In
Tl
Sn
Pb

—0.520
—0.466
-0.406
—0.387
—0.366
-1.952
-1.670
-1.466
-1.384
—1.351
-1.798
—1.693
—1.673
-3.681
—3.579
—3.387
-3.311
-5.691
—5.542

+ 0.020
-0.006
+ 0.012
+ 0.016
+ 0.028
—0.146
-0.117

0.000
+0.039
+ 0.153
-0.320
-0.224
-0.215
—0.457
—0.735
—0.506
-0.456
-0.992
—0.868

—0.018
—0.001

0.000
0.000

-0.001
-0.121
-0.009
-0.011
—0.008
-0.018
—0.021
-0.009
+0.008
-0.040
—0.097
-0.055
—0.048
—0.163
—0.141

—0.517
—0.474
—0.394
—0.371
—0.338
-2.219
—1.796
—1.478
—1.353
-1.216
—2.139
—1.925

c -1.880
-4.177
-4.411
—3.948
-3.815
—6.846
-6.550

—0.516
—0.460
—0.388
—0.370
-0.345
—2.269
—1.779
-1.458
—1.356
-1.259
-2.111
-1.990
—2.196
—4.166
—4.419
-4.060
—4.281
-7.085
-7.261

-4.0-

FIG. 6. Overlap potential for zinc computed in several
limits (with Vo = 25.0 and P 0/P z& = 1.0), where d is the
nearest-neighbor distance in the ideal hcp or fcc struc-
tures. The curves labeled $1 and Rl refer to the hybrid-
ization limits 4= 4» and 4= A~+ Q«~, respectively,
as discussed in the text. In the corresponding curves
S2 and R2 all explicit exchange-correlation terms in the
overlap potential have been set to zero. (Note, 2+~~
= 1.1054 ).

' Computed in the observed crystal structure except
where noted.

Reference 23.
Computed for the hcp (c/a= 1.9) structure.
Computed for the fcc structure.

E'„=-',Z~~ Z+e„(n„„,, ) —5(Ze}'/R~, ;—

Evol is the remaining volume-dependent energy

(77)

where E'„represents the first three terms in the
free-electron energy:

D. Binding energy 0 ~

Evol Efe fe & (78)

0
bind f e+ vol + struc & (76)

Lastly, we have used the equations of Sec. IV
to compute the binding energy E„,d for the 19 me-
tals considered above. The results are listed in
Table VI together with the experimental values of
Eb„d. The agreement with experiment is within
3%, except in the three very heavy metals, mer-
cury, thallium, and lead, where neglected relativis-
tic effects are undoubtedly important. The theo-
retical results given in Table VI take full account
of hybridization in the heavy alkali and alkaline-
earth metals (with V, = ~ and R,/R~s= 1.0) and in
zinc, cadium, and mercury (with V, = 25.0 and
R,/R„s= 1.0). From Tables IV and V, however,
one can see that the net effect of the hybridization
on Eb„d is very small. This is in agreement with
our previous conclusions for d-band metals, "
but the absolute agreement with experiment is now
decidedly better.

It is also rather instructive to decompose the
binding energy as

and E„,„, is the sum of the three structure-depen-
dent terms in Eq. (73). When written in this way,
the binding energy is very roughly approximated
by Eq. (77) alone

Ebi„d Ef e (79}

as can be seen from Table VI. The first two terms
in Ef, are the familiar kinetic energy and exchange-
correlation energy contributions, but the third
term is somewhat nontrivial. This latter term is
exactly -,'of the electrostatic energy of a point ion
of charge Ze immersed in a compensating sphere
of uniform electron gas. This energy is also a
rough measure of the position of the bottom of the
valence energy bands with respect to vacuum.

It must be stressed, however, that only in the
alkali metals, where all contributions to E„, and
E„„„,are small, is Eq. (79) quantitatively reliable.
In the remaining metals E„, is generally signifi-
cant, although the net orthogonalization hole con-
tribution E,„ is always negligible and accidental
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cancellation of large terms can occur, such as
calcium and strontium. Equation (79) is also
slightly misleading because it implies that the
equilibrium atomic volume 0, (determined by

dEb„u/dA= 0) depends only on the valence Z. Even
in the alkali metals this is quite wrong and E„,
must be considered.

VI. CONCLUSIONS

Careful consideration of the Kohn-Sham equa-
tions has allowed us to incorporate a number of
significant refinements into the generalized pseudo-
potential theory. At the heart of this development
has been the approximation of the full exchange-
correlation potential as a constant plus a sum of
structure-independent intra-atomic potentials,
which we accomplished in Eq. (16). This result
has permitted us to define and treat very pre-
cisely the structure dependence of the hybridiza-
tion potential at all points in the theory, leading
to important modifications in both the energy-
wave-number characteristic and the overlap poten-
tial. %e have not addressed here the question of
the adequacy of the local Kohn-Sham theory itself,
but it seems likely that more general treatments
of exchange and correlation, which encompass non-
local effects, can be handled in a similar manner.

Although the total external input to this formal-
ism consists of only three numbers: the atomic
number, the valence, and the atomic volume, "

reliable calculation of a wide range of properties
seems to be at hand for many simple and d-band
metals. Particularly satisfying in this regard is
the accuracy of Eq. (39) for the d-state overlap
matrix elements n„" and Eq. (73) for the binding
energy, as well as the invariant prediction of the
high c/a axial ratios in zinc and cadmium. All of
these calculations have been very uncertain in the
past. Moreover, it seems clear that the zero-
order pseudoatom construction, and hence the de-
termination of the basic governing quantities E„",
4„(k), n~", and u~c~(k, q), can be directly extended
to transition metals.

Full application of the generalized pseudopoten-
tial theory to the noble and transition metals, how-
ever, entails many additional considerations. In
transition metals one must deal with the funda-
mental complications that arise in the calculation
of the screening electron density and the total
energy. ' In the case of the noble metals, the
equations of Sec. IV apply directly, but the ques-
tion of optimization, both with respect to the
choice of d-state localization potential and the
treatment of exchange and correlation, appears
to be very important in the calculation of the char-
acteristic functions. In contrast to the metals
studied in Sec. V, more precise optimization
criteria for determining V, and R, may be required
in the noble and transition metals. These problems
have not been fully resolved and are currently un-
der study.
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