
PHYSICAL REVIE% B VOLUME 16, NUMBER 6 15 SEPTEMBER 1977
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A theoretical model for the temperature dependence of the elastic shear moduli of the cubic metals is

presented which accounts for the quantitative relationship of these elastic properties to the thermal

expansion. The particular phenomenon which the model is concerned with is the extremely rapid temperature

variation of the shear moduli, which typically is about 25 times as great as the rate of thermal expansion.

The model has the following salient features: (i) The interatomic pair pseudopotential is approximated over

the important thermal range by means of a Morse potential; (ii) the thermal expansion is assumed to arise

from anharmonic Morse oscillators which are further assumed not to be significantly coupled to each other;

(iii) the exact quantum-mechanical solutions for the Morse oscillators are then combined with the Debye

model to give an analytic formula for the thermal expansion; (iv) the elastic shear moduli are calculated

from this, assuming nearest-neighbor interactions only. The calculated thermal expansions are found to agree

quite well with the experimental values, particularly at low temperatures. The rapid temperature variation of
the shear moduli is explained by the model in terms of the thermal movement of the nearest neighbors with

respect to the interatomic-potential minima. Complete agreement between calculated and experimental shear

moduli has been limited, however, by the contributions beyond the nearest neighbors which are not zero,

and which have not been included in the formulas.

I. INTRODUCTION

Because the temperature dependences of the
elastic moduli of materials are an important man-
ifestation of their mechanical and thermodynamic
properties, a number of theoretical investigations
have been made in an attempt to gain a basic un-
derstanding of the mechanisms underlying the ob-
served elastic behavior. Many of these have cen-
tered their attention on the shear moduli of the
cubic metals because of the relative simplicities
possible in their analysis. These investigations
have started from several different points of view,
which include among others the thermodynamic
equation of state, ' the quasiharmonic-anisotropic-
continuum model, ' and the inclusion of anharmonic
contributions in the interatomic potential. '

All of these studies have accounted for the gen-
eral functional form of the temperature depen-
dences of the shear moduli. It has been known for
some time that the shear moduli of most cubic
metals decrease with increasing temperature. The
temperature dependence is linear for moderate
temperatures, while the variation is as T' at low
temperatures. However, there is one quite strik-
ing aspect to this temperature variation which has
apparently received very little attention so far,
and that is the large magnitude of the variation.
Between 0 K and room temperature, for example,
the variation for most cubic metals is typically
about 25 times as great in magnitude as the rate
of thermal expansion, and may represent a per-
cent change of 10% to 20% or more.

It appears unlikely that an explanation of this

large temperature variation is possible unless it
is made within the framework of a realistic model
of the thermal behavior of the interatomic poten-
tial. If the anharmonicity is merely included in
an ad hoc way, then the magnitude of the variation
can be accounted for only by an adjustable con-
stant. ' Most treatments of the interatomic poten-
tial have involved empirical calculations of the
harmonic force constants. These can be related
to the elastic moduli, but not to their temperature
dependence unless anharmonic contributions are
introduced in the interatomic potential.

One of the early force-constant calculations for
the cubic metals was made by De Launay. ' This
calculation used Born's method of long waves to
relate the nearest-neighbor and next-nearest-
neighbor force constants to the elastic moduli. In
addition, De Launay attempted to explain the fail-
ure of the Cauchy condition in cubic metals.
This condition, which states that in cubic crystals,
Cg2 C4g should be obeyed if equilibrium is main-
tained by central pairwise forces only. De Launay
assumed that the difference between these two
elastic moduli is not zero because it equals the
bulk modulus of the electron gas. This calculation
has been criticized by Thomas' who pointed out
that the method of long waves cannot be used with
De Launay's model since it assumes periodic
boundary conditions, and hence, constant volume.
Instead, he argued that the pressure as well as
the bulk modulus of the electron gas must be in-
cluded in the calculation, since the crystal is not
in equilibrium under pair forces alone.

Another problem with this type of calculation
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concerns the form of the central pair potential.
In De Launay's formulation, one of the shear mod-
uli in the bcc case and the difference between the
two shear moduli in the fcc case arise from the
next-nearest-neighbor force constant only. How-

ever, recent theoretical work on the metallic
pseudopotential" raises some serious questions
with this formulation. Not only is the potential
minimum not generally centered at the nearest
neighbor, but the potential, itself, decreases very
rapidly in magnitude beyond the nearest neighbor
with an oscillatory behavior which falls off asymp-
totically as the inverse cube of the distance. This
means that the contributions from beyond the
nearest neighbors are small if not negligible, and
do not adequately account for the shear strengths
of these metals.

Consequently, it is evident that a satisfactory
explanation of the temperature dependence of the
shear moduli of the cubic metals must be consis-
tent with the requirements of lattice stability and
the nature of the pair pseudopotential, incorpo-
rating its anharmonic properties in a natural way
rather than in an add-on fashion. In this work, we
will meet these requirements by approximating
the pseudopotential over the important thermal
range by means of a Morse potential. We will
further assume the existence of nearly indepen-
dent Morse oscar. lators analogous to the normal
modes of the harmonic case. The problems in-
herent in the De Launay approach wall be avoided
by computing the shear moduli directly from the
pair potential by means of Fuehs's method of
homogeneous deformation. ' Certain assumptions
will then be made about the thermal variation of
the interatomic potential which makes possible a
calculation of the thermal expansion and the tem-
perature dependence of the shear moduli. The
calculations show good quantitative agreement
with the observed thermal expansions, particular-
ly at low temperatures, and also account for the
very large temperature variation of the shear
moduli compared to the thermal expansion. The
success of the calculations strongly support the
model used for the thermal variation of the inter-
atomic potential.

II. THERMAL BEHAVIOR OF THE INTERATOMIC
POTENTIAL

If we begin by approximating the pair pseudo-
potential with a Morse potential over the range
where the thermal effects that we are considering
are important, and further assume that the cou-
pling between the Morse oscillators is unimportant
in these effects, we must still determine the be-
havior of this potential as a function of tempera-
ture. The pseudopotentials which have been cal-

culated for these metals are valid only for a spe-
cific temperature. While it is possible to calculate
pseudopotentials for different temperatures, we
will see that the actual thermal variation of the
interatomic potential is quite small, making this
an extremely difficult way to proceed. Instead,
we will draw some inferences about the tempera-
ture variation that will allow us to proceed toward
an analytic solution of the problem in a consider-
ably simpler manner.

A rather detailed discussion of the interatomic
metallic pseudopotential in real space has been
given by Finnis' who points out that this potential
accounts for only a small part of the crystalline
cohesive energy. In spite of this, the calculation
of the bulk modulus appears to involve only this
contribution to the total energy, and furthermore
ignores its implicit volume dependence entirely.
Finnis explains this paradoxical situation in a way
that is quite useful to the understanding of the ther-
mal properties we are considering. The other con-
tribution to the energy, which is the dominant one
and is called F(V)gaby Finnis, has a very weak vol-
ume dependence. In the "pseudoatom" approxi-
mation, in which an ion plus its spherical screen-
ing cloud of z conduction electrons overlaps with
other neutral pseudoatoms to constitute the metal,
this volume dependence does not exist at all.

The value of the pseudoatom picture lies partly
in its simplicity, since this decomposition of the
charge density means that if an ion is displaced,
the resulting charge redistribution is simply ob-
tained by a rigid displacement of the whole pseudo-
atom. But more important is the fact that the
pseudoatom picture is equivalent to second-order
perturbation theory, and in this approximation,
all of the second-order energy change under a
distortion only involves the pseudopotential cal-
culated at constant density. Finnis describes
some of the difficulties with calculating the bulk
modulus using the method of long waves and this
approximation, but the important point is that
these are associated with higher-order correc-
tions which come about when the pseudoatoms
change their size and shape as the metal is di-
lated or compressed. The phenomenon most sen-
sitive to these higher-order corrections is the
breakdown of the Cauchy relation in cubic crystals,
since this involves a considerable amount of elec-
tron screening.

These difficulties do not enter into the calcula-
tion of the shear moduli at a given temperature,
since these involve only homogeneous strains at
constant volume. However, in analyzing the
changes in the shear moduli with temperature and
the accompanying volume changes, some way of
accounting for changes in the shear moduli with
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changing volume is necessary. In examining the
phenomenon of thermal expansion in the pseudo-
atom picture, it is evident that linear expansion
with increasing temperature can arise from the
asymmetrical nature of the interatomic potential
alone. Noting further the weak volume dependence
of F(V), one can infer that the dominant contribu-
tion to the thermal expansion comes from the in-
teratomic potential. In this picture, thermal ex-
pansion arises from the asymmetrical interaction
of the rigid pseudoatoms undergoing thermal mo-
tion. The deformations of the pseudoatoms brought
about by their mutual interactions are not included
in this picture, but these presumably involve rel-
atively small contributions to the effect.

In keeping with this picture, it is reasonable to
assume that the thermal motion of the rigid pseu-
doatoms is described by uncoupled anharmonic
oscillators whose energy distribution is given by
the Debye model. There is a rather obvious test
of these assumptions that can be made from ther-
mal expansion data. It is generally known that any
anharmonic potential can be expanded in a Taylor
series about its minimum, and at low tempera-
tures, the lowest order or harmonic term is dom-
inant. If the next term in the expansion, the cubic
term, is taken as a perturbation on the harmonic
contribution, it is easy to show that the displace-
ment of the equilibrium position for a given quan-
tum state is proportional to the principal quantum
number and the frequency of oscillation. This
description should be valid at low temperatures.
Furthermore, it is interesting to note that this
functional form for the displacement is the same,
except for multiplicative constants, as that of the
energy in the harmonic approximation. What this
means is that if this result is coupled with the
Debye model and the assumption of independent
anharmonic oscillators as a model of linear ther-
mal expansion, then the functional form of the co-
efficient of thermal expansion should be the same
(except for constant factors) as that for the spe-
cific heat.

It is a simple matter, then to compare the co-
efficient of linear thermal-expansion curves with
those for the specific heat. Generally, for the
cubic metals one finds that at low temperatures
they are quite similar. It is only at higher tem-
peratures, where the specific heat levels off and
the coefficient of linear thermal expansion con-
tinues to increase that they begin to differ appre-
ciably. Although these qualitative observations
tend to confirm the assumptions that we have made
so far, a quantitative comparison of the experi-
mental data with a calculation using the Morse
potential should provide a more definitive test
of these assumptions.

III. CALCULATION OF THE THERMAL EXPANSION

To test the assumptions that we have made so
far, we assume that the anharmonic part of the
pseudopotential can be adequately represented
over the important thermal range by the Morse
potential

F. = h~(m +-,') —(h 'uP/4D) (m +-')' (2)

where &o = a(2D/p)' ~2 is the frequency of small
oscillations. For the equilibrium positions of the
bound states, we need an expression such as was
discussed earlier that is valid at low temperatures

y(r) =D(1 —e a(~ ro))

where D is the dissociation energy, r, is the po-
sition of the potential minimum, and a is an in-
verse width of the potential. From this, we wish
to develop an analytic formula for the thermal
expansion that can be quantitatively compared with
experiment. Because r, does not generally equal
r„, the nearest-neighbor distance, we introduce
a new variable x which is defined by the relation
r, =r„(1—x). The separation between the poten-
tial minimum and the nearest-neighbor position
is then xr„which may be either positive or neg-
ative.

According to the assumptions that we have made
so far, the pseudopotential at constant density
should provide an accurate description of the ther-
mal effects that we are considering. This means
that in terms of the Morse potential approximation,
the parameters D, a, and r, are independent of
temperature. The primary thermal effect, then,
is the movement of the nearest-neighbor position
with respect to the potential minimum. Qne can
see intuitively that while thermal expansion pro-
duces relatively small changes in r„, the corre-
sponding changes in the quantity x are quite large
because of the greatly magnified effect which small
changes in r„have on this quantity. It is these
large thermal changes in x(T) that one might guess
to be the origin of the large thermal variation in
the elastic shear moduli.

For the moment, however, we are interested in
applying these assumptions to the calculation of
the thermal expansion. If this is assumed to arise
from the anharmonicity of the interatomic potential
alone, then it can be calculated directly from a
thermal average of the equilibrium positions of
the bound states of the potential. For the Morse
potential, the energies and wave functions of these
bound states are known exactly, and from these
the corresponding displacements can also be de-
termined exactly. Since we will neglect the effect
of any rotational motion, the vibrational energy
for principal quantum number m is given by'0
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(smail quantum numbers). In the Appendix, it is
demonstrated that the average value of the radius
for the bound state of quantum number m is

(r ) =ro+ (k&e/2aD)(m+ -,')+O(&o') (3)

for the Morse potential (1). In the special case of
the Morse potential, contributions of first and
second order only in ~ are an accurate description
for virtually all the bound states because of the
sharp cutoff introduced by the exponential. The
contribution of first order in ~ is the one we are
interested in for the thermal expansions at low

temperatures. By way of a comparison, if the
potential (1) is expanded in a Taylor series and
the cubic term is taken as a perturbation on the
harmonic term first-order perturbation theory
yields the result that (r ) =ro+5(5&e/4aD)(m+-, }.

Before going further, we must first carefully
examine how we will interpret Eq. (3) in our cal-
culation. Strictly speaking, Eqs. (2) and (3) refer
to the fixed frequency and energy levels of a given
Morse potential. But in our assumption of the
existence of independent or uncoupled Morse os-
cillators, we must be careful not to identify these
with the interatomic potential, since the fixed
frequency of this potential cannot lead to a freq-
uency spectrum. Instead, we are assuming the
existence of nearly independent Morse oscillators
which are comparable to the normal modes of the
harmonic approximation. By analogy with the
harmonic case, Eq. (3} is interpreted as repre-
senting the displacements associated with these
independent Morse oscillators and which make up
the anharmonic frequency spectrum. Conceptually,
this idea may be pictured in the following way. In
the harmonic approximation, the energy levels of
the system are not those of the individual inter-
atomic potentials (or the "springs" connecting the
mass points), but rather are determined by the
frequencies of the normal modes. The energy
associated with a given normal mode can be con-
nected with an average root-mean- square devia-
tion of the "springs" from equilibrium which is
small for a long wavelength and large for a short
wavelength. The exact relationship is determined
by the force constants of the individual springs,
which in turn are determined by the energy levels
and frequencies of free oscillation of the individual
interatomic potentials. It seems reasonable to con-
nect, in similar fashion, the asymmetrical move-
ment of anharmonic "springs" for a given mode of
oscillation with a net displacement associated with
the "Morse force constant" or, alternatively, the
frequency of small, free oscillations associated
with the Morse potential. The interpretation of
Eq. (3) in this manner seems reasonable from this
conceptual viewpoint and is consistent with the

can be determined in complete analogy with the
thermal average of the harmonic oscillator energy,
making use of results such as Z„"~e "'=(1—e ") '
and ~~ne ""=e"(e*—1) '. The result is

(4)

where the second term is the contribution of the
zero-point displacement.

The next step in the calculation of the thermal
expansion is the averaging of (4} over the frequen-
cy distribution of the crystal. The average is only
taken over the third term on the right-hand side
of (4), which in the Debye approximation is given
by

(F) = — —uPd&IJ (e"" ' —1) '1 'BN S~
3N o +~3 2aD (5)

We can see that the thermal average in (5} is pro-
portional to the harmonic energy in agreement
with GrGneisen's rule. The thermal expansion
according to (5) can now be calculated in a manner
completely analogous to the calculation of the en-
ergy in the harmonic approximation. Letting
x =ff~/kT and xn =8~/T, one finds that

(F) = (3kT/2aD}(T/0 )'f(x ), (6)

where

and e~ is the Debye temperature. The linear ther-
mal expansion according to this model is given by
(y')/r„. The coefficient of linear thermal expansion
n(T) is simply the temperature derivative of this
quantity as given by (6}, i.e.,

dz "=2
D e

d (F)/r„3k T
dT 2aDr„el,

where
D 4 gX 8g(x )= (, ), .

success of the quasiharmonic model. This as-
sumption is necessitated by the lack of any ap-
propriate mathematical method for dealing with
anharmonic forces, but as will be seen later, it
yields excellent agreement with experimental re-
sults.

We now wish to calculate the thermal average of
(3) for an individual Morse oscillator which is
valid for small quantum numbers. Using the terms
of first order in &u only in (2) and (3), the thermal
average

&r &e
*-&" ~ .*-"')~m m ~m
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It is evident from (6} and (7) that this model

yields a linear thermal expansion that has the
same functional form as the energy in the harmon-
ic approximation, and furthermore, that o(T} has
the same functional form as the specific heat in
the Debye approximation. In addition, it is evident
that these two formulas give these two quantities
in terms of the product of two unknowns: the depth
of the potential well and its inverse width in units
of the inverse nearest-neighbor distance, a~„.
This product of the width and depth of the potential
is the only unknown parameter, and thus can be
determined by a single experimental value of ei-
ther the linear thermal expansion or n(T) at a
particular temperature.

Comparing these analytical formulas with ex-
perimental data is therefore a simple matter,
since it requires only the evaluation of a single
parameter from the data. For this purpose the
critical compilation of thermal expansion data of
Touloukian et al. was used, and for consistency,
the total per cent thermal expansion from 0 K up
to room temperature (293'K) was used to evaluate
Da~„. Comparison of the experimental data with
the analytical formulas showed excellent agree-
ment for a large number of cubic metals, partic-
ularly at low temperatures. Comparison of the
theoretical curve and experimental values of a(T}
for copper is illustrated in Fig. 1. As can be seen,
the agreement is excellent up to room temperature,
and confirms the conjecture that the a(T) curve
has the same functional form as the specific heat
at low temperatures. At higher temperatures, the
theoretical curve levels off, as does that for the
specific heat, while the experimental points con-
tinue to take on higher values. This is because
the terms which are quadratic in the frequency,
which have not been included in the theoretical
formula, take on greater and greater importance
at higher temperatures. The agreement illustrated
for copper is comparable to that found for other
metals.

A test of this explanation of the deviations at
higher temperatures is easily made in the case of
metals which have deep potential wells. Such met-
als are characterized by small thermal expansions
and large shear moduli. For such metals, the
"low temperature" behavior should extend to rel-
atively high temperatures because the greater
depth of the well makes the linear behavior extend
over a greater range of energies. Although the
thermal expansion data alone do not yield a value
for the depth of the well, we will see later, from
values obtained from the shear moduli, that such
a trend is apparent. In the case of tungsten, for
example, which has a deep well, the "low tem-
perature" behavior extends to approximately
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This calculation has demonstrated that assump-

tions which have been made so far are consistent
with the experimental thermal expansion data.
Furthermore, the close agreement between theory
and experiment strongly suggests the validity of
these assumptions. While the high-temperature
behavior of the thermal expansion data could in
principle be treated theoretically by including the
contributions of the terms which are quadratic in
the frequency, such a treatment is not particularly
important to the main problem at hand, which is
the confirmation of the proposed thermal model to
be used in the calculation of the elastic shear
moduli.

IV. CALCULATION OF THE ELASTIC SHEAR MODULI

We saw earlier that the quantity x(T), which is
the fractional separation between the nearest-
neighbor distance and the potential minimum, is
a very sensitive function of changes in r„. Since
in the thermal model that we are using the poten-
tial parameters are independent of temperature,
then the changes in x(T) brought about by ther-
mally induced changes in z„provide the basic
mechanism for the large temperature-dependent
changes in the shear moduli. The next step in the
analysis is the incorporation of this mechanism
into an analytical representation of these temper-
ature changes.

The shear moduli C«and C '=-,'(C» —C») for the
cubic metals can be expressed in terms of the
first and second derivatives of the interatomic
potential, evaluated at the nearest-neighbor dis-
tance, by means of the method of homogeneous de-
formation. ' The expressions for thy fcc lattice
are

8000 400 600
TEMPERATURE ['K ]

FIG. 1. Calculated (solid line) and observed values
for copper of the temperature variation of the coefficient
of thermal expansion.
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c '= ,'[v—r„v'(~„)+~2v "(& „)],
c„=,'[3r„—v'(r„)+ r„'v "(~„)],

and for the bcc lattice

c '=~r„v'(r„),

c„=f[2r„v'(~„)+~„'v"(r„)].
These expressions include nearest-neighbor inter-
actions only, and give the shear moduli in units
of energy per ion. Because the contributions from
beyond the nearest neighbors are generally small,
they will not be included in the analysis. Some of
the consequences of this approximation will be
discussed later.

These formulas for the shear moduli of the two

cubic structures can be expressed in terms of the
Morse potential (1). The result is

C = Dar„e '"""[3(1—e ~'")+ar„(2e '""~—1)],
C'= 'Dar„e—~" [f(l —e " )+ar„(2e '"""—1)],

for the fcc structure and

(8)

(9)

C« =+Dar„e '""~[2(l—e ""&)+ ar„(2e ""—1)], (10)

C '=aDar„e "~[1—e '*"~]

for the bcc structure, where the equations have
been expressed in terms of the variable x= (r„—ro)
/r„. Before proceeding to quantitative consider-
ations, there are several qualitative observations
that can be made from these equations. First, we
can see that the ratio of the two shear moduli

&3 =C«/C ', which is usually known as the aniso-
tropy factor, is dependent upon several things.
The most important is structure, since it is quite
evident that this ratio takes on quite a different
form for the bcc structure than for the fcc struc-
ture. Another important factor is the position of
the potential minimum with respect to the nearest
neighbor. If the potential minimum lies inside the
nearest neighbor (x) 0), then the ratio has a value
less than 2 in the case of the fcc structure. Qn the
other hand, if the potential minimum lies outside
the nearest neighbor (x & 0), then P is greater than
2. Only in the special case when the potential min-
imum is exactly at the nearest neighbor [x =0, and
V'(r„) = 0] is the ratio exactly equal to 2. Most fcc
metals fall into the second category, although
aluminum is a notable exception.

In the case of the bcc structure, the stability
condition C '& 0 requires that the potential minimum
lie inside of the nearest neighbor. Although P is
not strongly dependent on the temperature in most
fcc metals, it can be seen from (10) and (11) that
P is generally quite strongly temperature depen-
dent in the bcc metals unless V "(r„)= 0. None of
the bcc metals investigated was found to obey this

r„(T)= r„(0)(1+nr/r„) (12)

to first order in dr/r„, the temperature depen-
dences of the shear moduli will be expressed as
functions of this quantity. Since x(T) occurs in
Eqs. (8)-(11)only in the exponentials, expressions
for their temperature dependence are needed.
Making use of (12) and the definition of x, one ob-
tains the result

e-ar(T&r„&T& — me( r„oi &[ 0&1&& (n&,/& )]tt (13)

Unless otherwise specified, the quantities x and

criterion, although iron comes closest. Interest-
ingly, iron is known to undergo two phase trans-
formations at elevated temperatures (1185 and

1667 'K), which would be consistent with a change
in sign in V'(r„) for bcc iron above room temper-
ature. From these qualitative considerations, it
is evident that the magnitude and temperature de-
pendence of the anisotropy factor in cubic metals
is a function not only of the structure, but also of
the details of the interatomic potential and its
relative position with respect to the nearest neigh-
bors.

It is apparent that there are three unknowns in
Eqs. (8), (9), (10), and (11), namely D, a (or a& „),
and x, corresponding to the three parameters spe-
cifying the Morse function. These three para-
meters can be evaluated from three experimental
values of the two elastic shear moduli, (one eval-
uated at two different temperatures) or alterna-
tively, from two values of the elastic shear modu-
li and the value of Dam„obtained from the thermal
expansion data. In principle, these two methods
should be equivalent if the theory is correct, but
in practice, we wi11. see that in some cases, the
approximations used so far favor the second ap-
proach over the first for a practical evaluation of
the parameters.

'The evaluation of these three parameters should
not only give the important dimensions of the pseu-
dopotential well but also the temperature depen-
dence of the shear moduli, Before proceeding
with this part of the calculation, we will first de-
rive analytical formulas for the temperature de-
pendence. These will be used to show the origin
of the large thermal variation as well as for the
numerical evaluation of the parameters. To begin,
there are two quantities in Eqs. (8)-(11) that vary
with the temperature according to the thermal
model used here. The first is x„which increases
with increasing temperature according to the ther-
mal expansion relation. The second is the quantity
x which we have already seen varies rapidly with
the temperature. For simplicity, we will discuss
the variation of these quantities with respect to
0'K. Since
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r„are the values at O'K in the above formulas and

those which follow.
The relative magnitude of the temperature de-

pendence of x(T) can now be seen by combining

(12) with its relation with r, and r„or by taking
logarithms of both sides of (13). The result is

x(Z') =x(0)+ &r/r„. (14)

Therefore the change in xr„ is exactly the same as
that in r„but since the first quantity is such a
small fraction of the second in most cases, the
percent change is very large by comparison. We

may now use these relations to derive the change
with temperature of the shear moduli with respect
to their values at O'K (or any other arbitrary
fixed temperature). Keeping terms of only first
order in nr/r„, one obtains the results

x {1+ 2/ar„+ (e ~"~/I')

x [e ~"(2ar„-3) —(2e '~~ —1)J), (15)

r C'(T}= —ar„(nr/r„)

x {1+2/ar„+ (e "~/I")

x [e '"'~(2ar„- 7) —(2e '*""—1]], (16)

for the fcc structure and

&C«(T)
„( / „)

4g

x{1+2/ar„+(Be ~~/9F)

x [2e ""~(ar„-1) —(2e '*"~—I)]} (17)

nc'(z')
, 0)

=- ar„(nr/r„)[1+2/ar„- 16e " ~/31"}],

(18)

for the bcc structure, where I'=C«(0)/Dar„and
I"= 2C '(0)/Dar„. These four equations include the
small correction for the thermal variation of the
volume in order to make a comparison with ex-
perimantal data more convenient.

There are several things that are immediately
evident from these equations. First, there is only
one temperature-dependent quantity on the right-
hand side of these equations which determines the
fractional change in the elastic moduli with tem-
perature, namely, the linear thermal expansion
nr/r„This mea. ns that the functional form of the
temperature dependence is determined by that of
the thermal expansion. From Eq. (6), it can easily
be deduced that this behavior is linear at high tem-
peratures and varies as T at low temperatures,
in accord with observation. Moreover, since the

quantities in curly brackets on the right-hand side
of the equations are generally positive [with the
possible exception of Eq. (18}which will be dis-
cussed later], the negative sign in each of the
equations correctly indicates that the elastic mod-
uli decrease with increasing temperature.

The most important property of the equations,
however, is the fact that the magnitude of the tern-
perature change is related to physical parameters
of the potential function. The leading factor in

each equation is the quantity ar„which is the in-
verse of the fraction of r„ that equals the width of
the potential well. For example, if the width of
the potential is a tenth of r„, then ar„=10. Since
the width of the potential well is typically a small
fraction of r„, this factor by itself introduces an
order-of-magnitude percent change in the elastic
moduli compared to the thermal expansion. Gen-
erally, the quantities inside the curly brackets
are greater than 1, so that these introduce an even
greater change in the elastic moduli compared to
the thermal expansion. Consequently, the equa-
tions account for the large thermal variation of
the shear moduli as well as the functional depen-
dence with temperature. Clearly, the detailed
form of the equations depends on the specific form
of the Morse potential which was assumed to ap-
proximate the actual interatomic potential. How-

ever, it seems reasonable to assume that the fac-
tors which have been found to be important for the
temperature variation of the elastic moduli, par-
ticularly the rapid variation of x(T) which with the
Morse potential yields a multiplicative factor ar„
in the temperature variation, would also be the
basic mechanism arrived at with a different an-
harmonic potential.

In order to compare the above equations with
experimental results, it is necessary to deduce
values for the three parameters which charac-
terize the potential. One way of accomplishing
this is to take three experimental values for the
two shear moduli and fit these to Eqs. (8) and (9)
or (10) and (11), depending on the structure. When
this calculation was carried out, two problems
arose which are attributable to the approximations
which have been used. First, it was found that
it was not possible to simultaneously fit the theo-
retical curves to the experimental points of both
shear moduli. In addition, it was found that when
the best compromise fit was made, the values of
Dar„obtained from the calculation were usually
inconsistent with the values obtained from the
thermal expansion data, sometimes by large
amounts.

The reasons for these difficulties can be seen
by referring to Fig. 2, where the potential func-
tions for aluminum are displayed. In the case of
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FIG. 2. The interatomic pair pseudopotential as re-
ported by Harrison (Hef. 6) (solid line) and the effective
Morse potential calculated in this work (broken line)
for aluminum. The zero of energy of the Norse poten-
tial was adjusted to coincide with that of the pseudopo-
tential as explained in the text. The vertical bars indi-
cate the relative positions of successive neighbors in
the crystal. The displacement between ro and r„ for
the Morse potential is for 300'K.

aluminum, it can be seen that the behavior of the
pseudopotential is such that the actual magnitude
of the potential at lattice sites beyond the nearest
neighbors is negligibly small, but because of its
oscillatory behavior, the same is not true of its
first two derivatives. These give nontrivial con-
tributions to the shear moduli which, while rep-
resenting only a small fraction of their total mag-
nitude, can account for a large fraction of their
percent change with temperature. Consequently,
a nearest-neighbor theory based on the Morse
potential generally cannot give a quantitatively
accurate description of both shear moduli with
only three parameters.

A second problem arises from the details of the
functional form of the Morse potential. Although
this potential may have a very similar overall
shape to the actual pseudopotential, the first two
derivatives at the nearest neighbor can be quite
different. Aluminum is the only fcc metal exam-
ined in which the potential minimum lies inside
the nearest neighbor, and because the derivatives
beyond the potential minimum are not very large,
there is only a 30% difference between the values
of Dar„obtained from the shear moduli on the one
hand and the thermal-expansion data on the other.
However, in all of the other fcc metals considered,
the potential minimum lies outside the nearest
neighbor, and the derivatives of the potential must

be evaluated on its backside, which in the case of
the Morse potential is very steep. The actual
pseudopotential is not generally as steep in this
region, particularly when the potential minimum
is outside the nearest neighbor, since it does not
have to provide the major contribution to the
atomic repulsions that provide crystalline stabil-
ity. It is easy to determine that the first two de-
rivatives of the Morse potential are both propor-
tional to D, and that it is the value of this quantity
that is sacrificed when the derivatives of the
Morse potential are too large compared to the ac-
tual pseudopotential.

In the fcc metals other than aluminum, the val-
ues of D which are deduced from the elastic mod-
uli measurements are about one to two orders of
magnitude too small. This is because the backside
of the Morse potential is so steep at the nearest
neighbors in these cases that the values of D must
be made unrealistically small so that the deriva-
tives can be made to correspond to the observed
values of the shear moduli. Because of this, it
became evident that more realistic values of D
could be obtained from the thermal expansion data,
since this is primarily dependent upon the overall
shape of the potential curve rather than on its de-
rivatives at a particular point. Using Egs. (15)-
(18), values of D as well as ar„and x can then be
easily obtained by computing I' and I"from the
values of Dam„obtained from the thermal expan-
sion data, and then determining values of ar„and
x which best correspond to the observed thermal
changes in the shear moduli. The values of D ob-
tained in this way are not consistent with the mag-
nitudes of the shear moduli observed experimen-
tally, but they are consistent with the thermal ex-
pansion data and with the overall shape of the po-
tential- energy curve.

The question of the best representation of the
experimental data by the theoretical relations is
somewhat arbitrary, but in the fcc metals, this
was taken to be that representation which averages
the deviations between the theoretical and experi-
mental curves equally for the two shear moduli.
Figure 3 illustrates the agreement between theo-
ry and experiment for aluminum obtained in this
way. This agreement is fairly typical of that found
for the other fcc metals. The parameters calcu-
lated for the Morse potential are not very sensi-
tive to the way in which the comprimise fit between
theory and experiment is achieved. In the case of
the bcc metals, C ' is dependent only on the first
derivative of the potential at r„and this is ex-
tremely sensitive to the position of the potential
minimum. Moreover, in the bcc case, the next
nearest neighbors are only a little beyond the
nearest-neighbor distance. Consequently, the the-,
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3.25 TABLE I. Calculated parameters of the effective
Morse potential for various metallic elements.

Metal Structure 6& ('K) D (eV) ar„
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Aluminum
Copper
Gold
Lead
Silver
Thorium

Iron
Potassium
Sodium
Tungsten
Vanadium

fcc
fcc
fcc
fcc
fcc
fcc

bcc
bcc
bcc
bcc
bcc

430.3
340.1
162.2
105.3
227.4
165.3

477
91

158
384.3
399.3

0.19 8.8
0.55 4.5
0.71 4.4
0.35 4.4
0.49 4.6
0.87 4.7
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0.13 5.2
0.13 5.4
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0.61 7.8
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-0.102
-0.228
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-0.201
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0.072
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FIG. 3. Calculated (solid lines) and observed varia-
tion of the elastic shear moduli of aluminum.

oretical formulas (11) and (18) are probably the
least accurate of all. Because of this, the para-
meters of the Morse potential were determined by
Eq. (1t) alone in the case of the bcc metals.

Table I illustrates the results of these calcu-
lations for various cubic metals. The metals cho-
sen were those for which good elastic moduli data
are available including aluminum, "silver, "
gold, "lead, '~ copper, "and thorium, "among the
fcc metals, and tungsten, "iron, "vanadium, '9

potassium, "and sodium, "among the bcc metals.
The Debye temperatures used in the calculations
and listed in Table I were obtained from extra-
polations of the elastic moduli data to O'K, ex-
cept in the cases of sodium and potassium, where
they were obtained from low-temperature spe-
cific-heat data. The Morse potential parameters
listed in the table are fairly realistic representa-
tions of the effective behavior of the pseudopoten-
tial in the vicinity of the potential rninirnum in
these crystals with respect to their thermal prop-
erties, but this representation must be carefully
interpreted. The reason for this can be seen by
referring back to Fig. 2. The Morse potential does
not have any bound states for positive energy val-
ues, but this is not generally true for the pseudo-
potential. In the case of aluminum, the potential
barrier extends significantly into the region of
positive energies and because of this, a compar-
ison with an effective Morse potential requires
that their zeros of energy be adjusted accordingly.

In Fig. 2, this was accomplished by setting the
energies at which the potential minima occur so
that they are equal. When this is done, it can be
seen that the shapes of the two curves are very
similar as are their relative positions with re-
spect to r„. Thus, the interpretation of the ther-
mal properties in terms of an effective Morse
potential must include the recognition that it may
have very different properties with respect to its
overall shape away from the minimum of energy
and its placement on the energy scale from that of
the actual pseudopotential.

V. SUMMARY AND CONCLUSIONS

We have presented a theoretical model for the
thermal behavior of the elastic shear moduli and
the thermal expansion of the cubic metals in terms
of the known quantum-mechanical solutions of the
Morse potential. This model appears to be most
successful when it is dependent only upon the over-
all shape of the interatomic potential, as is the
case in the thermal expansion, and least success-
ful when it depends upon the fine details of the po-
tential, such as the derivatives at r„which are
needed to calculate the elastic shear moduli. Al-
though the actual quantitative calculations are de-
pendent upon the specific solutions for the Morse
potential, the success of the model in describing
the thermal expansion and the large temperature
variation of the shear moduli strongly suggests
that the mechanism which it employs is basically
correct and not dependent upon the specific as-
sumed form of the interatomic potential in the re-
gion of thermal importance.

This mechanism„which is based upon the pseu-
doatom model of rigid, spherical atomic constitu-
ents, starts with an interatomic potential which is
independent of density and thus temperature as
well. The thermal expansion arises solely from
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the anharmonicity of the interatomic potential and
the most pronounced thermal effect is the move-
ment of the nearest neighbors with respect to the
potential minimum. This thermal effect in turn
gives rise to the large variation with temperature
of the elastic shear moduli, as observed experi-
mentally. The.s, the thermal properties of these
metals are related to a specific microscopic mod-
el of the interatomic potential.

APPENDIX: CALCULATION OF THE AVERAGE
DISPLACEMENT FOR THE BOUND STATES OF

THE MORSE POTENTIAL

The calculation of the diagonal and off-diagonal
matrix elements of the radius for the wave func-
tions of the bound states of the Morse potential
were completed long ago by Scholz" by the use of
generating functions. 'The diagonal matrix ele-
ments for a quantum number m which give the
quantum-mechanical average for the displacement
are given by

(r ) =r,+a '[tnt —4(t —(2m+1))], (19)

where t =4DjR&o, and 4(z) is the psi or digamma
function defined as the logarithmic derivative of
the gamma function. " The result (19) is not par-
ticularly useful for our purposes since it is not in
a form amenable to the direct summations and
integrations which we must perform. As discussed
earlier, by means of the Taylor-series expansion
and perturbation theory, one can demonstrate that
in the limit of small anharmonicity, the displace-
ment is proportional to the frequency and the prin-
cipal quantum number. It is such an expression
that we wish to obtain now for small quantum num-
bers. Noting that t in (19) is a large number, we
examine the asymptotic form of g'(z), 23

4(z) = ln(z) —1j2z —1/12z'+ (20)

The expansion (20) does not converge even on the
real axis for small values of the argument, but

interestingly enough, one can determine by direct
calculation that the first three terms in the expan-
sion do give an accurate result on the real axis
for values as small as g =1. Since t is a real num-
ber, what this means is that the linear approxi-
mation (first two terms) is an accurate represen-
tation of (19) for a fairly wide range of quantum
numbers, and that the addition of the quadratic
contribution (first three terms) is quite accurate
for virtually all the quantum numbers in the spe-
cial case of the Morse potential. Since we are
interested only in the linear approximation, we
will use only the first two terms in (20).

We begin by examining the case m =0. Making
use of the recurrence relation"

4(t+1) =4(t)+t '

one obtains the result

(21)

(r,) —r, =a '[(2f) ' (+t 1) 'J+ O(-t ')

2(af) '+ O—(f '). (23)

Next, by repeated use of (21), as well as (20), one
obtains for the case m =1

(r, ) =a '[ln(t) —@(t 3)J, -
=(r,)+a-'[(f 2) '+ (f-3)-'J-
=(r,)+2(at) '+ O(t ') .

This process can be repeated over and over agian,
and by induction, one obtains for the general case
of the quantum number m the result

(r ) =(r,)+2m(at) '+ O(t '),
= r, +2(at) '(m+ —,') + O(t '),

which is the desired result.

(24)

(ro) =a '(1n(t) —(4'(t) —(f-1) ')}+ro. (22)

Now using the first two terms in the expansion (20),
one gets
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