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A new calculation of surface-plasmon excitation in tunnel junctions is described, The tunnel junction is

divided into three regions of complex dielectric function &L (co), eo(co), and z„(au) which correspond to the left

electrode, the barrier, and the right electrode, respectively. Maxwell's equations are solved for the classical

electromagnetic fields. The source terms are given by the quantum-mechanical transition current and charge,

f = (ieh/2m)(Q~„&pi —
QL &Q~„) and p = —ep~„itiL, for an electronic transition from a state QL in the

left electrode to a state Q„ in the right. The transition rate is given by (—2/fico)ReJR, ~.fd'r where

fico = EL —E„.This new formulation avoids the need to quantize the electromagnetic fields and allows the

use of complex dielectric functions. Current-carrying orthogonal eigenfunctions are used for QL and Qz in

place of the nonorthogonal basis set associated with the transfer-Hamiltonian theory of inelastic tunneling.

The transition rate calculated from the latter theory differs from the present calculation by a factor as large

as 10 to 100 in some instances. Numerical estimates of the rate of surface-plasmon excitation in Al-A1, O, -Ag

junctions are given. The inelastic tunneling rate is found to be -0.1 of the elastic rate (for electrons

tunneling into Ag). Excitation of electromagnetic modes which can be made radiative by roughening the

electrodes is discussed.

I. INTRODUCTION

In a recent letter, ' Lambe and McCarthy (LM)
reported emission of light from metal-insulator-
metal (M I M) tun-n-el junctions. They interpreted
the effect as being due to the excitation of the elec-
tromagnetic modes of the junction by tunneling
electrons. These modes are called surface plas-
mons or slow waves. ' Although they are not or-
dinarily radiative, surface roughness can cause
them to radiate. ' In the LM experiments, the
metal electrodes were deliberately roughened to
induce light emission.

In LM, the mechanism for excitation of the sur-
face plasmons was likened to the excitation of
molecular vibrations in tunnel junctions. ' In this
mechanism there is an inelastic channel for tunnel-
ing in which an electron makes a transition from
one electrode to the other with the accompanying
excitation of a surface plasmon. This is in con-
trast to an injection process' where the electron
first tunnels elastically and then decays toward the
Fermi leve? by the emission of surface or bulk
plasmons (as well as by other scattering).

In a junction composed of dissimilar electrodes,
such as LM's AI-Al, O, -Ag junctions, the plasma.
excitations of interest are primarily associated
with one electrode —Ag in LM. For a bias voltage
such that electrons are being injected into the Ag
electrode, the excitation of plasma oscillations will
be much stronger than in the opposite bias for the
injection process. On the other hand, inelastic
tunneling does not necessarily result in such
asymmetric excitation and light emission. In the
LM experiments, light was observed in both bias
directions. It was concluded that inelastic tunnel-

ing plays a dominant role. Consequently, the in-
elastic tunneling excitation of surface plasmons in
M-I-M junctions will be studied in this paper.

In metal-semiconductor junctions, inelastic tun-
neling due to surface-plasmon excitation has been
observed by Tsui. ' A theory for such junctions has
been given by Ngai, Economou, and Cohen. ' In
their calculation, it is necessary to find the norm-
al, electromagnetic modes of the junction and to
quantize them. Since simple free-electron-like
dielectric functions were assumed for both the
metal and the semiconductor, it was straightfor-
ward to find the modes and to quantize them. For
the problem considered in the present work, the
dielectric functions are more complicated and it
is not as easy to quantize the modes. In fact, for
lossy dielectrics the modes may not be well de-
fined, yet inelastic tunneling must still occur.

This difficulty can be avoided since there is actu-
ally no need to introduce normal modes or their
quantization. The calculation of the transition rate
can be cast into a form similar to an energy-loss
calculation for electron beams. ' The only differ-
ence is in the source terms for Maxwell's equa-
tions. In tunneling they are found from the quan-
tum-mechanical transition current density' and
transition charge density, whereas the source in
the beam problem is an electron moving with uni-
form velocity (treated classically —except Ref. 10,
which uses transition current and charge). In both
cases the calculation of normal modes and their
quantization is unnecessary. Only the response of
the dielectric system to an external current and
charge distribution is required and this can be
found directly from Maxwell's equations. The
transition rate can be calculated in a straightfor-
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ward way even for lossy diel. ectrics where the

normal modes are not well defined.
Another feature of the calculation by Ngai, Ec-

onomou, and Cohen is the use of a nonorthogonal
basis set. The set consists of states g~ (gs) which

are eigenfunctions of a Hamiltonian for the left
(right) problem. This is the usual basis set for the

transfer-Hamiltonian theory of inelastic tunnel-

ing."" The interaction between the tunneling

electrons and the surface plasmons is represented
by the matrix element (g„I-eQ"

I (~) where Q" is
the surface-plasmon potential (retardation is neg-
lected). The region of interaction is restricted to
the barrier. However, from a study of inelastic
tunneling due to vibration of molecular impurities
in the barrier, '~ it has been concluded that the
proper basis is a set comprised of orthogonal
eigenfunctions of a single Hamiltonian for the en-
tire system. A typical eigenfunction represents an
electron incident upon the barrier from the left (or
right) with transmitted and reflected components.
In addition, it can be shown that the interaction
should not be limited to just the barrier, but should
also include the electrodes (at least the region
within a mean free path of the barrier). For sur-
face plasmons, the difference between the two
methods of calculation can be large. Hence, the
proper wave functions are used in this paper.

A general theory of the energy loss and the in-
elastic transition rate of a tunneling electron is
given in Sec. II. This theory is applied to a bar-
rier represented by a rectangular potential in Sec.
III. Numerical results for Al-AI O,-Ag are given
in Sec. IV. The excitation of modes which are like-
ly to be radiative is discussed for this system. In
Sec. V, comparison is made to the inelastic trans-
fer-Hamiltonian approach. A short symmary is
given in Sec. VI.

II. GENERAL THEORY

Suppose that the junction consists of three regions
of complex dielectric function, e~(&u), e, (&u), and

e„(~), which correspond to the left electrode, the
barrier, and the right electrode, respectively.
Consider an electronic transition from a state g~
in the left electrode to a state g~ in the right. This
represents the inelastic tunneling of an electron
from the left electrode to the right. Associated
with the transition is current density~ (the symmet-
ric form is used —see Ref. 10).

J = (ieii/2m)( z ttgzV—P~ Vg~) . (I)
The frequency dependence of J is e '"' where ~ is
related to the difference in energy between the two
states:

5~ =E~ —E~. (2)

The transition charge density can be found from
the continuity equation

(3)

If g~ and g„are exact eigenfunctions of the same
single-particle Hamiltonian which is of the form

H, = ( a'/2-m)V'+ U(r),

where U(r) is the potential energy, then

(4)

(6)

satisfies (3) with J given by (I). The quantity p is
identified as the transition charge density.

Since the source terms (J and p) are known, it
is possible to determine the electromagnetic fields
from Maxwell's equations. From the calculated
electric field E, the rate of energy loss in the
transition can be found:

dg' =-2Re E* Jd'~. (6)

This transition rate is analogous to

(»«&1(v. I
ee"

I c.&-I'6(~~+F-.

in the transfer-Hamiltonian theory. '"'"
(8)

III. APPLICATION TO RECTANGULAR BARRIER
POTENTIAL

In this section the general theory of the previous
section is applied to a simple model of the barrier
potential. If we divide the inelastic tunneling rate
by the elastic rate, most of the details of the bar-
rier tend to cancel, so for simplicity only a rec-
tangular barrier potential will be considered, i.e. ,

U, , 0&z&b
U(r) =

0, otherwise .

(9a)

(9b)

The z direction is taken to coincide with the normal
to the barrier. The barrier width is b. Since most
of the electrons which tunnel are incident on the
barrier near the normal, we consider only normal
incidence. To avoid unnecessary complications,
the band structure of the electrodes will be ig.-
nored. For the purposes of calculating wave func-
tions, the junction is perfectly symmetric. The
asymmetry only comes into the dielectric func-
tions.

Re denotes the real part. Since the energy loss per
transition must be 5~, the transition rate is given
by

dg -2
dt

Re E* Jd
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A. Eigenfunctions T = [2iKl(k+iK)]e «'C, (16c)

Assuming normal incidence the initial state can
be written

A-l/2
} (z)e E&(/h (10)

l/zg (z)e («~+z(((/(((
R R

As remarked previously, it has been shown" in
the case of the excitation of a molecular vibrator
the proper choice for g~and gR are current-carry-
ing eigenfunctions. The same arguments apply to
the excitation of surface plasmons. Therefore,

(2L) "'(e"z'+R e "z*), z&0 (12a)

Xz = (2L) ' '(Cze «z'+Dze &'}, 0&z &b (12b)

(2L) ' ' T e («L ' l, b & z, (12c)

where A is the junction area. The final state will
in general have a component of wave vector in the
plane of the junction. Let us take that component
to be of magnitude q and in the negative x direction.
This means that the electron transfers momentum

)Iq (in the «direction) to the electromagnetic fields
in the transition along with the energy transfer 5+.
So

C =[2k/(k+iK}][1 —[(k —iK)/(k+iK)]'e '«') '.
(16d)

F =F(z )e («~ "() (17)

Whenever F(z) is written for any quantity F, the
factor e'"" ""has been omitted.

B. Electric field

Although retardation plays a role in the disper-
sion curve for surface plasmons and in the energy-
loss function near the light line, it can be neglect-
ed for the region of the co-q plane which is impor-
tant in the present calculation. This approximation
simplifies the algebraic manipulations significant-
ly. The electric field is then given by

E =-VQ (16)

From these eigenfunctions, the transition current
density J and charge density p can be calculated.
The form of these quantities and the resultant fields
1s

where L is the length of either electrode (Actua. l-
ly, this is just a normalization length since the
electrodes are really treated as infinite. ) From (4}
and (9), we see that

where

—V ' [f(z, (l()V('p] =4((p (19)

k~ =(2mE /I')'/'

K, = [2m(f/, —Z, )/k']'/z.

(13a)

(13b)

zz((d), z & 0

z(z, &u}= zo((l/), 0&z &b

e„(&u), b &z

(20a)

(20b)

(20c)

Likewise,

(2L) '/'T„e "((' z &0 (14a)

(2L} / (C e «((' "+D e«((' ")
0&z&b (14b)

R

Local dielectric functions have been assumed, i.e.,
the dependence on wave vector has been neglected.
Both q and p are of the form (17).

The transition charge density can be computed
from (5) and (10)-(16):

(2L) / (e ( (s-(((»R e(l(((g-5&)
R

b &z, (14c)
p elk»g+ p eel I z (0
p ~E c+p eE g+p e-E» +p e-E

(21a)

where

k, = (2mE„)/I'- q')'/'

and

—[2m (I/ R )/ff 2+ q 2]l /z

(15a)

(15b)

p(z} =C

e~~»(~)+ -ik (g-b)
PR» PR e

where

0&z&b (21b)

b & z, (21c)

R = [(k-iK)/2k](1 —e ' )C

D= —[(k —iK)/(k+iK))e '«lC,
(16a)

(16b}

Note that kR is the z component of the wave vector
associated with gR. The coefficients R, C, D, and
T are determined by requiring continuity of p and
d}(/dz at z =0 and b. It is found that (dropping sub-
scripts)

pz, = eTz'/2AL, -
pz = eT) Rz/2AL-

p, = eC„*C~e «R'-/2AL

p2 = —e Cg Dz e «((b/2AL

p, = -eDg Cz e«((l/2AL,

p, = -eD+~ e «& l2AL

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)
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pR. =-e T~/2AL,

pz =-eR+*Tz/2AL,

(»g)

(22h)

q(z) = q. (z)+ q.(z),

where the bulk-plasmon part is

(2'I )

k, =kR+k (22i)

K, =K~ +K~ . (22|)

The boundary conditions are that q( and z Bq(/Bz

are continuous at z =0 and b and that y is finite as
z —+~. The solution to (19) with charge density
(21) which satisfies these boundary conditions is

gz(z) -gz(0)e", z & 0

q, (z) = 0, 0&z &b

(z)-g (b}e " " b&z

The surface-plasmon portion is

(28a)

(28b)

(28c)

a e "+g (z), z &0

y(z)= a, e'*+a e "+g0(z), 0&z&b

a„e "' "+g„(z), b & z,

(23a)

(23b)

(23c)

a~e", z&0

q( (z) = a,e"+a e "+g0(z), 0 &z &b

a'e "g" bR

(29a)

(29b)

(29c)

where the inhomogeneous part of the solution is where

4p p e3k z
p eN g

L+ +gz( z ((0) b2+ 2 b2+q2 z &0, (24a)
a' = a~+g~(0)

= a,e "+a e"+g,(0)
(30a)

0&z &b, (24b)

aR = a„+g„(b)

=a,e'0+a e '0+g (b) .
(30b)

4p ~ e 3k~(c-b) ~ e-3k-(c-b)

( ( k'+ ' k'+q' )'

a =e "[S,(zz+ &0)e"—S,(ez —e,}J/(},

az = a, + a +g0(0) -gz(0),
(25b)

(25c)

b &z . (24c)

The coefficients a~, a„, and a, are determined by
applying the boundary conditions at z =0 and b. It
is found that

a, = e' [S,(z„-—c0}e ' —S,(ez+z )J/(}, (25a)

It can be verified in several ways that Eqs. (28)-
(30) give the proper separation. One is to consider
the case where ez((0} and e„((0) are free-electron-
like and z, ((0) is a real constant. It can be shown
that (29) leads to the same transition rate (calcul-
ated in subsequent paragraphs) as that calculated
by quantizing normal modes and using expression
(8) with the orthogonal eigenfunctions (10}-(16).
Another way to verify the separation is to observe
that no bulk loss is evident in any numerical evalu-
ations of the transition rate, i.e. , nothing which
goes as Im[-I/ez((0)] or Im[-I/c„((0)]. Im denotes
imaginary part.

The rate of energy loss due to ys is
„a=a. ' e0a+e ' +g0(b)-gz(b),

where

S, = zz[ z(0}—g, (0)J+ [z,g,'(0) —zing, '(0)J/q

S, = zz[gz(b) -g, (b)J+ [zz gs(b) —&0g,'(b) J/q

q = ( z + 0}( z + 0} ( I, 0}( R 0}e

(25d)

(26a)

(26b)

(26c)

dWs
dt

=-2Re (-Vq(z)* ' Jd'r.

Noting that

(-~q )* J=q*'q'J-&'(q*~)
we see that (31) can be rewritten as

(31)

(32)

The dispersion curve for surface plasmons can
be obtained by setting g = 0, i.e. , for any value of
~, there is a (generally complex) value of q for
which q vanishes.

C. Surface-plasmon excitation rate

Since the excitation of bulk plasmons must surely
involve the injection process and other scattering
not included in present model, let us only consider
energy loss to surface plasmons. The surface and
bulk contributing to p can be separated by writing

dWs
dt

=-2 Re y* V' Jd'rs

+2Re V ' psJ)d'r. (33)

The first term can be simplified by the use of the
continuity equation (3):

-2 Re ps* V' Jder =2(d Im ps* pd'r. 34)

The second integral in (33) can be converted to a
surface integral of ysJ by Gauss's theorem. Since
ysJ vanishes as z —a~ and is uniform in x and y,
the surface integral vanishes. Hence,
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dWs
dt

= 2(uA Im ye~(z) p(z}dz

and the transition rate is

= —A yz(z)p(z) dz .s 2

5& dt

(35)

(36)

5k„= (m/g'ks) 5(R~)]

Scuv

It is convenient to define

E,= 12q '/2m, (42)

Substituting p(z) from (21) and yz from (29) into

(35), we obtain

dWs
=2&oA lm (a~*i~+ a„'~I„+a~I,+a*i +I,),

which is the kinetic energy in the plane of the junc-
tion of an electron in state g„. We can write (41)
as

(37)

82pga
spin &E 5(h&o},

s(k~)sE,
(43)

where

I~ = p~./(q+ik, ) + p~/(q+ik ),

Iz = ps J(q-ik, )+p„ /(q+ik ),

I, = P p, E(K, ~q),

4z E(K; +Kg)
z~((u) + ~ ' ' (q' —K') '

f=l g =l

E(K) =(ez'-1)/K, E(0) =b,

(38a)

(38b)

(38c)

(38d)

(38e)

pel —
1 8k2 K 2 e 2zgb/(k2 -+K 2)2 (45)

A convenient quantity to examine is the relative
differential probability

where the differential inelastic tunneling probabil-
ity is defined as

g'P" m'&I. ' 1 d Ws

s(k+)SE, v'k'kiks kur dt
(44)

Note that dWz/df ~1/AL' so that the normalization
length and area cancel out.

The elastic tunneling probability is

D. Differential probability

The probability of inelastically tunneling is the
rate of tunneling divided by the attempt frequency
Vt .'

where

1 dWs
g& dt (39)

v~ = (Ik~/m)/2L . (40)

The inelastic tunneling probability for energy
transfer in the interval k~ to I~+ 5(if~) and mom-
entum transfer (in the plane of the junction) in the
annulus between )lq and Kq+ 5(Rq) is [noting that

Ki K, K2 =K, , K3 =-K, , K~ =-K ~ (38f)

Note that dR'z/df is independent of the direction of

q since there is complete rotational symmetry
about the z axis.

In what follows, e, (&o) will be taken as a real
constant for simplicity. However, the e depend-
ence can be retained and e,(~) can be complex
where required. In fact if one wished to study the
longitudinal optical phonons of the barrier, the
formulation given above would be suitable. In the

simPlest cases, (~) wouldbegivenby&„+(e, —z„)+r/
(&ur' —uP —iury) where z„ is the optical frequency
dielectric constant, e, is the static dielectric con-
stant, v~ is the transverse optical phonon frequen-
cy, and y is the phonon width.

46r(E„R~)= ( )

Most of the gross features of the barrier potential
(including its dependence on bias voltage) tend to
cancel in such a quantity so we expect that the use
of a rectangular barrier does not introduce any ap-
preciable error.

q = 0.513~E (47)

So q =0.16 A ' in this figure. A mell-defined sur-
face plasmon occurs for this q as evidenced by the
pronounced and fairly narrow peak at S(4P = 3.4 eV.
The fult. width at half maximum is 0.1 eV.

By holding I&a fixed (at 3.0 eV) and varying E, ,
another representation of the surface plasmon is
obtained in Fig. 2. The locus of peak positions in
the co- q plane gives the dispersion curve shown
in Fig. 3. For well-defined surface plasmons, this

IV. NUMERICAL RESULTS FOR Al-A1203-Ag

In this section the results of Sec. III are evaluated
numerically. The complex dielectric functions
e~(&u) and zs(&o) are taken (approximately) to be the
optical dielectric functions of Al, "' and Ag,"re-
spectively. The barrier dielectric constant is
e, =3 and the width is b =30 A. The barrier height
is U, =E~+1.0 eV andE~=&~=10 eV.

In Fig. 1, the relative differential probability
r(E„S&u) is shown for E, =0.1 eV as a function of
Sv. If q is in units of A and E, is in eV, then
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FIG. 1. Ratio of the differential probability for in-
elastic tunneling to the elastic probability vs Su for
E =0.1 eV (q=0.16 A ~). The direction of tunneling is
from Al to Ag in an Al-A1203-Ag junction.

procedure gives the same results as setting g =0
[see Eq. (26c)]. A full discussion of the various
modes of a M-I-M structure is given in Ref. 2.
Only the lowest mode (shown in Fig. 3}will be of im-
portance here.

In Figs. 1 and 2, only tunneling in one direction,
from Al to Ag, has been shown. Let us now ex-
amine the symmetry with respect to the interchange
of left and right. This is equivalent to the sym-
metry with respect to bias voltage. If e~(&o) = as(~)
and the barrier potential is symmetric, the tunnel-
ing rate must be completely symmetric. If &~(~)
e es((u) as in LM, some asymmetry is expected
even if the barrier potential is symmetric (at zero
bias). This is particularly true when 5+ and q are
large. For example, for tunneling from left to

FIG. 3. Dispersion curve for surface plasmons in
Al-A1203-Ag. The oxide thickness is 30 A.

4eV

y(E 't fd(N . ='(E Irl).,
lcv

(48)

7.2 I
I

I
I I

I

right, an electron in the state g~ tunnels more
readily than in $~ since e ~1'»e ~&'. If the sur-
face plasmon field is large predominantly at the
right side of the barrier (z = b), the inelastic tun-
neling rate will be much larger than if the field
were large on the left (z = 0). For the AI-ALO, -Ag
system considered here, q must be &1.6 & 10 ' A '
(E,& 10 ' eV) before the surface plasmon field is
sufficiently localized on the Ag side of the barrier
to give a pronounced asymmetry. The relative dif-
ferential probability for tunneling from Al to Ag and
from Ag to Al for E,=0.01 eV is shown in Fig. 4.
The integrated probability

6.4
I I I

5.6 — E s O. OI eV

4.8—

ee
I

3,2—
3

CF
UJ
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%w e 3cV
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—4,0
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0.8 3 E.

AL~Ag

0
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FIG. 2. Ratio of the differential probability for in-
elastic tunneling to the elastic probability vs E for
Sm = 3 eV. The direction of tunneling is from Al to Ag.

0
0 I.Q

Ag~AL
I I

2.0 3.0 4.0
%cL) {cV)

5.0

FIG. 4. Ratio of the differential probability for inel-
astic tunneling to the elastic probability vs Scu for E
=0.01 eV (q=0.051 A ~). The top curve is displaced
by 0.8 eV 2 for clarity.
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R(E, R&o ) =
"~max Emax

d(8(u) dE, r(E, , I&a),
0

(49)

where r(E„R~)=0 for E,)Ei —S~. This quantity
is the relative probability of a normally incident
electron (of energy Ei) to tunnel inelastically with
energy transfer ~ her and momentum transfer
~(2mE )'i'. If all the electromagnetic modes of
the junction for which q~(2mE )' '/Rwere radia-
tive with 100% efficiency and the rest were nonra-
diative, R(E, hu& ) would be the quantum ef-
ficiency for light emission of photons with energy
~5+ . From the nature of radiation induced by
surface roughness, ' there is some reason to be-
lieve this form is approximately correct since
most of the light emitted is due to modes for which

is shown in Fig. 5 as a function of E, . The probab-
ility of inelastic tunneling from Al to Ag remains
large for E, up to -0.1 eV before decreasing,
whereas the probability for Ag to Al decreases ap-
preciably when E,&10 ' eV. In either case, the
scattering is not nearly so peaked about the forward
direction (q =0) as for high-energy electron beams. '

If surface plasmons with large enough q radiate,
bias asymmetry in the light emission can occur.
Also, asymmetry in the barrier potential gives
rise to asymmetry in the inelastic current and con-
sequently in the emission of light. It should be
noted that the effects of barrier asymmetry have
not been investigated. At large bias voltage where
surface plasmons are observed, the barrier is very
asymmetric. In fact, one is usually in the Fowler-
Nordheim regime where electrons tunnel into the
oxide conduction band before reaching the elec-
trode. Presumably, the ratio of inelastic to elastic
tunneling (which is considered in this paper) is not
affected significantly.

Another useful quantity to study is

(a)

Ke
E

3

4—
E

LaJ

K

0
0.8 2.4 3.2

hag x( V)

I s

4.0 4.8

FIG. 6. Ratio of inelastic to elastic tunneling proba-
bility vs h~ ~. (a) Al to Ag, Em~= f q ~/2m = 0.01 eV
(qfllex= 0 051 A )s (b) Ag to Als Embox= 0.01 eV& (c) Emax
=10 eV (q ~=1.6x 10 A '), no significant difference
between Al to Ag and Ag to Al.

0.16
I

'
I

q is less than a cutoff. The cutoff is proportional
to the reciprocal of the statistical correlation
length of the surface roughness.

To determine the probability of exiting modes
which are apt to radiate, R(E, h&u ) is plotted
as a function of 5+ for various E in Figs. 6-8.
The contribution fromh& ~1 eV has been omitted
since photons of that energy are not detected in the
LM experiments. In Fig. 6, the probability for
values of E 0(.01 eV (q (0.051 A ') is shown.
The modes involved here are likely to be the most
radiative. For E ~10 ' eV, there is little dif-
ference between Al to Ag, and Ag to Al. In Figs.
7 and 8, larger values of E are considered. For
Al to Ag and large E the inelastic rate is -0.1 of
the elastic rate, a substantial value. The values of
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FIG. 7. Ratio of inelastic to elastic tunneling proba-
bility vs S(dm~ for Al to Ag for Em~=10, 1 and 0.1 eV
(q~=1.6, 0.51, and 0.16 A ).
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In the LM experiments, the Ag layer is thin

(-300 A), not infinitely thick as assumed. This in-
troduces an additional plasma mode into the prob-
lem, namely, the free Ag surface plasmon. There
is coupling between this mode and the one shown

in Fig. 3 which shifts the dispersion curves. '
Also, tunneling electrons can interact with the ad-
ditional mode. However, these effects are not ex-
pected to be large in junctions of practical inter-
est.

V. COMPARISON TO INELASTIC TRANSFER
HAMILTONIAN

FIG. 8. Same as Fig. 7 except for tunneling from Ag
to Al.
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FIG. 9. Ratio of inelastic to elastic tunneling proba-
bility vs E ~ for h~ ~=4 eV.

R(E, k~ ) for h&u, „=4 eV are plotted as a func-
tion of F. in Fig. 9. Clearly much of the scatter-
ing responsible for the large inelastic rate is at
high values of q which may not radiate easily.

Since nonlocal effects have not been included
(i.e. , the wave vector dependence of the dielectric
functions has been neglected), the contribution to
the inelastic tunneling from large momentum
transfers may be not be calculated entirely ac-
curately. Also, surface-plasmon peaks may be
broadened by Landau damping' and by the rough-
ness of the electrodes, ' which have not been in-
cluded. However, it is not certain that any of these
effects will diminish the total (integrated} inelastic
probability, although they may redistribute the in-

Since a common method of treating inelastic (as-
sisted) tunneling involves the inelastic transfer
Hamiltonian, '"'" (ITH}, it is worthwhile to ex-
amine it in more detail for surface-plasmon exci-
tation. As remarked in Sec. I, for situations where
the normal modes can be found and can be quantiz-
ed, the transition rate for a mode with momentum

Pq (in the plane of the junction) is

(2z/k)
~ (gz ~

—e Qz'
~ g ) ~'5(k

&a&+ 8 „-R ), (50)

where P' is the potential for the mode and ~,- is the

frequency. Now in ITH, g~ and gR are of the form
(10}and (11), but y~ and ye are given by

(2/L)' ~' sin(k~z —y~), z & 0 (51a)

(51b)-(2/L)'~' siny~ e «z.', z & 0

and

(2/L)' 'siny e z' " z&b (52a)

(2/L)' ' sin[ke(z —b)+ y„], z & b, (52b}

where (dropping L and R indices)

tany = k/K .
The z integration in {$R~-eQ&' ~gz) is over the re-
gion 0&x &b.

%hen the modes are well defined, the energy-loss
method reduces to the same form, Eq. (50), ex-
cept that g~ and gR are the eigenfunctions given by
(10)-(15) and the region of integration includes
the electrodes (z & 0 and z & b ) a.s well as the bar-
rier.

It has been found for M-I-M junctions for small
momentum transfer, the difference between the
two approaches can be substantial, e.g. , the transi-
tion rate can differ by a factor of 10-100 (ITH
overestimates the rate). The reason for this dif-
ference is the large cancellation between the con-
tribution to the matrix element from the electrodes
and that from the barrier.

Another way to view this difference is to compute
the transition current and charge for the wave
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functions used in ITH [Eqs. (10), (11), (51), and

(52)]. The transition current density is of the form

J(z) = J&"(z), 0 z b (53a)

0, otherwise, (53b)

where J~o'(z) is given by (1) with the factor e"'
omitted. By definition, there is no interaction in

the electrodes and, hence, J(z) must vanish there.
For the continuity equation (3) to be satisfied, the
transition charge density must be

p(z) = p"'(z)+ (i/~) J."'(&)~(z —b)

-(ils)J,"'(0)5(z), O~z(b, (54a)

(54b)p(z) = 0, otherwise,

where

p"'(z) =-(z/L&) X,(z)X,(z) . (55)

In ITH, the surface charge densities +(I/up)J&0' are
omitted even though they are not small. Including
the surface charges improves the agreement at
small g, yet this does not make it a correct theory.

VI. SUMMARY

A new theory of the excitation of surface plasmons
by tunneling electrons has been given. The theory

is similar to energy-loss calculations for electron
beams, ' except that the electrons are treated quan-
tum mechanically, not classically. It represents
an improvement in generality and accuracy over
previous work. ' Undoubtedly the methods discussed
in this paper can be applied to other experiments
(such as photoemission and field emission) where
electrons interact with the plasma oscillations of a
solid.

The system Al-Al, O, -Ag has been studied be-
cause of its potential as a light-emitting device. '
It has been found that the quantum efficiency for
the excitation of surface plasmons is approximately
10%. However, most of the modes excited are at

q values which are too large to radiate efficiently
unless surface roughness with extremely small
wavelengths can be introduced. Most of the radia-
tion comes from small q. Consequently, the bias
asymmetry of the light emission is not very large.
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