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The interaction of solids with electromagnetic radiation is investigated using nonconventional theoretical
techniques. Interband transitions in solids are investigated with a Volkov-type wave function used to
represent the conduction-band electron in a calculation of the multiphoton interband transition rate induced
by circularly polarized electromagnetic radiation of arbitrary intensity. The behavior of the transition rate is
shown to be identical to that obtained from perturbation theory in the low-intensity domain, but deviates
sharply from conventional weak-field characteristics for high intensities. Intense-field behavior in solids is

found to have an earlier onset than in atoms.

I. INTRODUCTION

Multiphoton absorption has been studied in
solids both experimentally!™ and theoretically.®™"
In most cases the intensity of the irradiating field
of laser was no more than 10'° W/cm?. In this in-
tensity range, where low-order processes domin-
ate, perturbation theory generally agrees with
the experimental data. Pulsed laser systems are
now readily available which can produce focused
intensities of 10** W/cm? and more. Little theo-
retical or experimental work has been reported
with solids in this intensity domain. Although a
power-series expansion in intensity is exact if
summed to all orders, the practical difficulties
which arise are formidable, and, in general, as-
sumptions which are appropriate only in the low-
intensity domain must be applied to perform the
calculation.

The multiphoton transition rate for excitationof a
valence electron into the conduction band of a solid
initiated by a linearly polarized electromagnetic
field has been reported in the often-quoted work
of Keldysh.? A Volkov-type wave function® was
used for the final state. A Volkov wave function
is the exact solution of the Schrédinger equation
for a free electron in a plane-wave electromagne-
tic field. The transition rates were obtained with
the assumption of low frequency and high photon
numbers. Therefore, the disagreement of Kel-
dysh’s results in the low-intensity limit with per-
turbation theory, in most instances, isnot surpris-
ing. Asexpected, for highintensitiesandthefre-
quency of electric field approaching zero, Keldysh’s
result reducestoan expression describing the tunnel
effect initiated by a static field.

The essential difference between the work of
Keldysh and the investigation reported here is

that, by using a different gage than Keldysh for

the electromagnetic field, we have been able to
achieve manageable closed-form analytical results
without making assumptions about low frequencies
or high photon order. Thus we obtain results
which reduce to lowest-order perturbation theory
when the low-intensity limit is taken.

Excitation of a valence electron into the conduc-
tion band of a wide-band-gap semiconductor or an
insulator in the presence of a circularly polarized
electromagnetic field of arbitrary intensity is in-
vestigated here. An electron in a solid in the ef-
fective-mass representation has properties which
resemble those of a free electron. This is par-
ticularly true for conduction-band electrons which
are not strongly localized to the atomic sites of
the crystal. Therefore, it is assumed that a con-
duction-band electron in an electromagnetic field
can be represented by a Volkov-type® wave func-
tion. The dipole approximation is invoked for the
radiation field. For a description of the electron
states in the solid, the single-particle represen-
tation is used with the effective-mass approxima-
tion. The energy surfaces of the valence and con-
duction bands are assumed to be spherical.

S-matrix formalism,'® where the final state is
the field-dependent state, is used in Sec. I to cal-
culate the transition rate for N-photon excitation
of a valence electron into the conduction band.
Closed-form analytical results are obtained for
arbitrary values of the intensity. The limiting
cases for both low and high intensities are dis-
cussed. Numerical computations are also present-
ed.

Although there have been many publications on
interband-transition-rate calculations, there is a
scarcity of work which employs circularly polar-
ized light. Therefore, in Sec. II, the transition
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rate for multiphoton excitation is calculated using
standard perturbation theory for a circularly po-
larized electromagnetic field. Again, the radiation
field is assumed to be independent of position, and
Bloch functions are used to represent the electron
states of the solid. The infinite sum over inter-
mediate states is carried out to obtain closed-form
results for the perturbative multiphoton transition
rate. This is compared with the low-intensity lim-
it obtained from the Volkov approximation in Sec.
I.

Natural units (Z=c¢=1) are used throughout this
investigation unless another system of units is ex-
plicitly specified.

I. TRANSITION RATES FROM VOLKOV APPROXIMATION

Since the conduction electron has more free-
electron character than the valence electron, the
S matrix!® which describes a transition between
states ¢ and f in the presence of an electromagnetic
field is taken as

Sy = =i f dt @, (0), H'(8) (), 1)

where Y4(f) is the field-dependent wave function for
the conduction electron, ¢;(?) is the field-free
wave function for the valence electron, and

H'(f)=—€A - P/m
=ea(P, coswt + P, sinwt)/m V2~

(2)

is the interaction Hamiltonian arising from a cir-
cularly polarized electromagnetic field. Standard
notation is employed in Eq. (2). The (eA)? term
nominally in H’(¢) does not make a contribution to
the transition rate in the dipole approximation.

The wave function for the valence electron is
simply the standard Bloch function

$u(8) = (1 VN 3 (D E T -8) | (3)

where N, is the number of unit cells in the crystal,
k’is the wave vector and

E,==E,—k'*/2m, (4)

is the energy in the effective-mass approximation
with a spherical band. The quantities E, and m,
are the energy gap and the effective mass, respec-
tively.

A Volkov-type wave function is used to represent
the conduction electron in the presence of a circu-
larly polarized monochromatic electromagnetic
field and is given by

U () = (1/VNpu, 1 (F)
x exp{i[k * T +¢ sin(wt - p) - E,t]}, (5)

where

E =Fk*/2m. +(ea)’/4m,, (6)

c=ea(R2+k2)' 2 fom N2 | (7)
and

p=tan~'(k,/k,). (8)

The energy of the conduction electron in Eq. (6) in-
cludes a mass-shift energy. Energy is no longer
a good quantum number because of the explicit
time dependence of the Volkov Hamiltonian. This
approximate wave function is satisfying on physical
grounds; the electromagnetic field introduces the
Volkov factor, and the Bloch function accounts for
the potential of the crystal.

Using a Bessel function expansion for
exp[i¢ sin(wt = p)], the time integration for the S
matrix can be performed to yield

Sy ==i(mea/mV2 )o% i

IJ g)e—ilp

X {M_G(Ec— E,+( +1)w)
+M(E, - E, +(I-1)w) }, (9)
where
M, =(u(F)| B, 2P, (), (10)

and the integration for the M-matrix elements is
over a single unit cell of the crystal. Momentum
conservation was obtained from the standard sum-
mation relation'! in conjunction with periodicity of
the «t functions.

The S matrix of Eq. (9) is now specialized to
describe the absorption of N photons. Therefore,

l+1==N. (11)

With this constraint the 7 matrix can be written in
cgs units as

T4 =(ea/2° *me)og eV [Jy,,(¢) exp(ip)M_
+dy-,(6) exp(-ip)M,].  (12)
Using the relationship
O =0k (13)
|T{¥) |2 is given by
|90 |2 =(ea/meFor g
x5 {IM_?dF, ()
+ ML PTR-(8) +2T s (W -y (€)
X [(M% - M?) cos2p +2 MM, sin2p]},

(14)
where the M, , matrix elements are related to
those in Eq. (10) in the obvious manner.

The transition rate in cgs units is given by
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2r

(N) _
Wy = 7

2 TP 1%0(E, - By - NEw) . (15)
&,k

From Eqs. (14) and (15) the transition rate per
unit volume is given by

W (ea/mc)? - e
14 N 8(21’)271_ j;Z {!M" JN*‘l(g) +IM+I JN+1(£)

+2d v, (O (M35 - M3) cos2p
+2M, M, sin2p|}
X8(E, - E, - Nhiw)dk  (16)

where the integration over the Brillouin zone rep-
resents a sum over the final states. To obtain Eq.
(16) the momentum-conservation constraint has
been utilized to sum over the initial states. Eval-
uation of the integral in Eq. (16) is conveniently
performed in cylindrical coordinates. With the as-
sumption that the M; matrix elements are indepen-
dent of E, the angular integration removes the

cross terms of | T¥|?; therefore,

WM (ea/me)?
v 1677

X[ M2y ea) + 1ML 12300

2 2 2
><6(h’2 %+k,) +E, + (ea/c) —Nﬁw)
m, 4m,
X kydk,dk,, 17

where the k dependence of the argument of the 6
function was taken from Eqgs. (4) and (6), and m,
is the reduced mass. The %, integration can be
performed with the 6 function, so that the transi-
tion rate for a unit volume becomes

Wi < LA (7 (100 () + M ()]

Xkfy? -k /2dk,,  (18)
where
y=[2m,(Nhw=-E, - (ea/c)?/4m )] ¥/ ¥ . (19)

The parameter y is the amplitude of the wave vec-
tor of the conduction electron. The radicand in
Eq. (19) is non-negative as a consequence of the 6
function in Eq. (17). It is convenient to change the
variable of integration in order that Eq. (18) can
be written as

c)2 m/2
W = %—}i)_mLyf sind[|M_|2JZ, (X sin6)
0

+|M, |2J2_,(xsin@)]de (20)
where

A=eay/wem V2 . (21)

The intensity parameter )? is the free-electron in-
tensity parameter times the square of the ratio of
the wave vector of the conduction electron to the
wave vector of the electromagnetic field. Utiliza-
tion of the tables in Luke'? furnishes the result

/2
f sin6Jy (A sin6) do

[}

. (%)2” [i;’-’-] T(1 +M)T(M +3)
K EM 45 2Me LM 4k -3, (22)

where I'(2) and ,F,(a; b, c; z) are the y and hyper-
geometric functions, respectively. Combination
of Egs. (20) and (22) yields

BO/YVE R

(N) _
W= N=DIeN=DI
x< ,M+ lz 1F2(N"' %9 2N- 1) N+%; -Xz)
. NV2) M |2
MN+1)(2N+1)(2N +3)
X, Fy(N+3;2N+3, N+3; —x2)> ,  (28)
where
B =(m,wf’m,/218%m? . (24)

For small values of A, the transition rate per unit
volume is described as

AL LA (25)

However, inspection of Eq. (21) shows that small
values of A correspond to both the low- and high-
intensity region. In the low-intensity domain the
mass-shift energy can be neglected and

W) <N (26)
where [ is the intensity of the electromagnetic

field. For large values of /, the mass-shift ener-
gy can attain magnitudes such that

OsSNiw-E, - al =061, (27)
where
a=2n1e®/wicm,. (28)

Negative values of 6 are forbidden by energy con-
servation. The transition rate for intensities
which satisfy the constraint of Eq. (27) is charac-
terized by

W) ~pN-1/2, (29)

II. PERTURBATIVE CALCULATION OF INTERBAND
TRANSITION RATES FOR CIRCULAR POLARIZATION

For jth order the S matrix which describes a
transition between states ¢ and f in standard nota-
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tion is
s =i [ dt(@n, HOYO(D) (30)

For a circularly polarized electromagnetic field
in the dipole approximation, H(f) is given by Eq.
(2). However, for absorption, only part of H({)
contributes so that

J

HY(f) =He™**, (31)
where
H, =ea(P, +iP,)/23/*m . (32)

Under these constraints the initial state in jth-
order is

<n;lH1 |"1-1> c ("1 |H1|Z>

W =a0+ 2

"1""'"!

(@,,j(t) E, ~E7 (B F— ) expli(E, - E; —jw)t]> . (33)

Inclusion of valence-band states in the sum over intermediate states in Eq. (33) is forbidden by the Pauli
principle. Therefore, the |n ,) ’s in the above are conduction-band states with different K values. The
wave functions are given by the Bloch functions of Eq. (3).

The T matrix for an Nth-order process is readily obtained from Eqgs. (30) and (33) in the form

rip-

(fIHy|ny_) -« (n |H,|2)

Myeseesny_y

Pertinent matrix elements in the above are given
in cgs units by

(n, | H, |9 =(ea/23/2mc)M+6;nl.;i, (35)

Ol Hy ) =(ea/2* 2 em)e,O5, 1, (36)
where M, is the matrix element of Eq. (10) and

k, =k, +ik,. (37)

The spherical-band approximation has been invoked

to obtain Eq. (36). Momentum conservation in Eqgs.

(35) and (36) follows from the summation rela-
tions'! together with periodicity of the Bloch func-
tions. With the momentum-conservation con-
straints the sum over the intermediate states can
be done explicitly to yield

Ti? =(ea/2° /2 0)" (1 /m)" N, /)R 70, &,

x ['1:'1: <§fzt+E,_jﬁw>] - (38)

T

From Eqs. (15) and (38) the transition rate can be
written

Wi = (2m) 2 (ea/2° 2 M /m )P YV (M, | fm?

X _ n2k?
bz 5V 18 (2% +E - Nh’w)
N-1
h’2k2 X -2 3
x [,U,(zm, +E,-]mu)] A%k,  (39)
where
ko=|k,|. (40)

To obtain Eq. (39) the sum over the initial states

[Ey_,=E;=(N=- l)w]---(E,,‘—E‘-w) :

(34)

was carried out using the momentum-conservation
constraint and the kK dependence of M, was ne-
glected. It is advantageous to employ cylindrical
coordinates in the evaluation of the integral in Eq.
(39). Since there is no angular dependence in the
integrand, a factor of 27 is immediately extracted,
and for brevity the result of the 6 function integra-
tion is anticipated. Thus

W™ =(27k) " Yea /232 P ¥(wm,) 2V -V (|M, | /m)

+E, - th) dk,dk, ,

(41)
where use of the relationship
N-1
I Girw)= ()1 (v - 1)1 (42)
=1

has been made. Application of the 6 function for
the &, integration yields

ww) = (m,/17%)(ea/23 /2 C)”(wmc) -2(N=-1)

X (1M, | /mP((N=1)]2Z2¥-D

z
x [ (1-#/z an,, (43)
[
where
Z=[2m, (NEw-E,)|* 2 /K. (44)
Use of the integral
/2 291 N=-1)!
2N -1 = — 7
fo cos**1pdo EN-DI (45)

yields immediately
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(0 _ @0 UM /m)( /) (2my ) N V(N = B ®1 70T (46)

W= 3(N=1)(2N = D) 2D P EN=-1 2 (F=1) g
where the low-intensity region. The transition rates for
I =nwd/8nc (47) N=4 and 5 are equal for y=1.5; and for y> 1.5, it

is the intensity and 7 is the index of refraction.

Comparison of Eq. (46) and the low-intensity
form of Eq. (23) demonstrates that the two results
are identical for any value of N.

III. DISCUSSION OF RESULTS

In the low-intensity domain the transition rate
obtained from the Volkov approximation is identi-
cal to the perturbative result for any value of Nfor
circular polarization. This may be the only intense-
field calculation to reproduce perturbative predic-
tions exactly for arbitrary order. Obviously, the
Volkov-type wave function employed here is an
accurate description of the conduction-band state
in the presence of an electromagnetic field, in the
dipole approximation.

For high intensity the mass-shift energy of the
conduction increases rapidly. Physically, the
electromagnetic field cannot supply enough energy
to oscillate the electron and still effect a transi-
tion. As seen from Eq. (27) the cutoff intensity is
linearly dependent on Niw - E,. Therefore, the
transition rates for lower-order processes are
zero for certain large values of 7, and higher-or-
der processes dominate. Reversal of dominance
as a function of N for large / is also exhibited in
the predictions of the momentum-translation ap-
proximation for atomic systems.'® This intense-
field behavior is substantially unlike the perturba-
tive character of thé low-intensity domain.

The variation of dimensionless transition rates
W™ for Zns with irradiating intensity from a Nd-
glass laser for N=4 and 5 are shown in Fig. 1.
The dimensionless transition rate is defined from
Eq. (23) as

W =6.87 x 1074w ¥ (2m,) /2 /Bii|M, |2a,,  (48)
where it is assumed that
IM,| = |M_| (49)

and the lattice constant a, is taken as 5.41X 1078
cm. The values m,=0.3, m,=0.28 are used.” The
dimensionless intensity parameter is defined as

y=1/(10* W/cm?). (50)

A value of 3.8 eV is taken for the band gap of ZnS;
therefore, N=4 is the lowest-order transition

which can occur. Perturbative character is exhi-
bited by the straight-line sections of the curves in

is found that W) > W), This reversal of domin-
ance is clearly nonperturbative behavior. For

y> 2 the mass-shift energy for the N=4 process is
appreciable, -and the rapid decline of the transition
rate is governed by Eq. (29). At y=2.8 the transi-
tion rate for the 4th-order process is zero. All
orders will display this behavior as the intensity
approaches the cutoff value given by Eq. (29).

The deviation of the results from weak-field
character is also exhibited in Fig. 2. Transition
rates for the lower intensities agree with perturba-
tive predictions; the transition rate for given in-
tensity decreases as the order of the process in-
creases. However, for y =10 there is a striking
disparity. Here W > W) and the transition
rates for the lower-order processes are zero.
Transitions of order eight through twelve are about
equally probable. This trend toward “flatness” of
the W¥)ys N curves at high intensities is similar
to the results for hydrogen.'?

These results are quite different from the results
of Keldysh.® His low-intensity rates are generally
lower than the corresponding perturbative predic-
tion.”***+1> Keldysh’s analytical results were ob-
tained at the cost of requiring N> 1. This effec-
tively severs him from any effective application to
the most likely physical applications where N <10.
It has been found that theKeldysh approach success-
fully describes single photon absorption'®; how-
ever, this appears to be a fortuitous result.

Observation of these intense field effects will re-
quire the use of picosecond pulses in order that the
material not become an ionized plasma due to var-
ious absorption processes at these high intensities.
Further, it is doubtful that the material can with-
stand intensities of 10'* W/cm? and beyond"’;
therefore, the observation of the deviation of the
higher-order processes from perturbative behav-
ior is quite improbable.

An interesting aspect of the results presented
here is that they predict an onset of specific inten-
sity effects at a relatively low intensity. From
Figs. 1 and 2 it is seen that nonperturbative behav-
ior should be clearly in evidence at intensities be-
tween 10" and 10'* W/cm? with 1.06-um laser ra-
diation. By contrast recent experiments by Lom-
pre et al.’® do not show identifiable intensity ef-
fects even up to 10'®* W/ecm?. The essential differ-
ence between the present work and the atomic ioni-
zation problem investigated by Lompre et al.
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y=10.0

FIG. 1. Dimensionless
multiphoton transition rate
from Eq. (48) for ZnS as a
function of intensity for Nd-
glass laser radiation. The
dimensionless parameter
y is defined in Eq. (50). A
value of y =1 corresponds
to 10'2 W/cm?. The physi-
cal parameters for ZnS
are given in Ref. 7.

arises from a difference in the intensity parameter
appropriate to the problem. The intensity para-
meter which arises here is, from Eq. (23), 2%
From Egs. (21) and (19), this may be written

e2q? E, &a?
Azzﬂ fa N—- —£_ a ) (51)
me wni, w  4dwm,

For the lowest-order process, the difference N
- E;/w is less than unity. Therefore, if we set

z=éd*/dwm, , (52)

then a value of z of order unity will mark a level
of intensity which will have a significant effect in
the problem. This parameter, z, is the simplest
intensity parameter that can be identified for this
physical problem. It is identical in form to the
intensity parameter which arises in the negative
atomic ion problem,'® except that there m, is re-
placed by the free-electron mass m. For ZnS

subjected to 1.06- um laser radiation, the value
z =1 corresponds to ¥y=3.3. The corresponding
intensity parameter for the problem of the photo-
ionization of atoms® is the inverse square of the
Keldysh parameter®, y. The inverse is taken be-
cause y decreases with intensity, rather than in-
creases, and y ! is squared so as to be propor-
tional to photon density as is z given in Eq. (52).
This atomic intensity parameter is thus

Y2 =ea/2ml, ,

where [ is the atomic ionization energy. For in-
stance, if one were to substitute I for hydrogen,
the result would be

vi© =(eaa))’

where a, is the Bohr radius. A laser intensity of
10" W/cm?® gave values of y™2 of the order of 10 in
the experiments of Lompre et al.'® The same
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FIG. 2. Dimensionless
multiphoton transition rate
from Eq. (48) for ZnS as
a function of photon multi-
plicity for Nd-glass laser
radiation. The multiplicity
N is regarded as a continu-
ous parameter for conveni-
ence. Only integer values
of N are physical.

e
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laser intensity would lead to a value of z of about
300. Thus the problem of interband transition in
insulators investigated here should show intensity
effects much earlier than the photoionization of
low-pressure atomic gases.

IV. SUMMARY

Multiphoton interband transition rates were cal-
culated for an insulator in the presence of a circu-
larly polarized electromagnetic field of arbitrary
intensity by a Volkov approximation. All orders of
the process deviated from the predictions of per-
turbation theory at a high intensity. There was
also a reversal of dominance as a function of pho-
ton multiplicity, i.e., high-order processes can
be more probable than lower-order processes
when the intensity is sufficiently high. It was found

o+

that for high intensities the transition rate became
nearly independent of the number of photons in-
volved in the process.

For low intensity the transition rate with circu-
lar polarization from the Volkov approximation
was identical to the perturbative result for all or-
ders. This may be the only intense-field calcula-
tion which, in the low-intensity limit reproduces
perturbative predictions exactly for arbitrary or-
der.

It was found that specific intensity effects should
make their appearance in multiphoton interband
transitions in an insulator at much lower intensi-
ties than for multiphoton ionization of free atoms.

The Volkov approximation should be useful for
investigation of other electromagnetic field inter-
actions, such as photon absorption by free car-
riers in solids.
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