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Motion of negative ions at supercritical drift velocities in liquid ~He at low temperatures
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The motion of negative ions at supercritical drift velocities in pressurized liquid helium is governed at low

temperatures by the spontaneous emission of rotons. Assuming a constant matrix element the transition

probability for two-roton emission processes is calculated using perturbation theory. The effect of recoil on the
ionic motion is studied qualitatively by means of a simple kinetic approach and quantitative calculations are
performed using the Boltzmann equation. The calculated dependence of drift velocity on electric field E shows

that an E'" variation occurs over a substantial range of fields as found experimentally. Comparison with

experimental data for fields 2 & E & 10' kVm ' is made and deviations from the E'" law at high fields are
accurately accounted for. The role of vortex nucleation is discussed and further experiments are suggested.

INTRODUCTION

Some years ago, Rayfield' observed that the
maximum velocity to which negative ions in liquid
helium II can be accelerated by an electric field
is a function of pressure. Below 14 bar an ion
reaches the critical velocity v„ for creation of
vortex rings and undergoes a transition to a charged
vortex state. The velocity of the ion is then re-
duced to that of the vortex-ring-ion complex. As
the electric field is increased the detected signal
due to bare ions decrea es dramatically and the
largest velocity for which a bare-ion pulse is re-
ceived gives an estimate of the vortex nucleation
velocity v„whose variation with pressure is
shown in Fig. 1.

But for pressures above 15 bar the maximum
velocity is close to the Landau velocity v~. The
behavior of the ions is then qualitatively different.
The Landau critical velocity is that for which the
onset of dissipation via creation of elementary ex-
citations (rotons) should occur in the flow of super-
fluid helium through a channel or in the motion of
a heavy rigid object through the stationary fluid.
An ion can hence lose energy through emission of
rotons and, under the action of an accelerating
electric field, moves through the helium with an
average velocity close to the Landau velocity. The
size of the bare-io~ pulse then remains sensibly
constant as the electric field increases. This be-
havior is consistent with the situation shown in
Fig. 1 in which the vortex nucleation velocity v„
is greater than the Landau critical velocity e~ at
high pressures. In this region there is only a
small probability that an ion may reach the veloci-
ty v„and become trapped on a vortex ring.

In Rayfield's experiments' the temperature was
sufficiently high that the drift velocity of the ions
was limited by scattering of thermal excitations'
in addition to excitation-creation processes. More
recent experiments' ' carried out at lower temper-
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FIG. 1. Pressure variation of Landau critical velocity
v~ and vortex nucleation velocity v, . The data points
refer to the maximum velocity achieved by a bare-ion
pulse in the experiments of Rayfield (Ref. 1). Above
15 bar, v„ is obtained extrapolation.

atures and at a pressure of 25 bar, showed that in
strong electric fields negative ions can travel at
velocities in excess of the Landau velocity. These
results have provided a unique test of Landau's
criterion for the breakdown of superfluidity through
the roton-creation mechanism, but interpretation
of the dependence of the ionic drift velocity on
electric field requires a dynamical theory of the
mechanism of the supercritical dissipation and a
statistical theory of the ionic motion.

We have previously calculated the probability of
roton emission4' by a moving ion using perturba-
tion theory with the assumption of a constant ma-
trix element for either one-quantum or two-quan-
tum processes. Together with a simple kinetic
approach to the recoil motion of the ion, excellent
agreement with experimental data ' was found
provided the supercritical drag is dominated by
two-roton emission processes. The apparent
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complete absence of the one-quantum process has
not been accounted for theoretically since the mag-
nitudes of the matrix elements are not known.

Subsequently measurements have been extended
to higher electric fields, ' with correspondingly
greater drift velocities, which require a more pre-
cise theoretical treatment. The kinetic descrip-
tion does not take full account of the distribution of
ionic velocities, particularly at higher fields. To
do this it is necessary to introduce a velocity dis-
tribution function which is calculated by means of
the Boltzmann transport equation. However, in
contrast to our previous kinetic theory, a com-
plete solution may now be obtained only by numeri-
cal means. In addition, at high velocities, certain
simplifications made previously in the calculation
of the two-roton emission probability are no longer
permissible.

Before formulating the Boltzmann equation for
the problem we first summarize briefly the simple
approach in which the trajectory of an individual
ion is studied. ' This illustrates most clearly the
kinetics of the ionic motion and gives some insight
into the form of the velocity distribution to be de-
rived in the solution of the transport equation. We
then describe the modifications which must be
made to our previous treatment in order to extend
the results to the region of high electric fields
studied in the most recent experiments. '

KINETIC APPROACH

A central feature of the problem is the recoil
motion of the ion upon emission of rotons. For
two-roton processes there is a, threshold veloci-
ty' v' =v~+po/m, where po is the roton momentum
at the minimum of the liquid-helium dispersion
curve and m is the effective mass of the ion. In
an electric field E the motion of the ion may be
pictured as in Fig. 2. If the initial velocity vo
&v', the ion is accelereated past the threshold up
to a velocity v, at which emission of a pair of ro-
tons of total momentum 2po occurs. After recoil
the ion returns to its initial velocity vo and the
process is repeated.

The average time v' for which the ion exceeds
the threshold velocity is found from the probability
of roton emission during this period. As we have
previously shown "an approximate formula for
the transition rate for two-roton emission by an
ion moving with velocity v&v' is

Thus after having passed the threshold velocity
v', the probability P(t) that an ion survives for
a time t before emitting a roton pair, is given by
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FIG. 2. Velocity trajectory of an ion showing success-
ive periods of acceleration by the electric field followed
by instantaneous recoil after roton emission.

(4)

But we see from the sawtooth velocity trajectory
of Fig. 2 that the average velocity v = —,(vo+ v, )
=v, -po/m, since the recoil momentum 2po=m(v,
—vo). Moreover, the velocity at which emission
occurs is v, = v'+ eE~/m, and thus v = vz + eE7'/m.
Hence, from Eq. (4), the form of the drift velocity
v vs electric field E curve is

v —v~ —= (3eE/o.'m)'~' (v —v~ & 2p, /m) .
Note that this expression is only valid when the
velocity immediately after recoil vo&v which is
equivalent to the condition v —v~ &2po/m given
above.

This type of dependence was observed in experi-
ments' ' in electric fields up to 3 && 10' V m '.
However, later experiments in fields up to 10'
V m ' have revealed deviations from this behavior.
Such deviations are expected for drift velocities
sufficiently large that v —v~ &2Po/m. This is the
situation when the entire sawtooth trajectory lies
above the threshold velocity for roton emission,
i.e., vo&v'. In that case a similar calculation'

dP
, =-E(v)P(t).

Since, between emission events the motion of the
ion is determined by the accelerating field, v = v'
+ eEt/m, and thus Eq. (2) can be integrated to give

I'(t) =exp —
( )

We take as a measure of the average time before
emission occurs, the time v for which P(v) =e '.
Thus we obtain
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shows that the drift velocity is given by

(v —vz)
' —(v —vz —2Po jm)' = 3eE/m

Vo Ve

(v —vz & 2p, /m) . (6)

This gives a more rapid field dependence of K —v~
than E' ', tending to E' ' in the limit of very large
E. However the theory is inapplicable in this limit
which is also experimentally inaccessible.

Although the theory described above shows cor-
rectly the trend of the high-field experimental re-
sults' it is deficient in two respects. First, the
concept of a mean pre-emission time v does not
take account of the distribution of times given by
the probability P(t). Thus there is an undetermined
numerical factor in Eqs. (5) and (6) which may be
expected to be weakly field dependent as the veloc-
ity distribution of the ions changes from that im-
plicitly assumed in the kinetic method. For an
ensemble of ions the sawtooth velocity trajectory
corresponds to a distribution of velocities f(v) of
rectangular shape, f(v) =constant for v, &v&v„
and zero elsewhere. But the probability P(t) in
Eq. (3) also gives the probability that an ion
reaches a velocity v =v'+ eEt/m, so that for v &v'

the actual velocity distribution function is of the
form

f(v)-exp(- (v —&')', (v»') .
3eE

For v &v' the distribution reflects the availability
of ions for acceleration past the threshold velocity.
Since an ion with velocity v+2P, /m recoils to a,

velocity v, the distribution function below thresh-
old is given approximately by

f(v) -1 f(v+2po/m) (v"-&v &v'),

where the lower limit v" =v' —2P,/m. In the
steady state there are no ions with lower veloci-
ties. We have compared these distributions in
Fig. 3. At relatively low fields the actual distri-
bution is a distorted rectangular shape with a tail
to higher velocities. In the kinetic approach this
distortion is simulated by a bodily shift of the
rectangular distribution to higher velocities. In
high fields the distribution becomes much broader
and more smoothly varying but must be obtained
by solution of the Boltzmann equation.

Secondly, the above theory is based on the two-
roton emission rate given in Eq. (1). The quadratic
dependence on the velocity above threshold is an
approximation and in the next section we derive
an expression which is valid for the large drift
velocities observed in the high-field experiments.
The assumption that the recoil momentum is ex-
actly 2PO is likewise only true near the threshold
velocity. At high velocities the roton momenta
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FIG. 3. Distribution function f(v) of ionic velocities.
(a) Rectangular distribution assumed in kinetic method.
(b) Form of actual velocity distribution for the same
average velocity as in (a).

are not quite parallel to the ionic velocity and a
correction is needed to allow for the consequent
reduction in recoil velocity. This may also be
readily incorporated into the Boltzmann-equation
treatment.

TWO-ROTON EMISSION RATE

We assume that the emission process may be
described in perturbation theory and that the tran-
sition rate for emission of rotons k and q by an
ion with initial momentum mv is given by

It@(v) = (2v/h)
i V-„;i('5(Ei E,). — .

The transition matrix element V„-, is taken to be
a constant. There is no theoretical justification
for this save that, at least for small excess drift
velocities 7 —v~, the majority of emitted rotons
tend to have momenta of magnitudes close to the
minimum value p, = Ak, and directions almost par-
allel to the ion velocity v. Over t"uch a restricted
range of available states a weak dependence of the
matrix element on the wave vectors k and q could
therefore be inappreciable.

For a constant matrix element, evaluation of the
total emission rate

k, q

reduces to a computation of the volume of available
phase space which is limited by the requirements
of energy and momentum conservation. Since
after recoil the momentum of the ion becomes
mv —h(k+q), the difference between the final and
initial energies is

E~ E,. =&,+~, + ,

'mdiv

——(h/m)—(k+q))' ——,'mv'

= e, +e, —nk v —g fv —(Skjm)), (8)
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where E~, E, are the roton energies and

e, = e, + k'k'/2m, e, = ~, + k'q'/2m .

Converting the sums in Eq. (7) to integrals, we

perform the angular integrations using polar co-
ordinates for k relative to v as polar axis and forj relative to w = v —(Ik/m). Taking a constant
matrix element Vo this gives

d p, ~(6~+ 6 —Akv p, —A/BI/l )

p,
' = (e, + &, —%v p. ) /h'qu) & 1 . (io)

This inequality restricts the subsequent integra-
tion over p, to the range p, & p, &1. Now the exper-
imental data give

~
kk/m -po/m =5 m sec whereas

v & 50 m sec ' so that the approximation

u =
~
v —ak, /m

~

—= v —m p, /m

is accurate to better than 1%. The inequalit y(10)
then gives

To estimate the maximum angle of emission 8 we
make the approximations 8k =Kg =p„e,=e, =—d the
minimum roton energy and, noting that v~ =4/Po
to within an accuracy' of 1%, find

p, „=cose„—= 1 —2[(v -')/v, ],
where v, =v —(po/m) and v' is the emission thresh-
old velocity. Thus 6 increases from zero at the
emission threshold velocity v', to of the order
60' at the large velocities -70 m sec ' observed
experimentally. This shows clearly that at high
drift velocities the average recoil momentum may
be substantially less than 2p, .

The result of performing the integrations over
and p, xs

dp, m dp,
8'qw Aq, mv —hk p.

m "m

where 0 is the volume of the system, p, =k'v/kv is
the cosine of the angle between k and v and simi-
larly p,

' =q w/qadi. The integral over p,
' will be

nonzero only if the value defined by the 6 function
lies within the range of integration, which in effect
means that this value is less than unity, i.e.,

argument of the logarithm simplifies to

m v —m(6~+6q)
(mv —hk) (mv —Kq)

(13)

and the integrations over the wave numbers k, q
are now to be performed. At this stage it is es-
sential to introduce a simplification in view of the
complicated dependence of the integrand on k and

q and the implicit restriction p, & 1 given by the
step function. We can estimate the maximum en-
ergy of the emitted rotons and hence, from the
known dispersion curve' at 25 bar, the corre-
sponding range of wave numbers. At the higher
driftvelocitieswefind ~k —k, ~hk, &0.13. Sincethe
deviation k -ko can be positive or negative for a
given roton energy, we assume that the wave
numbers k and q in the integrand can be replaced
by the average value ko but we take account of the
variation in roton energy which originates from
the basic conservation law (8).

Using Eqs. (9) and (11), the condition p, „&1can
be written

e~+ c + —S(k +q)v &0.k'(k + q)'
2m

0 &E, +E2 &E = 2hko(v —v') .
The same approximation is used to simplify the
expression (13) for the argument of the logarithm
in Eg. (12). To rewrite the integrals over k and

q in terms of the energy variables E, and E„we
use the roton dispersion relation of standard form

Defining Ey cy + E2=6 —6 and making the ap-
proximation k =q =—ko, shows that the total roton
energy, measured from 2A, is limited by the con-
dition

ln~& ™g1 —p. (12)

where 8(x) is the unit step function. Using (11) the
where m„ is the roton effective mass. This gives
the emission rate
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For ion velocities v-70 m sec ', E /2)R -0.45
which corresponds to the 13% range of roton wave
numbers quoted above. Since E /mv', -0.05 we

may safely expand the logarithm and hence obtain
the emission rate as a power series in E„/mv',
o-v —v .I

The integrals are most easily performed by
changing to va. riables g =E, +E„)I=E, -E, giving

dri E„—(
(]2 —)72)1 ~2 mv

(
—2)'

mE E
(16)

provided E &0, i.e., v&v' and is zero otherwise.
Since the second term only gives a correction
-1.5% it may be ignored. Hence the two-roton
emission rate is, for V&v',

when k/w, = eE/2k, is greater than the energy of
the emitted rotons E - 2~. This condition reduces
to E &4k, )R/ e- 5 X 10' Vm ', which is well outside
the range of fields studied experimentally.

We note that for velocities v»v', the emission
rate (17) tends to a, constant value which implies
that there is a maximum field for which it is pos-
sible to maintain steady-state ionic motion. How-
ever, this field also exceeds 10' Vm ' and our
formula (17) is not applicable at such high veloci-
ties. It is also possible that other emission pro-
cesses become important for these very high
fields.

AVERAGE RECOIL VELOCITY

When a pair of rotons k, q is emitted the momen-
tum of the ion is reduced by II(k+q). By symmetry
the average momentum loss must be in the direc-
tion of the ion velocity v so that the average rate
of loss of momentum is

R(2) =E(
( y ))

(17) Q k(k+q) (v/v)E„-;,
V

k, q

where

For v-v' this reduces to the form (1) given pre-
viously provided o( = I1/v~

Within the framework of the above model we ex-
pect our calculation to be accurate to within a few
percent for ion velocities v-70 m sec '. This
also corresponds to the accuracy of the recent ex-
perimental results' which have random errors

2% and there is a similar systematic error in
absolute values of the velocities owing to uncer-
tainties in the length of the drift space. Unfortu-
nately the model omits certain features whose ef-
fects are difficult to estimate quantitatively. The
roton dispersion curve deviates from the parabolic
form (15) for energies well above the minimum.

By including a quartic term in k -k, we can show
that the resultant correction to the emission rate
gives a factor -1+0.05(E„/E,), where E, is the
roton energy above 4 at which the quartic term
contributes -10%. From the published dispersion
curves' we can make a rough estimate E,- ~A, .

whereas E ~ 4, so that this correction could in-
crease our calculated rate by at most 10% at drift
velocities v-65 msec '.

A possible complication in very strong electric
fields is the quantum uncertainty k/r, in the energy
of the ion, where 7, is the mean free time between
emission events. But w, = 2P,/eE since it is the
time required by the electric field to increase the
momentum of the ion by 2P, . We only expect this
"collision broadening" effect to become significant

It follows that the average recoil velocity, which
is just the average decrease in ionic velocity per
emission event, may be written

~ k(k+q) v

V V
k, qk, q

Now the conservation of energy condition (8)
gives

I1(k+q) v=e, +e,+(If'/2m)(k+q)2.

Since we are interested in the deviation of the
recoil velocity from the value 2P2/m arising from
the finite angular spread of emitted rotons, we
only evaluate the above expression to lowest order
in v -v', Accordingly we may make the approxi-
mation (k+ q)' =—4k'„which gives

h(k q+)'v= E+ E22+h, k'v.

In terms of the total roton-energy va.riable $ = E,
+E, and maximum emitted energy E2P ( 2vv')
introduced previously, we have

5(k+q) v 2p, E
SlV pl vEV

22 2E 22 2(g —2'))
Rl 3''V Rl 3V

(18)

The recoil velocity 2p, /m at threshold is there-

The average over all k and q can now be reduced
to a simple average over g with the weighting func-
tion E„—g as in Eq. (16). Thus, the average re-
coil velocity is
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fore reduced by about 20%%uo at high ion velocities
v-70 msec '.

FORMULATION OF BOLTZMANN EQUATION

In a typical experiment a pulse of negative ions
is injected into the region between two grids and
the time of flight measured as a function of the
applied potential difference V. For a drift space
of length L —1 cm the time of flight T =L/2-2
&& 10 4 sec. During this time the number of roton
emission events for a single ion is N, =T/v„
where v, =2po/eE is the mean time between suc-
cessive events. Since v is of the same order of
magnitude as v~ = b, /p, we have N, -eV/2b which
corresponds to 10' events for a potential differ-
ence of 10' V. We can reasonably assume that a
steady-state distribution of ionic velocities will
be established after relatively few events and will
therefore persist for almost the entire transit
time T. It is this steady-state distribution which
we shall calculate using the Boltzmann equation.

In its most general form the transport equation
describing the ion-roton system is very compli-
cated since an ion can both emit and absorb rotons
and take part in inelastic roton scattering pro-
cesses. If we think of scattering processes as
giving rise to a viscous drag on the ion then the
net effect is to produce a reduction in the effective
electric field. At 0.4 K the experimental re-
sults" ' indicate that scattering processes' are
only important for low fields E & 3 &10' V m '. At
these low temperatures the thermal roton density
is so small that we may also ignore absorption and
stimulated emission processes in comparison to
the spontaneous emission rate calculated above.
In addition the density of ions in a typical pulse
is sufficiently small that the thermal roton density
is not appreciably increased as a result of the
pair creation processes.

Even with the restriction to roton emission pro-
cesses the situation is still complicated by the
geometry of an emission event. I et us consider
an ion just above the emission threshold when the
rotons are emitted parallel to the ionic velocity
whose direction remains unchanged by the recoil.
Between emission events the ion is accelerated
parallel to the applied electric field. Thus one can
see that an ion initially moving at some angle to
the electric field will after several emission events
be essentially travelling parallel to the field.
This is illustrated in Fig. 4 on the simplifying as-
sumption that emission occurs immediately when the
ion reaches the threshold speed v'. Thus the ion
velocity vector diffuses towards the direction of
the electric field via the path ABC. . . shown in
Fig. 4. In the steady state the problem becomes

0 V'
V„

FIG. 4. Transverse diffusion of ion velocity vector.
Assuming roton emission occurs exactly at the threshold
speed v' the velocity vector OA becomes OB after re-
coil, OC after acceleration by the field E and so diffuses
towards the field direction along the x axis.

strictly one-dimensional as considered in our
kinetic approach. This is no longer true at high
fields when the ion can be accelerated to rather
larger velocities before emission. The rotons are
then emitted with an angular spread and upon re-
coil the ion can be deflected from its original
course. This weakens the angular diffusion of the
ion velocity towards the field direction. Although
ions moving at large angles to the field still tend
to diffuse towards the field direction, those al-
ready moving parallel to the field may be deflected
from this direction. In the steady state there is
thus 'a distribution of transverse velocities. A
rough estimate based on modifying the picture of
Fig. 4 by allowing the recoil velocity to lie within
a cone, suggests that this transverse velocity dis-
tribution has a width 2po/m-10 m sec ' for large
drift velocities v- 65 m sec '. Such a spread in
transverse velocities is not so large that a one-
dimensional approximation to the complete Boltz-
mann equation should be seriously in error.

We introduce a distribution function f(v) of ionic
velocities, where v is the component of velocity
in the field direction. In so doing we are implicity
averaging over transverse velocity components.
The fraction of ions f(v)dg with velocities in the
range dv can be changed by the effect of the ac-
celerating field and by roton emission processes.
The rate of change due to the field is

eE df
Qv .

pl dv

The rate at which ions are lost from the interval
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dv by roton emission is just R(v)f (v)dv. But ions
within a velocity range du will after emission ar-
rive in the velocity range dv provided the initial
velocity u is greater than the final velocity v by
the average recoil velocity appropriate to an ion
moving with speed u. This is given by Eq. (18)
with v replaced by u. The rate of gain of ions due
to the recoil of higher velocity ions is therefore
R(u) f(u)du, giving the net rate of change due to
emission processes

-R(v)f(v)dv+R(u) f(u)du.

Since in the steady state the total rate of change
is zero we have the Boltzmann equation

eE df— —= —R(v)f(v)+R(u) f(u) —,du
pl dv GV

where the average recoil velocity u -v is given by

2P, ( 2(e —v'()
m 3u

The averaging over transverse velocities implies
that the rates R(u) and R(v) in Eq. (19) have been
similarly averaged. However a transverse veloci-
ty component -10 m sec ' only changes the magni-
tude of a velocity v - 70 m sec ' by 1%%u((. For this
reason we expect the one-dimensional Boltzmann
equation to be an excellent approximation through-
out the experimental range of drift velocities.

APPROXiMATE ANALYTiC Soi.UTION

Since a complete solution of the Boltzmann equa-
tion can only be obtained by numerical means, we first
derive an analytic solution applicable to the region
of small excess drift velocities v —v~ «2p, /m.
This illustrates some of the features which will be
encountered in the general solution and relates the
kinetic method to the present approach employing
the transport equation.

In this low-velocity region we can take the recoil
velocity to be exactly 2p, /m, hence u =v+ (2p, /m)
and Eq. (19) becomes

the second term. The resulting equation is then
easily solved to give

f(e( =A exp(- (v —e')') (e ee') . (22)

This approximation will be valid provided the ex-
ponential decay of f(v) is very rapid, i.e., (o'm/
3eE)'~'(2po/m)» 1, which is in fact quite equi-
valent to the initial assumption of low drift ve-
locities. For v&v' the loss term in Eq. (19) van-
ishes and we approximate the gain term by sub-
stituting for f(v+ (2p, /m)) using the expression
just found. Solving the resulting equation gives

f(v) =B -Aexp — (v —v")' (v" &v &v'),3eE

f(v)dv =1.
I

Subject to the above approximation this gives A
=B = (2po/m) '. It can be seen that the velocity
distribution (22) and (23) is in fact identical to that
which we deduced from our earlier kinetic con-
siderations. Moreover, calculating the average
velocity gives

r'O Sez '"
v = vf(v)dv =v~+ I'

J gtl &Pl

(23)

where v" = v' —(2po/m) =v~ —(po/m). Both gain
and loss terms vanish for v &v" and the only solu-
tion then is f= 0. Physically this arises because,
in the absence of any scattering processes, the
electric field can accelerate all ions without dis-
sipation up to the threshold velocity v'. In the
steady state there is then no mechanism other
than recoil by which ions can be reduced to sub-
threshold velocities. Clearly this implies that
there is a lower limit v' —2po/m =v" to the range
of velocities for which f(v) is nonzero.

The constants A and B are determined from the
continuity of the velocity distribution at v = v' and
the normalization condition

—= —((( (f( )+((( ee)f( e)e.

%e may also use the approximate form for the
emission rate

(21) which is also the same as found from the kinetic
approach apart from a numerical factor

exp (-x')dx = 0.893 .

R(v) = o'. (v —v')'8 (v —v'),

where the step function 8(v —v') indicates explicit-
ly that the rate is zero for v &v'. For v &v' both
loss and gain terms on the right-hand side of Eq.
(19) are nonzero. However, the number of ions
reaching the higher speed v+2po/m is very much
less than the riumber which attain the lower speed
v. As a first approximation we therefore neglect

This factor depends on the form of the velocity
distribution function which changes with electric
field. It follows that the same correction factor
cannot be used to correct the result (6) of the kin-
etic approach for large drift velocities v -v~
&2po/m. We therefore proceed to the numerical
solution of the Boltzmann equation using the more
accurate form (17) for the emission rate which we
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have derived in this paper, and the expression
(20) for the average recoil velocity.

NUMERICAL SOLUTION OF BOLTZMANN EQUATION

Written out more fully the Boltzmann equation
becomes

2

Km dv v —p0/m
0 (v v')f (—v)

u —v
+ 9 (u —v')f (u) —.

u —P(&/m dv

It is convenient to introduce dimensionless vari-
ables

df
(

)d(t&(x)
( )

dg(y) dy
dx dx dy dx

' (26)

We formally integrate this equation from x =X» 0
to some large value x=L using e ~'"' as an inte-
grating factor. This gives the integral equation

A particular solution for (t& is

(t&(x) =b '[(1+ax) (1+ax) ' —21n(1+ax)],

which for small x, reduces to p = (ax)'/Sb' corre-
sponding to the cubic dependence on (v —v') dis-
played in the analytic solution (22).

Equation (19) can now be written for x &0, and
a fortiori for y &0,

1
V —V u —vx= ~, y =, , a=2p0/mv»
2p /m' 2p /

f(X)e((x) f(f )e((z&
l

~("&f( )
~ —dx.

b = (eE/Kmvz)'~',

whence

Ox x

In the integral over x we may change the integra-
tion variation to y using the functional relation be-
tween these variables. Hence, for X«0, we have

y(J ) dm( )f(X) Ce tel (x) e 0 (x) e4I( )f(y)
(X)

'1+a 'y ydx (24)

We note that x represents the velocity excess
above threshold measured in units of the recoil
velocity. Thus x =0 corresponds to the threshold
velocity v', x= -1 corresponds to the lower limit
v", whilst the mid-point x =-2 refers to the Lan-
dau velocity v~. The variable y refers to the ve-
locity u of those ions which recoil into the veloci-
ty state v. For values of u just above the thresh-
old v' we have the linear relation u =v+2P, /m
which becomes y =x+1, but in general we must
use the nonlinear relation (20) for the recoil ve-
locity. In reduced variables this is

where C =f(L)e~(~& is an undetermined constant. In
the integral it is now understood that x is related
to y via Eq. (25).

In the lower-range -1&x&0 below threshold,
only the gain term (second term) is present on
the right-hand side of Eq. (26) so that

df
(

)d(t&(y) (fy

dx dy dx

Integrating this equation from x =-1 to x =X~ 0
and noting that the distribution function vanishes
at x= -1, corresponding to the low-velocity limit
v", we obtain

y =x+1— 3 Qy

1+—'a+ay ' (26)
y(x& d )f(X) = f(y) dy,

0 dy
(28)

and may be solved explicitly to give the functional
form y(x) for y as a function of x.

As in the derivation of the analytic solution there
are two distinct velocity ranges, x &0 apd -1&x
&0, within each of which Eq. (19) must be solved
and the two solutions matched at x =0. In the re-
gion x&0 above threshold, both gain and loss
terms on the right-hand side of Eq. (19) are non-
zero, though at least at low fields the loss term
dominates. We can write' the solution correspond-
ing to the case when only the loss term (first term)
is present on the right-hand side, in the form
e-" ', where

since y = 0 at x = -1. To ensure continuity at X = 0
we equate the values of f(X) given by Eqs. (27) and
(28). This shows that the constant C must be de-
termined self-consistently from the condition

y(0) d ( )f(y) dy +
dy

y(L )

(0)
e""'f(y) " dy.

dk( )

dy

(29)

The numerical solution of the integral equation
commences by taking f(x) =e ~("& as a first approxi-
mation. Evaluating the constant C from Eq. (29)
and the integral in Eq. (27).gives a second approxi-
mation to f(X) in the range X~ 0. This sequence
of steps is repeated. The iteration procedure is
found to converge very rapidly for small values of
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b=o 03 b = 0.19

v vL v'

FIG. 5. Examples of computed velocity distributions
(unno rmalized).

the field parameter b ~ 0.1, when the trial function
e ~'"' is in fact a close approximation to the final
solution. However even for higher fields corre-
sponding to b-0.3 only ten iterative steps are
needed. When the distribution function has been
obtained to sufficient accuracy in the range x & 0
it may be calculated for lower range -1&x &0 di-
rectly from Eq. (28). The average velocity can
then be computed taking into account that the cal-
culated distribution function is not normalized.
The number of iterative steps was defined by re-
quiring an accuracy of 0.01%in the calculated
average velocity. Choice of the upper limit L is
not crucial. For a given value of b the distribu-
tion function decays rapidly at sufficiently high
velocities. It is only necessary that L be so large,
and therefore f(L) so small, that the range x&L
should contribute negligibly to the average veloc-
ity. For electric fields such that b -0.3 this was
well satisfied by L- 25 and smaller values were
chosen for weaker fields.

To illustrate the main features of the solutions,
we have plotted two examples of calculated veloc-
ity distributions in Fig. 5. The first example for
b =0.03 shows all the characteristics of the ana-
lytic solution and corresponds to the small excess
drift velocity u —n~ =0.21(2p,/m). The second ex-
ample for b =0.19 is shifted to higher velocities but
becomes a broader and more symmetric curve
about the mean velocity which in this case corre-
sponds to v-v~ =1.72(2po/m).

We would comment that the integral equation de-
rived above is not the simplest, nor perhaps the
most obvious, alternative form for the Boltzmann
equation. Although the original differential Eq.
(19) immediately suggests the apparently simpler
form

ur =u(v)
f(v)= f R(w)f(M)du,

t

a numerical solution based on this equation did not
converge after 50 iterations. We did not investi-
gate the properties of this equation in detail,
rather we sought an alternative formulation which
took advantage of the known asymptotic behavior
e ~ " of the distribution function.

COMPARISON WITH EXPERIMENT

From the computed solutions to the Boltzmann
equation the variation of reduced drift velocity z
with the electric-field parameter b was found for
various values of the reduced recoil velocity a.
For b & 0.1, corresponding to low fields, a plot of
a(x+ —,') = (v —vz)/v~ vs b reveals a straight line,
which corresponds to the E' ' dependence as pre-
dicted by the kinetic approach or the approximate
analytic solution of the Boltzmann equation. Thus
by plotting the experimentally measured values of
v against E' ' we can find the value of v~ from the
intercept and from the slope we obtain the scale
factor 5/E'~'=(e/Kmv~)' ' The . value of vz ob-
tained in this way from experimental measure-
ments' ' at 0.35 K with a drift space of length
10 mm is 46.3 m sec '. Bearing in mind that there
is a 8% experimental uncertainty in the length of the
the drift space this is in excellent accord with the
value v~ =45.6 mm sec ' deduced from the roton
parameters at 25 bar given by neutron-scattering
data. ' The recent high-field measurements' were
made with drift spaces of 2.5 and 1 mm in which
there are correspondingly greater experimental
uncertainties. Accordingly the relative values of
the drift lengths were scaled so as to give as close
agreement as possible between the three sets of
data in the velocity ranges of overlap. Further,
for convenience in comparing the field dependence
of the velocity data with theory, we have taken the
absolute values of the drift lengths such that the
intercept corresponds precisely to the value v~
=45.6 m sec '. The slope of the linear part of the
vvsE' ' then gives

E'~'/b =(Kmv /e)'~'=500+ 10 V'~'m '~' .
In this region, the behavior is almost independent
of the magnitude of the recoil momentum, which
serves only to define the range of validity of theZ" law.

The point at which the experimental drift velocity
curve begins to deviate from the E' ' behavior cor-
responds to the changeover at v=v~+(2po/m) from
Eq. (5) to Eq. (6) in the kinetic model and is clearly
visible in Fig. 6 at v-53-55 msec . This gives
a rough estimate for the recoil velocity. A more
precise value is found by determining the value
of a = 2p, /mv~ which gives the closest fit between
the theoretical curve and experimental data. This
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FIG. 6. Experimental drift-velocity data and theoreti-
cal curve drawn for parameters given in the text. Many
data points have been omitted in the regions of overlap.
Experimental results have been taken from Ref. 6 and
McClintock (private communication) .

We see from Fig. 6 that for electric fields be-
tween 2 &&10' and 2 &&10' Vm ' there is near per-
fect agreement between theory and experiment.
At lower fields the rapid decrease of the drift ve-
locity is due to scattering processes which pro-
duce dissipation at subthreshold velocities. The
substantial linear part of the curve is itself a con-
vincing demonstration that the supercritical dis-
sipation is due to two-roton emission since the

occurs for a=0.20+ 0.01 which gives for recoil
velocity and effective mass of the ion

2po/m = 9.1 m sec ', rn = 71m, ,

where m4 is the mass of a 'He atom. We have
ta,ken ko =po/h =2.04 x 10"m ' from the neutron
scattering' data at 25 bar. The ionic mass is in
remarkably good agreement with the hydrodynamic
effective mass m*=3 7t pz'. In fact, taking the ra-
dius of the negative ion at 25 bar to be x =11 A
from Ostermeier's analysis" of experimental data
and the liquid-helium density p =0.172 g cm ',
gives m*=72m4. Thus if we take values for the
ionic radius x and liquid-'He parameters v~, P„
and p from independent experiments our theory
only requires one further parameter to describe
the supercritical drift-velocity data. This is the
emission-rate constant which is found to be

K =0.93 && 10~~ sec ~ .

CONCLUSION

The theory of the supercritical drift velocities
of negative ions in liquid 'He presented in this
paper can account for the experimental results
over a wide range of electric fields on the basis
of two-roton spontaneous emission processes.
One-roton processes are apparently completely
absent although the threshold velocity for single-
quantum emission v', = v~+ (po/2m) is less than
that for two-quantum emission.

Qf course it is possible that the matrix element
is so small that one-roton processes are unim-
portant. We have shown previously that the one-
roton emission rate is of the form

which leads to a field dependence of the drift mo-
bility4

3eE
v —v~ = v~ (v —vt &po/Fll),2K,mv~

(20)

in the kinetic approach. It is possible that such

E' ' law depends solely on the form of the avail-
able density of two-roton states. But for drift
velocities v &v~+2P, /m =55 m sec ', the devia-
tion from the E'~' law depends more critically
on the details of the dynamical processes. Bear-
ing in mind the approximations made in the cal-
culation of the emission rate and formulation of
the transport equation the agreement between the-
ory and experiment at these high velocities may
be regarded as a justification of the assumption
of a constant interaction matrix element. The two-
roton matrix element must therefore be quite in-
sensitive to the roton energies and relative angle
of emission over the substantial ranges of these
variables indicated earlier.

For fields higher than 10' V m ' corresponding
to drift velocities v&65 m sec ', the theoretical
curve follows the general trend of the experiment-
al results though the random errors are much
larger for the measurements made with the short-
est drift space of 1 mm. -However, as mentioned
earlier, our calculation of the two-roton emission
rate is accurate to at least 10% at ion velocities
v-70 m sec ' but becomes less reliable at higher
velocities since the emitted excitations no longer
all lie on the rotonlike part of the liquid-4He dis-
persion curve. The range of ion velocities in the
distribution is roughly v +p,/rn and po/m- 5 m sec ', so that in the range above v
= 65 m sec ' we are not justified in expecting such
close quantitative agreement between theory and
experiment as is found for the lower range.



8, . NI. BOWLEY AND F. W. S HEARD 16

an E' ' dependence might be revealed at low fields
& 10' Vm ' provided scattering of the ions by ther-
mal excitations were reduced by going to lower
temperatures and scattering by 'He impurity atoms
reduced by purification of the liquid helium. How-
ever, using a quantum-hydrodynamical theory,
Takken has estimated" the emission rate constant
E'

y 5 x 10" sec ' which is so large that the one-
quantum process should completely dominate.
Since this is manifestly not so a quantitative the-
ory of the ion-roton interaction is urgently needed.
It is interesting to observe that in neutron scat-
tering experiments" single-roton emission pro-
cesses are clearly observed but that two-roton
emission cannot be unambiguously identified in
the continuous background intensity arising from
the scattering by multiphonon processes.

The close fit between theory and experiment for
drift velocities up to 65 m sec ' also seems to pre-
clude the appearance of three-roton processes,
at the appropriate threshold velocity v,' =—52.4
m sec ', with any significant rate. More accurate
measurements at still higher drift velocities
would be required to confirm this. But their in-
terpretation even on the two-quantum hypothesis
presents difficulties, since the emitted excitations
are no longer confined to the rotonlike part of the
liquid-'He dispersion curve.

Finally we mention that the theory presented

here can be generalized to take account of vortex
nucleation. At a pressure of 25 bar the critical
velocity for vortex nucleation v„ is appreciably
larger than v~ and only that small fraction of ions
which attain speeds greater than v„are able to
nucleate and become trapped on vortices. The
consequent perturbation of the velocity distribu-
tion is small since it happens that the vortex nu-
cleation rate" is -10' sec ' which is much less
than the mean roton emission rate -10"sec '.
But, at low pressures, v, is significantly less than
v~. The bare-ion signal is then severely attenu-
ated since the entire velocity distribution is above
the critical speed v„and all ions may decay into
the trapped vortex state. However, measurements
of the field dependence of the drift velocity should
be possible with a sufficiently small drift space
to allow detection of the much reduced bare-ion
pulse. The two-roton emission theory can there-
fore be tested over a wide range of pressures for
negative ions, and the pressure dependence of the
parameters may provide some clue as to the na-
ture of the ion-roton interaction.
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