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Optical spectrum of a Hubbard chain
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The optical absorption of the one-dimensional Hubbard model is calculated by three different methods.
Linear chains of five atoms and rings of five and seven atoms containing four electrons are treated
numerically. The infinite-chain problem is solved first in the t-matrix approximation of Lyo and Holstein. It
is shown that in this approximation, most of the high-frequency absorption is due to a bound state which lies
above the band continuum. Finally, the absorption is evaluated in the memory-function formalism of Gotze
and Wolfle, which reduces to ordinary perturbation theory at high frequency. The three approaches are in
qualitative agreement, and the differences between them can be explained by the nature of the
approximations involved. Applications to tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) and the
platinum salt K,Pt(CN)4Br03 3H20 (KCP) are discussed.

I. INTRODUCTION

The goal of this paper is to calculate the optical
absorption of a one-dimensional, interacting sys-
tem of electrons. Our work was motivated by the
infrared and optical anomalies recently observed in
the quasi-one-dimensional metals tetrathiaful-
valene-tetracyanoquinodimethane (TTF- TCNQ) and

K,Pt(CN), Br, , 3H,Q (KCP). It has been suggested
by Torrance et al. ' that the optical spectra of many
TCNQ salts could be interpreted in terms of a
strongly correlated Hubbard model, in which the
long-range part of the Coulomb interaction is neg-
lected. An unexplained anomaly has also been
found' near the plasma edge of KCP; although it
could plausibly be attributed to interband tran-
sitions, the possibility that the electron-electron
interaction plays a role in these anomalies cannot
be discarded. Such experiments point out the need
for a reliable theory of optical-absorption pro-
cesses in correlated one-dimensional systems. In
the present paper, we discuss three different
methods to calculate the absorption spectrum of the
Hubbard model. The first method consists in cal-
culating the spectra of finite chains numerically;
this brute-force approach can only be used for re-
latively short chains. The second method is based
on the t-matrix approximation introduced by Lyo
and Holstein, 4 ' who used it to calculate the low-
frequency conductivity of the Hubbard model. We
find that, in this approximation, most of the ab-
sorption is due to a bound state which lies above
the band continuum, and which was neglected in
their calculation (which is justified in the low-fre-
quency limit considered by these authors). Finally,
we calculate the optical conductivity in the memory-
function approximation of Gotze and WolQe. ' This
approach is exact in the weak-coupling limit, since
it reduces to ordinary perturbation theory at high
frequency. Our purpose in using this last approach

is twofold. First, it provides a test for the validity
of the t-matrix approach in the weak-coupling limit.
Second, it allows us to check the accuracy of the
memory- function approximation when extrapolated
to higher values of the coupling. We find that al-
though the result of such an extrapolation has the
correct order of magnitude, the memory-function
approximation cannot be trusted for couplings
which are not very weak. The failure of this ap-
proximation is related to that of the first Born ap-
proximation in the two-body scattering problem.

Three basic conclusions can be drawn from our
results. First, the remarkable agreement between
the numerical spectra and the t-matrix results in-
dicates that the optical conductivity is indeed a
measure of short-range correlations, which are
correctly treated in the t-matrix approximation.
This suggests that a similar method could also be
used to treat more realistic models of a quasi-one-
dimensional conductor. Second, we propose that
the validity of the first Born approximation in a
one- or two-body problem provides a useful crit-
erion for the applicability of the memory-function
approximation to the corresponding many-body pro-
blem. Third, we do find an absorption peak at a
frequency of order U, the on-site repulsion energy,
as suggested by Torrance et a/. This peak is due
to transitions in which the final state contains two
electrons sitting at the same site. However, if we
use parameters appropriate for TTF- TCNQ and
KCP, we find that the optical (and infrared) ab-
sorption is quite small; most of the absorption oc-
curs at or near zero frequency. This is especially
true for KCP, which has a low carrier density (0.3
hole per Pt atom). Thus, it seems that some of the
correlation effects neglected by the Hubbard model
must play an important role in the optical anom-
alies observed in real quasi-one-dimensional con-
ductors. This is hardly surprising, since the Hub-
bard model assumes (i) one tight-binding band, (ii)
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a short range interaction, and (iii) no electron-
phonon interaction. On the other hand, our results
do not imply that the correlation effects included in

the Hubbard model are negligible; we only show
that these effects do not by themselves explain the
observed anomalies.

In the Hubbard approximation, the electron- elec-
tron interaction is represented by a term +&Un&&n&&

in the Hamiltonian; U is the repulsion energy ex-
perienced by two electrons of opposite spin sitting
at the same site i. A. priori, one expects to see
large effects in the conductivity if U is comparable
to the half-bandwidth &0. The magnitude of U has
been estimated at -0.3 eV in NMP- TCNQ, ' which is
comparable to the bandwidth in TCNQ compounds.
U has been calculated for two electrons on a tran-
sition metal atom, ' and found to be in the range 2-4
eV; this is somewhat less than the estimated band-
width of KCP. These rough estimates clearly in-
dicate that both KCP and TTF-TCNQ are strongly
coupled systems.

The Hamiltonian for the one-dimensional Hubbard
model is

I= —'Q (s~„a, ,+u'„a, ~,)+ Urn, )n, ), (1)
fety i

where a~„creates an electron with spin g at site
i, n&, =a„a„and 2&, is the bandwidth. The two ba-
sic parameters of the theory are c, the average
number of electrons per site, and y, = U/e„which
measures the strength of the interaction. The low-
energy excitations of the interacting one-dimen-
sional electron gas have been discussed extensively
in the literature. In particular, exactly soluble
models yield correlation functions exhibiting power-
law singularities in the limit +,q -0. Such results
have been used to discredit perturbative treat-
ments, in which the power-law behavior manifests
itself through logarithmic (infrared) singularities. "
Exact methods, however, rely on the Luttinger
Hamiltonian, "which is characterized by an infinite
bandwidth and a linear dispersion relation. While
such simplifications of the band structure may not
qualitatively affect the low-frequency behavior of
the correlation functions, it will be apparent from
our results that the finite bandwidth associated with
the tight-binding Hamiltonian (1) plays an important
role in optical absorption. It is therefore neces-
sary to avoid the simplifications inherent in the
Luttinger model, and to use some form of perturb-
ation theory —which raises the specter of log-
arithmic divergences. There are two reasons,
however, why we think that perturbation theory
may give better results for the (@=0) conductivity
than for other quantities such as the 2k~ electrical
susceptibility. First of all, in the high-frequency
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FIG. 1. Energy-wave-vector diagram for a one-
dimensional elastic collision. Energy is in units of &0.

limit (ar-t ) the correlation functions should mea-
sure short-range rather than long-range correla-
tions, and one therefore expects that an adequate the-
ory of the optical absorption can be obtained if only
short-range correlations are included —which is
easily achieved in approximate theories. The sec-
ond reason is that logarithmic singularities act-
ually disappear from the perturbation-theoretic ex-
pression of the conductivity, at least in the simple
approximation discussed in this paper. Loosely
speaking, the low-energy excitations of the system
contribute to normal electron-electron scattering
processes, which do not affect the electrical cur-
rent and do not contribute to the resistivity. The
finite-frequency absorption is mainly due to Um-
klapp processes. In non-half-filled systems, such
processes are inelastic and involve high-energy ex-
citations to which a perturbative treatment may be
applicable.

We can make the above remarks more precise by
looking at the kinematics of electron-electron scat-
tering in one dimension. In a noninteracting sys-
tem, the crystal momentum k is conserved and
there is no optical absorption. In the presence of
interactions, a pair of electrons in a state ~k„k', )
can be scattered into a state ~k&, k&), thereby con-
tributing to the absorption if the initial and final
values of the current are different. In the low-fre-
quency limit m «&0, one can restrict oneself to el-
astic collisions. For given transfers of energy ~
and crystal momentum q, there are only two pos-
sibilities for the initial and final electron states.
Inthe firstofthese, k,'=kIandk& =k„ this is a normal
process which leaves the total current unchanged.
The second possibility is illustrated in Fig. 1. It
corresponds to an Umklapp process, in which
k,'= —v/a —k, and k& = v/a —kI, where a is the lattice
constant. In this case, the value of the current
does change. However, this process requires that
one electron should initially lie in the top half of
the band. For systems which are less than half
filled (c & 1), this is very unlikely except at high
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temperature, when the logarithmic divergences of
yerturbation theory disappear anyway. It follows,
then, that for temperatures and frequencies much
less than the bandwidth, collisions cannot ef-
fectively degrade an electrical current, and the
conductivity should look free-carrier-like. A sim-
ilar reasoning applies to the case c&1.

The above argument breaks down in a strongly
correlated system, in which the interaction can ex-
cite many electrons out of the Fermi sea. In spite
of this, our conclusion about the low-frequency' be-
havior of the conductivity does apply to the limit
U-~, in which the system becomes equivalent to
a noninteracting, spinless fermion gas. In this
limit, all of the absorption is concentrated at ~ =0,
and the optical absorption vanishes. It is only in
the intermediate coupling regime U- &, that one
would expect to see some structure in the low-fre-
quency conductivity.

In Sec. II, we present the general formalism and
discuss our numerical spectra. Section III is
devoted to the t-matrix approximation. Although
this is a low-density approximation, we find that it
gives good results even for nearly half-filled sys-
tems. In Sec. IV, we discuss the memory function
approximation for a(&u), which reduces to straight-
forward perturbation theory at high frequency. The
good overall agreement between the three ap-
proaches gives us confidence that our approximate
analysis provides an essentially correct des-
cription of the optical spectrum of the infinite Hub-
bard chain. Of course, our approach breaks down
at low frequency, where the detailed structure of
the low-lying excitations plays an important role.
However, the existence of an exact sum rule for
the conductivity of the Hubbard model allows us to
indirectly determine the contribution of the zero-
frequeney absorption peak to the sum rule, which
is sufficient for our yurposes.

II. FINITE CHAINS AND NUMERICAL RESULTS

This section is devoted to the theory of the oy-
tical absorption in a finite chain of N "atoms" or
sites. The motivation for the numerical work de-
scribed later in this section is based on the as-
sumption that the absorption spectra of such finite
chains resemble the spectra of infinite chains
having the same electron density. There ean be no
doubt that this is indeed true for large values of N
(say, N= 106). The question is, then, how large an
N should be chosen for the assumption to be valid.
In yrinciyle, this could be checked by calculating
the syectra of larger and larger chains, keeping
the electron density approximately constant. Unfor-
tunately, the dimension of the Hilbert space grows
exponentially with N. Since a knowledge of all the

excited states is necessary to describe the syec-
trum of a chain, one quickly runs into formidable
numerical difficulties even for N-10. In fact, the
numerical results reported here were obtained for
only four electrons distributed over up to seven
sites. While slightly larger "molecules" could cer-
tainly be handled as well, we found that the nu-
merical spectra were in good qualitative agreement
with the approximate theories which we developed
to treat infinite chains. In particular, all the fea-
tures of the numerical spectra can be interpreted
in terms of physical processes that were included
in the approximate treatments. Since the same
physical processes are at work in larger chains, it
is reasonable to assume that our results reflect the
intrinsic yroperties of the Hubbard model rather
than spurious size effects.

For simylicity, we first consider the ease of a
long chain, in which boundary effects can be neg-
lected. This will enable us to introduce periodic
boundary conditions, thereby simplifying the the-
oretical analysis. In the presence of an oscillating,
uniform electric field Ee-'"' parallel to the chain,
one must add to the Hamiltonian (1) a term repre-
senting the coupling to the applied field. This is
conveniently done by introducing a vector potential
A(f) =cE/( iv)e '"' in—to the Hamiltonian. Here and
in the next two equations, c denotes the speed of
light; this is not to be confused with the number of
electrons yer site, also denoted by c. Some care
is needed to preserve gauge invariance in a tight-
binding system; if x, is the position of the ith atom
in the chain, then a canonical transformation a',
= e "' """~a, should remove the coupling to a static
vector potential A. This indicates that in the pre-
sence of a time-dependent vector potential A(t),
the first term in the Hamiltonian (1) becomes (ff= 1)

(at a e-feaA& t) /c
0 2 ~ jsty i+1 e

,a
+a& a ennea&&&)/c)

Isa t 1 a 7

where a is the lattice constant. Expanding to sec-
ond order in A, we find that the coupling term is

ff„= (A/c)j + —,
' (e c/)'A'a'( —H,), (3)

where Ho is the kinetic energy, i.e. , the first term
in the Hamiltonian (1) and j is the current operator

We will base our discussion on the fluctuation-dis-
sipation theorem, which relates the conductivity to
the equilibrium current-current correlation func-
tion y:

a(~) = lX(~) —«'im']/f~,
where n = cN is the number of electrons and m* is
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an effective mass given by"

1/m*= —a'( H, &/n. (6)

2m*
Z((d) =, dvcr'(v),

&ne 0

In the dilute limit, electrons lie near the bottom of
the band, and 1/m*=a'z, . More generally, in a
noninteracting system, one finds 1/m*= a'e, (sinvc/
2)/(vc/2). The retarded correlation function y is
defined by

X(~) =t dt e'"'(b (t),j (O)]&
0

(7)

In terms of plane wave states, the current j is gi-
ven by

g = —eZ a, ,a„,v~, v~ = a&, soka,
ksa

(6)

where k is the (one-dimensional) wave vector, and
a is the lattice constant.

Later on in this article, we will use approx-
imations whose validity is restricted to high fre-
quencies. To obtain information about the low-fre-
quency conductivity, we will use the analog of the
f-sum rule for a tight-binding system:

E„-so&~ E„-Eo
(12)

j =ie[«, a], (13)

where x is the sum of the position operators of the
electrons. Therefore,

n& = ie(E„E,)&O

inserting this into Eq. (11), we find

p' m dw=ie 0 x n n j 0
7T 0 n

&olJ ln&(nl«lo)),

=- te&ol[j «]lo& = —e'a'(o

where 8 is the velocity operator —j/e. Clearly,
the sum rule implies that Z-1 as & -~. To prove
the sum rule, we observe that the current operator
satisfies the equation

2
a'(&u)d(d = ne'/m*,

Tf
Q

(9)
where in the last step we have used the identity
[see Eq. (4}]

where 0' denotes the real part of the conductivity
and m* is the effective mass defined in Eq. (6).

Before proving the sum rule, let us consider in
some detail the case of a finite chain. The site in-
dices in the Hamiltonian (1) are now restricted by
the condition 1 ~i~N. If we denote by ln& and E„
the exact eigenstates and energy levels of the
many-body Hamiltonian (1), the current-current
correlation function (7) becomes

x( &=pl (0IJI ) l*(„~

co —E„+Eo+ ig (10)

A

[j,«] = i ea' '—(a, ,a... ,+ a, ,a &, ,),
~0

= —iea Ho. (16)

From the definition (6} of the effective mass, we
see that Eq. (16) yields the sum rule (9).

The quantity Z((d) was calculated numerically for
N=5, n=4, and various values of the interaction
constant t(, = U/e, ; the results are illustrated by the
dotted lines in Fig. 2. To interpret these spectra,
it is instructive to investigate the noninteracting
case p, = 0 in some detail. The one-electron wave
functions which diagonalize the kinetic energy are
easily seen to be

where [0& and E, denote the ground state and the
ground-state energy, respectively. From Eq. (5),
the real part of the conductivity is

(-,'}'~'sin(—,«km} (m=2, 4)
(t (k)=

(-', )'~'cos(-('t-vkm} (m =1,3„5)
(17)

o (~)=«pl& ol
fl ff 0

Thus, the spectrum of a finite chain consists of a
series of sharp lines corresponding to transitions
from the ground state to the excited states. When
N is large, these lines merge into a continuum and
o is a continuous function of the frequency. To
compare the spectra of finite and infinite chains, it
is convenient to introduce the normalized integrated
conductivity Z((d}, defined by

with corresponding energies —Eo cos 6 Fm. Here,
k is a site index running from —2 to+2. Thus, the
ground state of the "molecule" can be represented
as in Fig. 3. Since the current operator is odd in
k, the only allowed (dipole) transitions from oc-
cupied to excited states are (m =1) -(m = 4) and
(m = 2}-(m =3 or 5). The corresponding excitation
energies are &E,4= &E„=1.38&, and &E»= 0.560.
These transitions are apparent in the spectrum
shown in Fig. 2(a); since these are the only pos-
sible transitions, they must exhaust the sum rule
(9). The spectrum of aninfinite noninteracting
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FIG. 2. Normalized, integrated conductivity as de-
fined in Eq. (12) for a Hubbard system with c = 0.8 elec-
trons per atom and (a) U=o, (b) U=Ep (c) U=seo. Con-
tinuous curves, five-atom ring; dots, five-atom linear
chain; open circles, t-matrix approximation; triangles,
memory-function approximation. Frequency is in units
of eo.

real part of the conductivity. This absorption peak
occurs at a frequency which increases with p, , and
is roughly U= p. &, when p. »1. It must therefore
correspond to a transition in which the final state
contains two electrons of opposite spin sitting on
the same atom. In Sec. III, it will be shown that
this transition involves a high-energy "bound
state" which is responsible for most of the high-
frequency absorption.

The model discussed above has a density of c = 0.8
electron per site, which is a nearly half-filled sys-
tem. In order to increase the number of sites and
reduce the value of c, we have also calculated the
function Z(&o) for rings of 5 and 7 sites. The ad-
vantage of working with a ring is that periodic
boundary conditions can be imposed, and wave-vec-
tor conservation ensues. One can then restrict
oneself to translation-invariant states, which re-
duces the dimension of the Hilbert space con-
siderably. Although it is still possible to induce an
electric field along the ring by changing the mag-
netic flux through it, the corresponding "conduc-
tivity" is related to the diamagnetic susceptibility
of the system and does not satisfy the sum rule
(9). Therefore, it is preferable to apply a uniform
electric field; the coupling term in the Hamiltonian
can again be calculated from Eq. (2), and is given
by (c now denotes the speed of light}

j„+——4 a —H

+ —' —A'a' cos + 2g
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FIG. 3. Ground-state and optical transitions of a nonin-
teracting five-atom linear chain. .

chain, on the other hand, would simply be a step
function with a discontinuity at co = 0. Thus, we can
look at the finite chain spectrum as a coarse
grained approximation to the infinite chain spec-
trum, with an energy resolution of order 2e, /N
As the interaction parameter p, increases, some of
the low-frequency absorption is shifted to higher
energy, which would correspond to a peak in the

X (a»I„,a~, +a~t, a~„,), (18)

where the current operator is now

Eo 2mk I"tj„=iea,l, Z cos +g (a»„,a», ,+a»„aI,„,).
kp

(19)

In these equations, g is a phase angle depending on
the orientation of the electric field. The factor 2' '
in the last equation provides a convenient normal-
ization. The expectation value of the last term in
Eq. (18) in the (translation-invariant) ground state
is obviously zero, and the conductivity is again
given by Eqs. (5)-(7), in which j is replaced by j„.
The sum rule (9) remains unchanged. Numerical
results for rings of five atoms containing four elec-
trons are shown in Fig. 2 (continuous lines}, and
are in good agreement with the results for the lin-
ear chain (dotted lines). In the noninteracting case
p, = 0, the spacing between the one-electron energy
levels is larger than in the linear case, which re-
sults in a poorer energy resolution. The locations
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where ~k„kg and ~k,', kg denote normalized plane
wave states. It is convenient to introduce the (di-
mensionless) "center of mass" and "relative" co-
ordinates q= —,

' a(k, +k,) and a =-,'a(k, —k,), so that
the kinetic energy of a state ~k,kg takes the simple
form E, = —2&, cosq cosa. If we restrict q and e
to the domain 0&q&m, —n'&~ &n', q is a conserved
quantity. Since we are interested in the singlet
state, we limit ourselves to spatially symmetric
wave functions. Hence we may further assume that
a &0. To find the eigenstates of the two-particle
Hamiltonian, we solve the Lippmann-Schwinger
equation [a scattering eigenstate with initial quan
turn numbers q and a is denoted by ~q, a), while

~q, a) denotes a non-interacting eigenstate].
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FIG. 4. Normalized, integrated conductivity as de-
fined in Eq. (12) for a Hubbard system with c=0.571
electrons per atom and (a) U= Qp g3) U= 8E'p. Continuous
curves, seven-atom ring; open circles, t-matrix ap-
proximation; triangles, memory- function approximation.
Frequency is in units of eo.

and strengths of the main absorption peaks, how-
ever, are in good agreement. This indicates that
the high-frequency conductivity is relatively insen-
sitive to the boundary conditions, even for N= 5.
Figure 4 shows numerical results for rings of
seven atoms. Note that this yields an electron den-
sity c = 0.571, which is close to the observed den-
sity of TTF- TCNQ. " The comparison with the ap-
proximate theories of the infinite chain absorption
will be carried out in Secs. III and IV.

III. T-MATRIX APPROACH

In the absence of interactions, j commutes with
the Hamiltonian and the commutator in Eq. (3) van-
ishes, so that there is no optical absorption and the
dc conductivity is infinite. Thus, absorption pro-
cesses must involve collisions between electrons.
In a dilute system, collisions are rare and can be
treated "one at a time. " Let us therefore consider
a system of two electrons having opposite spins and
interacting via a Hubbard potential U. If the elec-
trons are in a triplet state, the spatial wave func-
tion is antisymmetric and they do not interact.
Hence, it will always be assumed that the colliding
electrons are in a singlet state. The matrix ele-
ments of the two-particle Hamiltonian are

(q, a'iq, a) =5, +(2/N)U

X q, G qy(k & ~ E er fg
o '&0

(21)

This separable equation is immediately solved,
with the result that

(1/N)Uf(q, cosa)
(22)

2U3 e i&2

(q, a iq, b) =
a, o —Eq

where the bound state energy &, is given by

(U + 4» cos2q)

(24)

(25)

We now use these results to calculate the cor-
relation function X for a two-electron system in an
eigenstate ~q, a), which we will denote by
y(q, a, m). We will then approximate the correlation
function for the dilute Hubbard chain by averaging
y(q, a, v) over all the pairs of electrons present in

where the "scattering amplitude" f(q, cosa) is gi-
ven by

1/f(q, cosa) = 1+ U/(2ie,
~

sina cosq
~

). (23)

In addition to the scattering states, the Hamiltonian
(20) has a bound state ~q, b) for arbitrary q. For
the repulsive interaction U& 0 considered here, the
bound state lies above the highest band energy 2&,.
The ability of a repulsive potential to bind electrons
from a tight-binding band was first noted in Ref. 14
in the case of an impurity. The equation for the
bound state is analogous to (21) without the inhomo-
geneous term 5 ~; the normalized bound-state
wave function is found to be
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the system according to

X(&V) = P y(ka(k, +k,), ka(k, —kk), &u)nk k, (26)
kl&k2

where n» is the joint distribution function for a
kj.,k2

yair of electrons in a singlet state:

At
nk k

= (Sk k Sk

A A A A A

k ~ k 2/ (kt kt kt kt}'

Writing y=y'+fy", one finds from Eq. (7)

x'(q, ., ~) ="Z 1(q .I& Iq ~') I' [5(~+e; —&.,"}—5( —", +", '}»
I &0

+vl« ~ Ij Iq»I'[5(&+&.,--',}-5("-',-+")]. (28}

F(q, G, (0) =e(4tkcos q —((d+e .) )

—e(4e', cos'q —(~ —e, )k)

Imf q, 2~™ (31)

The first term in the right-hand side of Eq. (30}
arises from transitions into continuum two-part-
icle states. This term agrees with the result of
Lyo and Holstein. ' The second term accounts for
transitions into the bound state. Since q, a, and k~

Note that this expression is very similar to that ob-
tained for interband absorption in a semiconductor.
The main difference is, of course, that in the pre-
sent case the optical transitions occur between two-
rather than one-particle states. The first term
contains the effect of transitions to continuum
(scattering) states, and the second texm arises
from transitions to the bound state. Using the
above exp"essions for the eigenstates of the two-
electron Hamiltonian, the matrix elements of the
current operator are easily found to be (assuming
a'e')
(q, n jIIq, a') =2a(U/N) tanq f(q, cosa') f*(q, coen),

(q, ~ Ij Iq, &) =(2U'a'/& N)' 'f*(q, cosa) tanq. (29)

Substituting these matrix elements in Eq. (28) for
the correlation function, one finds after some al-
gebra

y"(q, a, &o) =2(U/N)a'tan'qI f(q, cosa) I'F(q, a, ur)

+2v(U a/& N)
I f(q, cosa) Iktan'q

x [5(&d+e, - —'.) —5(&u —E, k+&,)], (30)

where [e(x)=0 if @&0, 1 if x& 0] sin(vc/2)1/m*= a'&,
/2

0 otherwise (p. small).
(32}

In the strongly interacting case, however, the os-
cillator strength of the main absorption peak was
found to be several times smaller than found nu-
merically for finite chains and rings. This is
clearly due to correlation effects, which tend to
shift some of the weight of the two-particle dis-
tribution function to higher values of the momenta.
Since the response function (29) increases rapidly
with the reduced momenta q and a, this enhances
the absorption. As a crude way to include such ef-
fects, we assumed that the particle momenta were
uniformly distributed between —2k~ and+ 2k~.

are of order c and since f-IsinnI-c in the dilute
limit, both terms are of order c4. After inte-
grating over q and e to obtain the real part of the
conductivity, these terms are of order c' and c'
respectively (the 5 function in the bound state term
removes one power of c). This result can be
understood by noting that in the dilute limit, elec-
trons sit near the bottom of the band and the dis-
yersion relation is approximately yarabolic,
leading to momentum conservation and the van-
ishing of the absorption.

To obtain the current-current correlation func-
tion of the system, hence the conductivity, it re-
mains to sum Eq. (31}over the momenta of the in-
coming particles as specified by Eq. (26). This
was done numerically. The oyen circles in Figs.
2 and 4 show the results for the normalized inte-
grated conductivity Z(&o), defined in Eq. (12}. The
corresponding electron densities are c = -', and c = —,
respectively. In the case p =1, we have neglected
the effect of correlation in the effective mass and
in the two-yarticle distribution function. Thus, we
set
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Thus, we set1, sin(ec)=9 Eo
PS+ VC

k 0
0 otherwise (g large).

(33)

This ansatz can be justified as follows. It is easily
seen that, in the limit p. —~, the syatial part of the
ground-state wave function of the one-dimensional
Hubbard model is identical with that of a system of
noninteracting, syinless fermions within a factor
+1. This factor arises because the spinless fer-
mion wave function is odd under the interchange of
two spatial coordinates, while the wave function of
the Hubbard model is odd under the simultaneous
interchange of spatial and syin coordinates. If we
concentrate on a pair of neighboring electrons in a
singlet state, therefore, the full spatial wave func-
tion must behave as a sum of terms of the form
C Isin-,' (k, —k, )(xi xa) I

x exp[f-,' (k, +k, )(x, +x,)],
where x„x,denote the coordinates of the two elec-
trons and the two momenta k„k, are uniformly di-
stributed between —2k~ and+ 2k» C is a constant
which depends on the remaining coordinates x„.. ..
Together with the observation that only short-range
correlations should be important, we are naturally
led to the above ansatz.

With Eqs. (32) and (33), the f-matrix predictions
for Z(ur) are in good agreement with the numerical
spectra. The largest discrepancy arises in the
case c=0.571, p, =8 as shown in Fig. 4 (b). We
checked that the discrepancy decreases with in-
creasing U. This confirms our interpretation of
the main absorption peak in terms of a bound state
consisting of two electrons sitting at the same site.
Figure 5 shows the dimensionless conductivity o*,
defined by

2 m+&0o*(~)=— .' o'(~)
m ne' (34)

in the same approximation. Clearly, it is only in
the weak coupling limit p. «1 that continuum tran-
sitions (open circles) contribute significantly to the
absorption; for p, -1 most of the absorption is due
to the bound state. It must be noted that the rel-
atively large contribution of continuum transitions
to the low-frequency absorption is a spurious ef-
fect, due to our neglect of the Pauli principle in the
summation over final states in Eq. (28}. Restric-
ting the sum over e' to unoccupied states would
suppress this contribution. However, this cor-
rection is formally of higher order in the electron
density c. Since the contribution of continuum tran-
sitions to the t-matrix conductivity is small when
p -1, we did not include this refinement in the t-
matrix calculation.

.10 '
1.2

1.0
I-

0.8
o 0.6
~ 0.42

o 0.2

0.0

x10
1.4
1.2
1.0
0.8
0.6

~ 0.4
0
o 0.2

0.0

(a)

0 1 2 3 4 5

FREQUENCY

FIG. 5. Dimensionless conductivity [Eq. (34)j calcul-
ated in the t-matrix approximation (dotted curves) and
in the memory function approximation (continuous curves)
for e=0.571 electrons per atom and (a) U=0.leo, (b)
U= ~ 0. The open circles represent the contribution of
transitions into the continuum to the t-matrix conduc-
tivity. Frequency is in units of &0.

o (w) = i(ne'/m~) [I/(++ M(&o))]. (35)

In particular, M(&o) = i/w in the Drude approxi-
mation. Thus, M can be interpreted as a freq-
uency-dependent generalization of the relaxation
rate. Just as the conductivity, the memory func-
tion is analytic in the upper frequency half-plane.
The basic assumytion of the theory is that M is a
well-behaved function of + and of the strength of
the interaction. One can then expand Eq. (35) at
high frequency:

o(~) =f(ne'/m*)[1/~ —M(~)/~'+ "]. (36)

Thus, M(~) is simply obtained by expanding the
conductivity to leading order in the interaction. Ex-
trapolation to all frequencies yields the memory-
function apyroximation. Although we have made no
effort toward rigor, it can be show that this ap-
yroximation is actually the first term of a con-

IV. MEMORY-FUNCTION APPROACH

In this section, we will use the memory-function
approach of Gotze and Wolfle to calculate the con-
ductivity of an infinite Hubbard chain in the weak
coupling limit (i.e. , p -0}. We begin with an outline
of the formalism. The memory function M(&o) is
defined in terms of the conductivity by the formula'
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M(»»») =, [»»(»d) —»»(0)], (37)

where the correlation function m is given by

»»(»u) =i dt e»" »([E(t),F(0)]) . (38)
0

Here, the "force operator" F is defined according
to

tinued fraction expansion of the conductivity. In the
present context, we view the memory-function ap-
proximation as the simplest approximation which
satisfies the sum rule (9) and reduces to pertur-
bation theory at high frequency.

From Eqs. (36) and (7), one finds after some al-
gebra that the memory function can be written as

F = i-[q, H]. (39)

It is now straightforward to calculate the cor-
relation function (37) to leading order in the inter-
action U. The force operator (38) is simply

2Sea&0 — ~ ~a+ a~ a~ We)a at a
N a, p, e

x sin-,'a(k+p)(cosa[ —' (k —p)+»f] —cos2»» (k f»)]'

(40)

so that, to leading order in U, the average in Eq.
(38) can be taken in a noninteracting system. The
corresponding diagram is shown in Fig. 6. Using
the standard rules of perturbation theory, one finds
(M = M'+»M")

vU' "~' dq " dA
M (~)= 2~, sin«2 2, , [2X.(e, fl)X.(-q, ~- fl)+2X, (q, &)X,(-»f, ~-fl)], (41)

where "'
~pX„(e,~) = —6(e, —e„,—~)

0 W

x (n~, —n~)(v~ —v~,)". (42)

Here e~= —a, cosaP is the electron energy,
vp Q& 0 sin aj is the velocity, and n~ is the zero-
temperature occupation number, n~ = 1 if ~P ~

& kr
= «/2a, = 0 otherwise. The two-dimensional in-
tegral in Eq. (42) is easily evaluated numerically,
and the real part M' of the memory function is ob-
tained by using a dispersion relation.

The results for the normalized integrated conduc-
tivity Z(»d) [Eq. (12)] are shown in Figs. 2 and 4,
and those for the dimensionless conductivity 0*
[Eq. (34)] in Fig. 5. The absorption predicted by
the memory function approximation is of the cor-
rect order of magnitude for p, =1. In the weak
coupling limit p. «1, one would expect the t-matrix
and memory function approaches to yield similar

results. Figure 5 shows that this is indeed the case
for p. =0.1, although (i) the bound-state contribution
to the t-matrix is still substantial even though it is
formally of order»», ' [see Eq. (30)], and (ii) the t
matrix absorption is too large at low frequency, as
discussed in the previous section. The peak around
& = 1.6&, in the memory function approximation
curves arises from a singularity in the integrand of
the expression (41) for the memory function. This
is illustrated in Fig. 7, which shows the domains in
the (»f, 0) plane where the susceptibilities y (q, 0)
and y„( q, &o 0) are nonvanishing [see Eq. (42)].

2.0

l.5

I.O

0.5

0.0

FIG. 6. Feynman dia-
gram for the correlation

I( function x defined in Eq.
(38) .

-0.5

FIG. 7. Domains in which the factors X (q, Q} and
y„(-q, 1.58&p 0) in Eq. (41) are different from zero.
The arrows indicate the regions of critical contact,
and the dashed lines are the boundaries imposed by the
Pauli principle. 9 is in units of qp.
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For certain values of ~, the boundaries of these
domains are in critical contact; such values of &

will correspond to singularities in the slope of the
memory function, provided that the velocity factor
in Eq. (42) does not vanish at the point of critical
contact. As discussed in the previous section, our
t-matrix approximation neglects the Pauli prin-
ciple in the summation over final states. The do-
mains shown in Fig. 7 are then enlarged, and the
points of critical contact disappear. This explains
why the t-matrix curve goes on increasing below
the value co =1.58gp.

Figure 5(b) shows the dimensionless conduc-
tivity for p. = 1, and it is clear that the apparent or-
der-of-magnitude agreement between the memory-
function approximation and the numerical spectra
is due to a fortuitous cancellation of two effects.
On the one hand, the memory-function approx-
imation neglects the important bound state con-
tribution. On the other hand, the Born approx-
imation used in the memory-function approximation
overestimates the cross-section for scattering into
continuum states. In the strong coupling limit, the
second effect is stronger and the memory-function
approximation breaks down completely.

V. CONCLUSION

The numerical results presented in this paper
substantiate the claim made in the introduction that
the optical absorption of the one-dimensional Hub-
bard model with an electron density comparable to
that of TTF-TCNQ is small. Thus, for U= 8&„we
find that the main absorption peak exhausts about
4% of the sum rule. Moreover, within the "energy
resolution" &co- zp of our finite chain and ring cal-
culations, we find no low-frequency anomaly in the
spectrum. In the case of KCP, we find that the ab-
sorption is even smaller; for instance, setting
c =0.3 and U= fp the t-matrix approximation yields
a normalized conductivity &x~(&u) which is less than
2 x 10-' for ~ & 0. On the positive side, we have
shown that the t-matrix approximation is in good
agreement with the numerical spectra of finite
chains and rings. This indicates that the short-
range correlations which are important for the op-
tical conductivity are properly taken into account
by that approximation. It also suggests that a sim-
ilar approximation may be useful in the study of
more sophisticated models including both the elec-
tron- electron and the electron-phonon interactions.
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