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A method is presented for the exact determination of the Green's function of a cluster embedded in a given

effective medium. This method, the multishell method, is applicable even to systems with off-diagonal

disorder, extended-range hopping, multiple bands and/or hybridization, and is computationally practicable
for any system described by a tight-binding or interpolation-scheme Hamiltonian. It allows one to examine
the effects of local environment on the densities of states and site spectral ~eight functions of disordered
systems, For any given analytic effective medium characterized by a non-negative density of states the
method yields analytic cluster Green's functions and non-negative site spectral weight functions. Previous
methods used for the calculation of the Green's function of a cluster embedded in a given effective medium
have not been exact. The results of numerical calculations for model systems show that even the best of
these previous methods can lead to substantial errors, at least for small clusters in two- and three-
dimensional lattices. These results also show that fluctuations in local environment have large effects on site
spectral weight functions, even in cases in which the single-site coherent-potential approximation yields an
accurate overall density of states.

I. INTRODUCTION

Since the introduction of the single-site coher-
ent-potential approximation' ' (SSCPA), disordered
systems have become the subject of intense study.
Although the SSCPA is the best single-site approxi-
mation for the study of disordered materials, it
shares certain limitations common to all single-
site theories. Within any single-site theory only
the effects of fluctuations confined to a single site
can possibly be taken into account. Fluctuations
in the local environment of a site, which are re-
sponsible for band tailing and for sharp structure
in the density of states, and which can strongly
affect the formation of magnetic moments are neg-
lected. Furthermore, any single-site theory can
yield only k-independent momentum-state life-
times and is incapable of treating correctly trans-
port properties' and the localization of states' "
in disordered alloys. Finally, the effects of short-
range order (SRO) and charge transfer cannot be
taken properly into account within a single-site
theory. In principle, all of these limitations of
the SSCPA could be overcome within the frame-
work of a many-site or cluster theory.

The limitations associated with the single-site
nature of the SSCPA can be overcome, at least in
principle, by generalizing the SSCPA to a many-
site or cluster approximation. In the ten years
since the introduction of the SSCPA much effort
has been expended toward the development of
cluster approximations" "in attempts to take
proper account of many-site correlations in dis-
ordered systems. Such correlations are known to

play an important role in the determination of some
physical quantities, even for systems for which
the SSCPA yields a rather good representation of
the density of states. In particular, many experi-
mental studies of disordered magnetic alloys, "
especially neutron scattering studies, "'"require
for their interpretation" "the consideration of the
effects of local environment on the formation of
magnetic moments. Cluster theories a1low the
study of such local-environment effects in a natur-
al way.

II. MULTISHELL METHOD

A. General discussion

All cluster approximations for disordered mater-
ials can be interpreted in the language of mean-
field theory in terms of a cluster of real atoms
embedded in an effective medium. There are two
problems associated with the development of any
cluster theory of disordered systems. The first
and more difficult problem is that of determining
an optimal choice of effective medium. This prob-
lem has not yet been solved; in particular, no
method has been proposed which yields a transla-
tionally invariant analytic effective medium which
becomes exact in the limit of large cluster sizes.
The second and easier problem is that of finding
a computationally practical technique for the ac-
curate evaluation of the Green's function for a
cluster of real atoms embedded in a given effec-
tive medium. In this paper only the second prob-
lem is considered. The multishell method (MSM)
presented here is a computationally practicable
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method for the exact determination of the Green's
function of a cluster of atoms embedded in an ef-
fective medium and described by a tight-binding or
interpolation-scheme Hamiltonian. It is applicable
even for the case of two- and three-dimensional
lattices and is applicable to the study of electrons,
phonons, magnons, or excitons in disordered sys-
tems even for interlocking lattices or systems
characterized by off-diagonal disorder (ODD),
extended-range hopping, multiple and/or degen-
erate bands, hybridization, SRO, and charge trans-
fer. For a given analytic effective medium the
MSM yields analytic cluster Green's functions, as
is shown in Appendix A. The usefulness of the
MSM of course depends upon one's choice of ef-
fective medium. However, for any given analytic
effective medium the MSM yields values for alloy
densities of states and site spectral weight func-
tions which approach the exact values for large
cluster sizes. For small clusters the MSM at
least allows one to treat exactly the model problem
of a cluster embedded in an effective medium.
For two- and three-dimensional lattices the MSM
is the only method which does so; for the particu-
lar case of a linear chain or Cayley tree the MSM
is equivalent to the continued-fraction method""
(CFM) in the absence of ODD.

As in all previous work on this problem, in this
paper the Green's-function formalism is used. It
is assumed that the entire Hamiltonian, Hc~, for
a system consisting of a cluster C of real atoms
embedded in an effective medium is known. It
is convenient to express H+ as the sum of three
parts: (i) the Hamiltonian Hc for an isolated
cluster, (ii) the Hamiltonian H which couples
the cluster to the surrounding effective medium,
and (iii) the Hamiltonian H ~c for the effective
medium with the cluster removed.

Several methods for the determination of the
Green's function G' ' for this system have been
proposed previously. The method of Aoi, "which
consists of evaluating selected contributions to the
t matrix of a cluster embedded in a SSCPA effec-
tive medium, treats none of the three parts of H
exactly. As found by Aoi, the approximations
made in his technique result in site spectral
weight functions which can become negative near
band edges.

The CFM treats H~ and H exactly, but treats
H within an approximation which is exact only
for the case of a Cayley-tree lattice, in particular,
a linear chain. It is easily applicable to Cayley-
tree clusters of extended range and, with some
difficulty, can be applied to the case of more gen-
eral clusters of extended range embedded in a
Cayley-tree lattice and to the case of extended-
range hopping integrals. The CFM possesses

one great advantage over all other methods of
treating a cluster embedded in an effective med-
ium: within the CFM it is not necessary to calcu-
late explicitly the matrix elements G, , of the ef-
fective-medium Green's function. In all other
methods, including the method proposed in this
paper, one must calculate two or more such ma-
trix elements, except for a Cayley-tree lattice.
This is the most time-consuming computational
procedure in the determination of G . On the
other hand, a continued-fraction expansion can be
terminated exactly only for a cluster embedded in
a Cayley-tree lattice, so that the CFM cannot
properly be used in conjunction with a self-con-
sistent cluster theory for other than Cayley-tree
lattices. Even in conjunction with non-self -con-
sistent cluster theories, for small cluster sizes
the approximate termination of the CFM expansion
is a significant source of error for realistic two-
and three-dimensional lattices.

The methods of Brouers et al. ,
" "like the CFM,

treat H~ and II exactly, but treat H within an
approximation which is exact only for the case of
a Cayley-tree lattice. The initial method of
Brouers et aL."was formulated in exact analogy
with the well-known Bethe-Peierls approximation
(BPA) for local spin ordering. For a cluster em-
bedded in a realistic two- or three-dimensional
lattice, the BPA yields a significantly more ac-
curate treatment of H ' than does the CFM, as
is evident from the replacement of the approxi-
mate, artificial square-root form for G« found
within the CFM by the exact G00 in the BPA for-
malism. Within the BPA one takes account of all
paths through the effective medium which start
and end on the same cluster site, neglecting paths
which start and end at different sites. Thus, for
a given atom in an alloy, A, ,B„with a given
lattice structure, within the BPA G~«depends only
on the number of nearest-neighbor atoms of type
A, not on the particular configuration of those
atoms. More recently, Brouers et al."'"have
significantly improved the original BPA method,
allowing for the approximate treatment of paths
through the crystal which connect different cluster
sites.

Finally, Miwa" has developed a set of exact
equations for G~ ' for the simple case of a cluster
containing a central atom and its six nearest
neighbors in a simple cubic lattice with only near-
est-neighbor hopping. However, as is pointed out
by Miwa, his technique cannot be generalized to
apply to systems characterized by extended hop-
ping integrals or off-diagonal disorder. Further-
more, his technique is difficult to apply in the
case of interlocking lattices, such as the fcc and
hcp lattices, and for larger clusters.
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In order to simplify numerical computations,
Miwa" introduces a series of approximations to
his exact equations. As has been shown by Brouers
and Ducastelle, "the first set of approximations
yields results equivalent to those obtained earlier
by Brouers et al." The resultant theory is refer-
red to in the remainder of this paper as the
Brouers-Miwa approximation (BMA). The further
set of approximations considered by Miwa yields
results equivalent to the original BPA of Brouers
et a/. " In Secs. II B and II C the mathematical
formalism of the MSM is presented. For simplicity
the formalism is given only for the case of binary
substitutional, single-band alloys. In Sec. III the
exact computational procedure of the MSM is pre-
sented, the relative computational difficulty of the
different steps of the procedure is discussed and
the overall computational feasibility of the method
is compared with that of the approximate method
of Brouers et al."'"and Miwa. " In Sec. IV the
formalism is extended to systems with ODD. In
Sec. V the results of exact MSM sample calcula-
tions for a variety of two- and three-dimensional
lattices are shown and are compared to some re-
sults obtained within the BMA. In Sec. VI conclu-
sions and further discussion are given.

B. Mathematical preliminaries

The usual single-band tight-binding model Hamil-
tonian assumes the form

some cluster by an effective medium character-
ized by a self-energy Z. The Hamiltonian for a
system consisting of a cluster of atoms C embed-
ded in a translationally invariant effective medium
is given by the expression,

H =~ c,a, a,.+~ 8'„.a, aj+ ~ Wja, aj
icC jEC j&c

+ g o,a;a, + ~ W, &a, a,. + Z W&a, a&
i&C j+C jeC

(2.3)

Here, the notations igC and i&C denote sites i
which are or are not, respectively, within the
cluster C, and 0, denotes a site-diagonal matrix
element of Z. The transfer integrals, which in
the absence of ODD are given by the equation

W„= (W+ Z);, , (2.4)

connect sites i and j both of which are in the ef-
fective medium, and the W,.j connect sites i and j
one of which is a cluster site. In this section all
transfer integrals are assumed to be scalar quan-
tities; matrix transfer integrals are considered in
Sec. IV. For the purposes of this paper it is as-
sumed that the quantities c„o„W,.j, W„. and W, j
all are known. The form (2.3) shows clearly the
separation of H ' into the three parts, H~, H
and H' ', defined in the Introduction. The Green's-
function operator for the Hamiltonian H of (2.3)
is defined by the expression

H = g e;a;a, + P W;,a,.a,. (2.1) c~ = (z —ff ~c) )-1 (2.6)

G(z)=(z -a) ', (2.2)

where 5 is set equal to 1.
In practice, the Green's-function operator G can

be evaluated only approximately. In a cluster ap-
proximation one replaces the real alloy outside

in a site or Wannier representation. The azt (a, )

create (destroy) an electron on site i Here, . this
Hamiltonian is used to describe a disordered
binary alloy A, ,B, with atoms of types A and I3
distributed in some manner over the N sites of a
lattice. The site-diagonal energies c,. in general
depend both on the chemical occupation of site i
and on its local environment. The variation of e,
from site to site is known as diagonal disorder.
The transfer terms W; j describe electron hopping
between sitesi and j. In general, the W';j also de-
pend on both the occupation and the local environ-
ment of the sites i and j. Any dependence of the
W, j on the chemical configuration of an alloy is
known as off-diagonal disorder.

The single-particle properties of the alloy are
given by the ensemble average (G) of the single-
particle Green's-function operator

The explicit dependence of any Green's function on
the complex energy z is suppressed here and sub-
sequently. Also, throughout the remainder of this
paper the superscript C is dropped in writing the
elements of G '

~

C Formalism

The starting point for the evaluation of the ma-
trix elements G, j is the equation of motion

G, , =g,. ti, &+ g IV', ,G„),
where

(z —~,.) ' for ieC

g =—(z —o,) ' for ieC

(2.6)

(2.7)

is the bare locator for the site i. The transfer
terms 8",„are defined by the conditions,

W, „ if i &C and kcC,
W,'~ = W, „ if zeC, keC, or kcC, i sC, (2.8)

W;~ ifi sC and kaC .

It is convenient to separate the sum over sites k
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in (2.8) into a sum over cluster sites and a sepa-
rate sum over effective-medium sites. For the
matrix elements one wishes to calculate, those
for which i and j are in the cluster C, Eq. (2.6)
assumes the form

Gj, =gj 5jg+ W »G» + Wj»G», 2 9
»EC kec

Q W&~Gqy = Q h~~aG~, ,
kac »CC

(2.10)

where 6'j» is given by the series expansion

The last term on the right can then formally be
treated as a perturbation, giving the result

dg' = P A'„g, 5,.+P w, „g„o„+g w„g, (5„+~ ~ ~ ) w = g w, , r", &w, .
& .mEEC

(2.11)

or in matrix form,

G, =(g, '-w, -n") ', (2.13)

wher Gc gc Wc and W~ a.re matrices in the
space of the cluster C having matrix elements
Gj~, gj&=g,.6j, , Wj, , and 6„, respectively. Given
the Hamiltonian 8'c', Eq. (2.13) specifies Gc in
terms of the renormalized cluster interactor,

Thus, it remains only to determine the d~jj
and d',.k. which are self-energy corrections to g, '

and 5'j», respectively.
Although the series expansion (2.11) can be ev-

aluated directly only for a Cayley-tree lattice, we
have devised a simple method which permits the
exact determination of the b, jk for any lattice.
The first step in the determination of the Ajck is
the introduction of the interactors,

&~a — Q w«~i
j,m Ef.c

(2.14)

for the effective medium. Here, C' is a cluster
which contains the cluster C but is not necessarily
the same as C. By a derivation exactly analogous
to that of Eq. (2.12), it is easily seen that the

satisfy the equations

(g ' —ni, )G, &
—~ (W&, + a„)G,~ = &,»(c') ~ (c')

»&C
kvej

(2.15)

for all sites i and j in the cluster C'. This set of
simultaneous linear equations determines the A~jk

as functions of the effective-medium Green's func-

It is clear from this expansion that ~F is the
Green's function for the effective medium with
the cluster C replaced by vacuum. It is also clear
that A~jk arises from the hopping of electrons from
site i to site A, touching at least one site l outside
the cluster, but not touching any site in the cluster
along the way. Substituting Eq. (2.10) into (2.9)
one finds the result

(g; ' —n;;)G(, —Q (W;~ + d~~ )G~,. = 5,, , (2.12)
»EC

tion G for any cluster C'. Equations (2.15) can be
written more concisely in the matrix form,

(c') -Wc -Gc ' (2.18)

g(c) ~tc) (2.19)

Even if Z is not chosen to be site diagonal, for the
case of only nearest-neighbor hopping, only near-
est-neighbor off-diagonal self-energy terms, and
only diagonal disorder, the choice 0'= uris ap-
propriate, in which case Eq. (2.18) holds.

In the case in which the matrices $V and W are
not proportional to one another, Eq. (2.17) does
not suffice to determine A~'. In that case it re-
lates ' to the entire matrix 5,', not just to its
projection, ', onto the space of the cluster C.
Thus, in that case one must determine the rela-
tionship between g~ and n'~. ~ for an appropriately
chosen larger cluster C'. Consider the cluster
C'=C+C which contains all sites i in the cluster
C and all sites 0 outside C which are connected

which is analogous to Eq. (2.13).
The next step is the determination of the a'j» in

terms of the b+ ). In general the Ajk are given in
terms of ~~ by the matrix equation

~~' = (ww-'Z~' w-'w)„ (2.17)

where W is the transfer matrix for a homogeneous
material and has matrix elements Wj& for all i
and j, which have the same dependence on Rj~ = R,
-R,. as do the matrix elements 8'j& defined im-
mediately after Eq. (2.4). If Wis chosen propor-
tional to W [W = a(&o)W with a a scalar j, then Eq.
(2.17) reduces to the simple form

{c) &2&(c) (2.18)

which clearly defines the A~jk. The clusters C' and
C are identical in this, the most usual case. The
choice W = 8'is obviously appropriate for the case
of a site-diagonal self-energy in the absence of
ODD, in which case W'= W. For this choice one
finds the equality
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D(c) P (1 5 )&(c) (2.23)

III. COMPUTATION OF THE G~

The multishell method is most readily applicable
to the case of a cluster consisting of a site 0 and
its first n coordination shells. In particular, this
choice of an n-shell cluster facilitates the deter-
mination of the effective-medium matrix elements
G» required for the solution of Eq. (2.15). One
must determine these matrix elements for all sites k
and / in the cluster C', with C' = C or C' = C+ C.

by matrix elements 8'„+8'„to any site i in C.
By definition, for this cluster one finds the equality

g(c') ~ Z
(c')~ g(c') (2.20)

Then, b, ' is easily found in terms of b,' for any

cluster C' which contains C. By exact analogy
with the derivation of Eq. (2.13) one finds the
matrix equation

( t)(g,l pre, ~(C )) 1

lg

g +c +c ~ +cc +cd
(c ) —-! (o ') ~ (2 21)

Wcc ~cc gc Wc

where the supscripts CC and CC denote off-dia-
gonal block matrices connecting the spaces of the

clusters C and C =O' -C. Projecting Eq. (2.21)
onto the space of the cluster C after inverting, one
finds the result

G, = [g,-' —W, —~ ' —(W+ r "')„-
x (g,='-W; —~ ') '(W+dc));, ] ', (2.22)

which determines the desired matrix elements G, ,
in terms of b~ fox the choice C'= C+ 0 defined
above. The only assumption made in deriving this
result is that of a translationally invariant effec-
tive medium characterized by scalar transfer
integrals 5',.&. In a more proper treatment" of
ODD it is convenient to define an effective medium
characterized by 2x 2 matrix transfer integrals,
even within the single-site approximation. The
multishell method is extended to include such ef-
fective-medium matrix transfer terms in Sec. IV.

The above formalism provides a completely
general method for the exact evaluation of the
Green's-function matrix elements G,~ for all sites
i and j in a cluster C of real atoms embedded in an
effective medium. In Sec. III the computational
aspects of the determination of the G, ~

are con-
sidered.

One can obtain the approximate equations of
Brouers et aL.""and Miwa" by replacing each
of the d)c), for i!!j, in the exact Eq. (2.11) by the
average value

Any such matrix element can be calculated in the
momentum representation. In that representation
G is diagonal with matrix elements,

G$) = (z —o, —W)) ',
where

(3 1)

haik (Ro -R))
k Oj

is the Fourier transform of the 5', , . Then, the
required matrix elements G» are obtained from
the equations

(3.2)

G„=~ ' ~ G$)eI" '&~!, (3.3)

where the sum is taken over all k vectors in the
first Brillouin zone. The accurate evaluation of
the sum (or integral) in Eq. (3.3) is rather time
consuming. . Furthermore, for an n-shell cluster
C in a d-dimensional lattice, there are approxi-
mately (d+ 1)n+ 1 such distinct matrix elements to
be determined. However, there exist simple exact
relations between the different G» which greatly
reduce the number of matrix elements to be cal-
culated using Eq. (3.3). These relations have been
noted previously only for the case of the Cayley-
tree lattice. In order to find these relations, one
first determines for any given lattice and cluster
C' those sites i such that h(c ~ can be shown from
topological considerations to be zero. Those sites
are easily found using the definition (2.11) and Eq.
(2.12). For those sites Eq. (2.12) assumes the
form

j 'G;) —Q W, )G», = o„, (3 4)

where the sum over k goes over all sites. These
Eqs. (3.4) constitute the desired simple relations
between the different 6», no further such relations
exist except for the case of the Cayley tree. The
number of these relations is maximized by choosing
the cluster to contain all shells within / hops of
the central atom. For example, for a simple cubic
or fcc lattice, the relations (3.4) are of max! mum

benefit for a cluster having n = l' shells. In a d-
dimensional lattice with only nearest-neighbor
hopping, for such an optimally chosen cluster,
there only remain to be evaluated using (3.3) ap-
proximately l+ 1 independent matrix elements for
d = 2 and 4l -1 for d = 3. The number of such ma-
trix elements increases gradually with increasing
hopping range until the hopping range exceeds the
cluster radius, at which point every distinct G»
within the cluster must be calculated directly from
Eq. (3.3). Explicit relations among the G» for a
near-neighbor cluster in a variety of two- and
three-dimensional lattices with nearest-neighbor
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«ii&c = Z ~iG'-'i' (3 5)

Here, P~ is the probability of occurrence of a
given atomic configuration J of the cluster C, and
Gtf) is the value assumed by the Green's-function
matrix element for that configuration. In the ab-
sence of SRO, the P~ are given by simple binomial
distributions. Further, although there exist no
simple algebraic expressions for the P~ in the
presence of SRO, even in that case there exist
computationally simple schemes"'" for the self-
consistent determination of the P~ as functions
of the Warren short-range-order parameters a, .
Thus, the evaluation of Eil. (3.5) presents no corn-
putational difficulty, even in the presence of
SRO.

hopping are given in Appendix B; the corresponding
relations for larger clusters are easily found.

Having determined the required matrix elements

G„, the next step in the computation of the G, is
the determination of the cluster interactors h;c, ~

and d, , One uses the lattice symmetry of the
cluster C' to select the n~ distinct nonzero inter-
actors A~, and determines those interactors by
inverting an appropriate subset of the Eqs. (2.15).
The corresponding ~',~ are then given trivially by
one of Eels. (2.18}-(2.20). This techniilue is illu-
strated in Appendix 8, where it is used to derive
explicit expressions for the b, ,~ for the case P
= W for a near-neighbor cluster in a square
lattice.

To determine the G, , for any given configuration
of atoms in the cluster C it remains only to per-
form the appropriate matrix inversion indicated
by either Eil. (2.13) or (2.22} in the space of the
cluster C. For very large clusters it is necessary
to perform this matrix inversion numerically for
each inequivalent configuration of the cluster C in
order to find the exact configurationally averaged
Green's functions (G„&c. The effective computa-
tional limit on the size of the cluster which can be
treated using the multishell method arises from
the necessity to perform this matrix inversion
many times. Thus, for very large clusters it is
necessary in practice to approximate the proce-
dure of configurational averaging. However, for
near-neighbor clusters in all lattices and for
larger clusters in simple lattices, the required
matrix inversions can be performed analytically.
For such clusters the computer time required for
the solution of Eqs. (2.12} or (2.22) and for con-
figurational averaging is significantly less than
that required for the evaluation of the effective-
medium Green's functions G».

Finally, one must determine the cluster con-
figurationally averaged Green's function

In this section the multishell formalism is gen-
eralized to include more properly the effects of
ODD. Our discussion follows the method intro-
duced by Blackman, Esterling, and Berk" (BEB)
for the treatment of ODD. However, in contrast
to the single-site BEB theory, the energies ~,. and
the transfer terms 5',.

&
for sites i and j in the

cluster C are allowed to depend on the entire con-
figuration of the cluster and on the positions of
the sites i and j within the cluster, not only on
the chemical occupation of the sites i and j. Thus,
in particular, charge-transfer effects can be in-
cluded within this formalism.

The appropriate matrix bare locators, Green's
functions, and transfer integrals are defined for
sites i and j in the cluster by the equations,

x; 0)
0 )gi~

(x;G;,. x, x,G„.y,.)
G„= I

k 3'iG iixi yiG ii yi )
and

Wi, Wi, )
W=W

W cg)

(4.1)

(4.2)

(4 3)

where x, = 1 —y, is a projection operator which is
equal to one if the sitei is occupied by an atom of
type A, and is zero otherwise.

For a system consisting of a cluster C of real
atoms embedded in a translationally invariant
matrix effective medium, such as that of BEB,
the equation of motion of the Green's function as-
sumes the form "'"' '

Gii =gi 5ii + Q WI~G~,. (4.4)

which is formally identical to the scalar Eil. (2.8).
For effective-medium sites, the bare locator g,
is defined by the equation,

fx 0 (o,' o,')
Si 8 (0 ( 3 2) (4.5)

which defines the matrix site-diagonal part 0, of
the self-energy, which is assumed to be known.
For sites i and j in the cluster, 8",-,. is equal to
5', ,; for sites i and j not both in the cluster, the
S",z are defined by the equation

r if icC, j ir: C„
ii (W W or jEC, XEBEC,

Wi, =(
~;, t„b

W„. -=)~ if isC and jeC.
~i j iJ

(4.8)

IV. MULTISHELL METHOD WITH OFF-DIAGONAL DISORDER
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Following a derivation exactly analogous to that
of Eq. (2.12) from Eq. (2.8), one finds the result,

(1-g, a„)G;,(c)

Ej P (Wik + +ik)Gkj gi8ij(c)

a~c
k &$

which assumes the concise matrix form,

~G
= [1 -~g (~W + ++')] 'g (4.8)

V. NUMERICAL RESULTS

For the case of a linear chain with only nearest-
neighbor hopping the problem of a cluster of
atoms embedded in an effective medium is treated
exactly within the CFM, the BPA, the BMA, and
the calculations of Tsukada, "Takahashi, and
Shimizu, "Butler, "and many others as well as
within the MSM. An examination of the results
of numerical calculations of different authors
shows that the results obtained depend strongly on
the choice of effective medium. In particular, it
is essential to choose an analytic effective medium
in order to obtain good results. The reader is

All quantities appearing here are supermatrices of
2x2 matrices, as denoted by the underlines. The
cluster interactors b~. are 2x2 matrices given
by expressions formally identical to Eq. (2.11),
but with every scalar quantity replaced by the cor-
responding 2x 2 matrix. The development follow-
ing Eq. (2.13) can be transcribed word for word in
the case of ODD. In the most general case, W

& o.'(iLj)W, one finds the expression

G~ =(1 —kg[Wc+ + + (W+ n )cc
( ')x(~g' —Wc —gc ') '

x(W+ n~'&)cc]j '~, (4.9)

for the cluster Green's function. Here the cluster
interactor ~ic ' can be evaluated using the appro-
priate generalization of Eqs. (2.14)-(2.20).

One could avoid the introduction of the 2x 2

matrices used in this section by choosing a scalar
effective medium such as the physical effective
medium of BEB or some other, more approxi-
mate, scalar effective medium. However, the
long-range character of the transfer integrals in
the BEB physical effective medium suggests that
the use of a scalar effective medium for a system
characterized by strong ODD would in general
require the treatment of very large clusters C' in
order to treat the off-diagonal disorder adequately.
Thus, the matrix formalism given in this section
would appear preferable to the scalar formalism
of Sec. II for the treatment of off-diagonal dis-
order, at least from a computational point of view.

referred to Refs. 12 and 34-36 for a comparison
of typical results obtained for clusters embedded
in an analytic effective medium with exact results
for disordered alloys. Our calculations show
that for clusters of five or more atoms on a linear
chain the choice of a SSCPA effective medium
yields results essentially identical to those ob-
tained using an effective medium determined with-
in the self -consistent boundary-site approxima-
tion" (SCBSA) or molecular coherent-potential
approximation~ (MCPA}.

We have also performed numerical calculations
for a variety of two- and three-dimensional lat-
tices for a single-shell cluster of real atoms em-
bedded in a SSCPA effective medium for binary
alloys Ay cBc. Alloy densities of states and site
spectral weight functions were calculated. Cal-
culations were performed for the square, hexa-
gonal, simple cubic, and face-centered-cubic
lattices. These calculations were designed both
to test the validity of the BMA—the most accurate
previously used method for treating a cluster em-
bedded in an effective medium —and to show the
large effect upon site spectral weight functions of
even small fluctuations in local environment. In
particular, the results of these calculations show
that even for a fixed chemical composition of
the nearest-neighbor shell of a given central atom,
a rearrangement of the positions of atoms in this
shell can cause large changes in the site spectral
weight function of the central atom. Such a change
is referred to as an isomer effect; different ar-
rangements of a fixed set of atoms in the nearest-
neighbor shell of a given atom are referred to as
isomers.

It is planned to test the convergence of our re-
sults for larger cluster sizes; unfortunately exact
results are not now available for interesting real-
istic three-dimensional lattices such as the fcc
lattice. However, in some cases the SSCPA and
the MSM for a single-shell cluster in a SSCPA
effective medium were found to yield almost iden-
tical densities of states. In those cases the den-
sities of states obtained should be very accurate;
since fluctuations in the first shell produce on the
average almost no effect in those cases, fluctua-
tions in more distant shells also should produce
almost no average effect.

In these calculations a tight-binding model
Hamiltonian of the form (2.3) with only nearest-
neighbor hopping was used. Each energy ~, was
assumed to depend only on the chemical occupa-
tion of the site i and to take on either the value
~„or the value ~~, depending on the occupation
of the site i. The nearest-neighbor transfer inte-
grals, 5',&, W, ~, and N,.~ all were assumed to be
equal to the constant value 8', independent of the
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calculations reported here the method of Gaussian
quadratures was used in integrating Eq. (3.3).
The accuracy of the integrations was tested both
by varying the fineness of the integration net and
by checking against exact results for analytically
integrable functions. Values of p(u) and A~oo (&o)

were calculated on a net of points with 5~ = 0.1
for a bandwidth of order 2m= 5. The calculated
densities of states and spectral weight functions
were found to satisfy the relevant sum rules

p(ur)d(o = 1 (5.3}

I I I

A (8A)
CR 0.5

A (4A)

3
-o 050

cf

c= 0.3

FIG. 1. Exact spectral weight functions App ((d) for
atoms of type A in a fcc lattice, surrounded by nearest-
neighbor configurations J having different numbers nz
of nearest-neighbor atoms of type A, for nearest-neigh-
bor clusters embedded in a SSCPA medium. The
scattering strength 6 is defined in the text; g is the con-
centration of atoms of type B.

occupation of the sites i and j and independent of
the concentration c.

Site spectral weight functions A~~'(e} were cal-
culated for specific cluster configurations J using
the definition

A'00'((u) = -m 'lmG'oo'((u) . (5.1)

Densities of states p(&u) were calculated from the
def intion

p(~) g P ~(I) (~) (5.2)

which is used universally in cluster theories for
disordered alloys.

In one-dimensional lattices with only nearest-
neighbor hopping the matrix elements Q, ~ of the
effective-medium Green's function can be evalua-
ted analytically. However, in higher-dimensional
systems no such analytic expressions for the
Green's function exist, except for the case of the
Cayley tree. In performing the preliminary model

(5 4)

5 = (e~ —E~)lw, (5.5)

with e„always greater than e . The dependence of
the spectral weight function A„~~(to) upon concentra-
tion c and upon n~, the number of nearest-neigh-
bor atoms of type A. , is illustrated in Fig. 1 for
the case of weak scattering (o = 0.33} in a fcc lat-
tice. The curves shown are averages over curves
calculated for all possible isomers. The depen-
dence of Aioro (&u) upon nearest-neighbor concentra-
tion, c„„=1—~1' n~ for a fcc lattice, is seen to be
about as strong as its dependence on c for fixed n„,
with statistically important fluctuations in n„pro-
ducing effects of the same order as those produced
by a change of 0.2 in alloy concentration for fixed
n„. This result was found to be true in gent:ral
for all lattices and all scattering strengths (0.33

to within better than 1/p in all cases. Any devia-
tions from exact satisfaction of the sum rules were
within the uncertainties allowed by the coarseness
of the integration net over co.

We performed calculations within the BMA as
well as within the exact MSM in order to study the
accuracy of the BMA. Although the BMA has been
stated explicitly in the literature only for the case
of a simple cubic lattice, the MSM formalism
makes clear how the BMA can be generalized, as
was shown at the end of Sec. II. We call this
somewhat generalized approximation the BMA,
since it is in the spirit of the original BMA and
is exactly equivalent to it for those cases in which
the BMA is defined. However, in contrast to the
original BMA numerical calculations, in our cal-
culations the exact Green's functions G„are used
in calculating the renormalized interactors 6,,-
which occur in Eq. (2.23).

We report here only a few illustrative results
from our calculations. In discussing these results,
each alloy is characterized by the concentration
c of B-type atoms and the scattering strength
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FIG. 2. Exact and BMA spectral weight functions for
atoms of type P in a square lattice, surrounded by each
of the two distinct nearest-neighbor isomers with n~
= 2 and within a SSCPA embedding medium.

~ o ~ 1) studied.
More subtle isomer effects are shown in the

following figures. Such effects were found for all
lattices and all scattering strengths studied. They
were found to become larger with increasing scat-
tering strength and to be larger for the interlocking
hexagonal and fcc lattices than for the noninter-
locking square and simple cubic lattices. We show
such effects for the two-dimensional square and

hexagonal lattices rather than for the three-dimen-
sional simple cubic and fcc lattices because the
isomers are fewer in number and easier to visu-
alize for two-dimensional lattices.

In Fig. 2 the isomer effect is shown for an atom
of typeA surrounded by two atoms of typeA and

two of type B in a square lattice with c = 0.5 and

6 = 1.0. For this scattering strength, which is just
sufficient for band splitting, even a small change
in local environment produces a significant change
in site spectral weight functions A'o~o)(&u), as is
shown by the two solid curves. However, the MSM

density of states calculated for this case differs
only slightly from the density of states of the em-
bedding SSCPA effective medium, as is shown in

Fig. 3. Thus, fluctuations in local environment
are seen not to affect p(m) significantly.

Note that the BMA fails to differentiate between
the site spectral weight functions for the two iso-

A—A
r'XrX

B—A—A
Xr Xr
A—B

—EXACT~ ~ ~BMA

0.4—

0.3—

c=0.5 8 =1.0
~sscpA

pMSM

0.8—

-o 06

A—Alhl g
B—A—B~r sl

A A~EXACT~~~ BMA

0.2— 04
8=0.4 c =0.3

0.1—

011'
-3

I I

-2 -1 0 I

-3

FIG. 3. Density of states curves p(fd) vs w for a
square lattice calculated using (i) the SSCPA and (ii) the
MSM for a nearest-neighbor cluster embedded in a
SSCPA effective medium.

FIG. 4. Exact and BMA spectral weight functions for
atoms of type A in a hexagonal lattice for two different
isomers with n&=4 and within a SSCPA embedding med-
ium.
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mers depicted in Fig. 2. As is shown by the
dashed curve, the BMA yields a site spectral
weight function for both isomers which is almost
identical to the exact spectral weight function for
the top isomer shown but quite distinct from that
for the bottom isomer. Thus, the BMA does not
even average properly over the results of the two
isomers; this leads to errors in p(ur) as well as
in site spectral weight functions within the BMA.
However, in general the BMA introduces only
relatively small errors in p(~) as compared to
the errors which it introduces in some site spec-
tral weight functions.

In Fig. 4 a much larger isomer effect typical of
those found in interlocking lattices is shown. The
isomer effect is shown for two of the isomers of
an atom of

types'

surrounded by four atoms of
type A and two of type 8 in a hexagonal lattice
with c = 0.3 for the comparatively weak scattering
case, 5=0.4. For these two isomers the BMA
does yield slightly different site spectral weight
functions. However, the BMA shows the same
qualitative weakness in this case as in the case
shown in Fig. 2. The two BMA spectral weight
functions are very similar to one another, and
both are very similar to the exact site spectral
weight function for the bottom isomer depicted and
quite different from that for the top isomers.

VI. DISCUSSION AND CONCLUSION

We have presented here a method for the exact
calculation of the Green's function of a cluster em-
bedded in an effective medium which is assumed to
be known. This method, the multishell method, is
useful for treating the effects of local-environment
fluctuations on electronic densities of states and
site spectral weight functions in disordered sys-
tems described by a tight-binding or interpolation-
scheme Hamiltonian. Such a Hamiltonian can be
used to describe phonon, magnon, and exciton sys-
tems as well as the electron states in some real
alloys, such as paramagnetic Ni-Cu alloys. As is
shown in Appendix A, the MSM yields Green's
functions and site spectral weight functions having
the proper analytic structure, provided that one
chooses an analytic effective medium, such as a
virtual crystal, SSCPA, SCBSA,"MCPA, "or
BEB"effective medium. The effects of SRO and
ODD have been incorporated into the theory. Addi-
tional features of real materials such as multiple
and/or degenerate bands and hybridization can
also be incorporated into the theory in a straight-
forward way. Attempts are being made to genera-
lize the MSM for use with more realistic electron-
ic Hamiltonians, such as muffin-tin Hamiltonians.

Our numerical results show that the effects on
the central-site spectral weight function, A00 (~),

of fluctuations in the chemical occupation of the
first shell are very important. We intend also to
use the MSM to investigate the importance of such
fluctuations in shells beyond the first shell. Al-
though the effects of fluctuations in coordination
shells beyond the first must be of some impor-
tance, such effects die out rapidly with increasing
shell number e for realistic two- and three-di-
mensional systems. For such systems we antici-
pate that MSM calculations for small clusters in
an appropriately chosen medium will suffice for
the determination of almost all. physical observ-
ables in disordered systems. Our calculations
show that for realistic scattering strengths even
the effect of fluctuations in the first shell on the
configurational average of the site spectral weight
functions is small.

Of the other techniques for the calculation of
for a cluster embedded in a given medium, the

BMA is the most accurate in the general case.
Our caLculations for several different lattice struc-
tures show that the use of the BMA can yield quite
satisfactory densities of states for realistic scat-
tering strengths, but can lead to significant errors
in the calculation of the central-site spectral
weight functions. In particular, the BMA was
found to yield satisfactory spectral weight func-
tions for the simple cubic lattice, but not for inter-
locking lattices such as the hexagonal and fcc lat-
tices, or even for the square lattice. It is expected
that extended-range hopping should have effects
similar to increased interconnectedness of the
lattice and thus may decrease the accuracy of the
BMA even further. Although the MSM requires
slightly more computer time than the BMA, our
results suggest that the small additional computa-
tional difficulty of the MSM is well justified. The
relations derived here between different effective-
medium Green's-function elements reduce the
computer time required in either theory.

For small clusters the CFM treats the problem
of a cluster embedded in an effective medium with
even less accuracy than the BMA, except for
Cayley-tree lattices, for which both are exact.
However, the CFM is considerably simpler com-
putationally, so that within the CFM one can con-
sider larger clusters. Also, for very large clus-
ters the importance of the choice and treatment
of the effective medium is greatly reduced, so that
for such clusters the CFM becomes, in principle,
a good technique for the alloy problem. On the
other hand, the application of the CFM to large
clusters is limited by the very large number of
configurations which must be considered separate-
ly in calculating any experimentally observable
quantity, as in the application of the MSM or any
other method. For large clusters for which one
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must generate configurations statistically, the
computational times required for CFM and MSM

calculations become similar, and the accuracies
of the two methods become comparable. Thus,
for treating large clusters it is not clear which
method is preferable. However, for realistic
three-dimensional systems it appears that one
may need to consider only relatively small clus-
ters. For such clusters the MSM is clearly the
best method.

where the matrix renormalized interactor 4c is
given by the equation

W =~c'-Wc -Gc'. (A2)

Gc = Q Gc@)= Q(gc' —Wc —Wg) ', (A3)

Here, the cluster matrices gc and Wc have matrix
elements g„= (z —Z, ,) '6, , and W... respectively.
The effective-medium cluster Green's function Gc
can be found from its momentum representation,

APPENDIX A

It is shown in this appendix that the MSM yields
analytic cluster Green's functions and non-negative
densities of states and spectral weight functions
provided that one chooses an effective medium
characterized by a cluster-diagonal analytic self-
energy 5, the eigenvalues of which have nonposi-
tive imaginary parts throughout the upper half of
the complex z plane. In particular, the MSM al-
ways yields analytic cluster Green's functions and
non-negative densities of states and spectral
weight functions when used with an effective medium
determined within the virtual-crystal approxima-
tion, the average Green's-function approximation
of Zaman and Jacobs, "the SSCPA,"the MCPA, "
the t-matrix self-consistent central-site approxi-
mation, "the SCBSA" for the case of a linear chain
with only nearest-neighbor hopping, or the BEB"
approximation. Explicitly, it is shown that for
such a choice of effective medium any cluster
Green's function Gc is the inverse of an analytic
matrix the eigenvalues of which have positive
imaginary parts throughout the upper halfplane.

The cluster Green's function for a cluster of
atoms embedded in an effective medium is given
by the equation

Gc = (z —Hc —Zc) ', (A1)
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where W-„ is the Fourier transform of the inter-
cluster transfer matrices W«, which have ma-
trix elements W, , only for i e C and jEC'. Equa-
tions (Al) and (A2) correspond to Eqs. (2.13) and
(2.16) in the text. Equation (A2) establishes the
analyticity of Z because from Eq. (A3) the eigen-
values of Gc have negative imaginary parts.

It remains only to show that the eigenvalues of

bc have nonpositive imaginary parts. From Eq.
(A2) one obtains for the imaginary part of Zc the
expression

(Z ), =z, —(Zc), —Im{Gc')

=z, —(Zc), +Go~ Im(PcGPc'1(Gc} ', (A4)

where Pc is a projection operator onto the space
of cluster C and where

G =(z —Z —W)

is the effective-medium Green's function. Using
Eq. (A5) in (A4), one obtains the result

(~).=-G, 'P, 2 GPc (z2-E.»c G
C asC

xP, (Got) '. (A6)

From this result it is clear that the imaginary
parts of the eigenvalues of Z are nonpositive.
Thus, from Eq. (Al) Gc must be analytic and must
yield non-negative densities of states and spectral
weight functions.

APPENDIX B

Here, we give the explicit relations among the
effective-medium cluster Green's functions G,.&

for the case of a nearest-neighbor cluster in
several two- and three-dimensional lattices with
only nearest-neighbor hopping. The method used
yields two relations among the G„ for each lattice.
Also, for the square lattice an explicit expression
for the cluster interactor is given for the
usual case W = W = W. For a translationally in-
variant effective medium, the matrix elements
G„depend only on the vector distance between
sites i and j; for a site j in the nth coordination
shell about site i, G;,. is denoted by G„, as is
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shown schematically in Fig. 5 for a nearest-neigh-
bor cluster in a square lattice.

For a cluster C consisting of the central site 0
and its four nearest-neighbor sites 1-4 in a square
lattice, Eq. (3.4) yields the following two relations
among the effective-medium Green's functions,
Go Gl G2 and G„required for the determination
of g(c).

(z —c,}G,—4WG, =1 (Bl)

G)

o
soi= 4

a = Go

Goo = Go

(z —c,)G, —W(G, +G, + 2G, ) = 0.
The cluster interactors then are obtained from
Eq. (2.16), which in this case assumes the specific
form

G~q = Gq

FIG. 5. Nearest-neighbor cluster in a square lattice
and typical intracluster effective-medium Green's
functions 1"„for n =0, 1,2, 3.
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(B3)

For this simple case with only nearest-neighbor
hopping, b,„.and b..o are equal to zero for all j,
and b, ,&

depends only on the distance R„.for i and

j both different from zero.
For the hexagonal lattice Eq. (3.4) yields the two

conditions
(z —co)GO —12WG, =1 (B8)

(z —co)G, —W(GO+ G3+ 4G2) = 0.
For the face-centered-cubic lattice, Eq. (3.4)

yields the two relations

(z —o'0)GO —6W G, =1 (B4)
[(z —co) -4W]G, —W(GO+G'+2G~+4G~) =0. (B9)

(z —oo)Go —6WG, =1 (B6)

[(z —o,}—2W]G, —W(GO+G, + 2G, ) =0 (B6)

For the simple cubic lattice, Eq. (3.4) yields the
two relations

As the discussion in Sec. IV makes clear, all of
the above relations can be generalized to the case
of alloys exhibiting ODD. All that is necessary to
do so is to interpret the scalar quantities which
appear in Eqs. (Bl}-(B9)as 2x 2 matrices. The
generation of further relations for larger clusters
is equally straightforward.
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