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Vibrations and electronic states in a model amorphous metal~
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Calculations are presented of the electronic and vibrational properties of a periodic, 500-atom unit cell
model of the structure of an amorphous metal. We treat both the effects of topological and quantitative
disorder, the latter being due to variations of interatomic force constants or hopping matrix elements.
Topological structure in the model is characterized in terms of the radial distribution function, near-neighbor

ring statistics, and the static scattering function I(Q). Calculations are presented of the vibrational density
of states, the neutron scattering law S(Q, co), and the electronic density of states. In these calculations, the
structural disorder is treated exactly, within the framework of simplified models retaining only first-nearest-
neighbor interactions. Despite these approximations we expect that the vibrational structure will accurately
characterize experimental neutron scattering results in amorphous metals such as PdSi alloys. We find that
topological disorder alone does not destroy gross features in the density of states. However, quantitative
disorder broadens the electronic spectra and washes out structure in the vibrational density of states almost
completely.

I. INTRODUCTION

There has been considerable progress in recent
years in understanding vibrational effects" and
electronic spectra' ' in amorphous semiconductors
and oxide glasses. Far less attention has been di-
rected at these problems in amorphous metals.
In this paper we consider such effects in a period-
ic, 500-atom unit cell, structural model of anamor-
phous metal. We present calculations of the vibra-
tional density of states, the scattering law S(Q, u)
for vibrations, and the density of states for a sim-
ple electronic Hamiltonian. We also discuss the
topological properties of this model. We empha-
size the results for vibrational properties since we
believe our interaction potential ''s sufficiently re-
alistic that the theoretical results can be compared
directly with proposed neutron scattering experi-
ments. ' The electronic calculations deal with a
one-band Hamiltonian with varying hopping matrix
elements. These results are useful in characteri-
zing effects of "topological" and "quantitative, "
disorder on the electronic spectra. However they
are only a first step toward understanding realistic
models for d-band metals.

In amorphous metals, as in other amorphous ma-
terials, there is no conserved crystal momentum
to simplify the description of the vibrational and
electronic states. Thus, even the simplest models
with a harmonic potential or a one-electron Hamil-
tonian pose difficult theoretical questions. The
origin of the difficulty is in the disordered nature
of the atomic environments. In amorphous metals,
as in semiconductors, it appears to be a good first
approximation to focus on the strong near-ne. ghbor
interactions. For these interactions the disorder

has two distinct aspects. First there is "topologi-
cal disorder" which is associated with the absence
of a large-scale, repeating lattice and manifested
by the variation in the numbers of closed rings of
bonds for each site. Second, there is "quantitative
disorder, "associated with the variations in the in-
teraction between pairs of neighboring atoms due
to variations in their separation distances. In
amorphous semiconductors the near-neighbor dis-
tances do not vary appreciably so it is often valid
simply to neglect quantitative disorder. By con-
trast, in amorphous metals there is good evidence
for a spread of about 15%in near-neighbor dis-
tances, " so considerable effects of quantitative
disorder might be anticipated.

We are aware of two previous studies of vibra-
tions in models which can be interpreted as repre-
senting amorphous metals. In one study von Hei-
mendahl and Thorpe' considered the effect of top-
ological disorder alone. They concluded that the
vibrational densities of states in real amorphous
metals should be similar to those of fcc and hcp
materials, and in particular should have two peaks
associated, respectively, with transverse- and
longitudinal-type modes. In the second study, Rah-
man et al."considered the dynamics of a "Len-
nard-Jones glass, " in which both topological and
quantitative disorder were treated together. They
found an essentially featureless density of states.
They also calculated longitudinal and transverse
scattering functions for relatively small wave vec-
tor Q. There has also been some recent work on
the structure of the electronic d bands in amor-
phous metals. ' The emphasis of that study con-
cerns the effects of topological disorder in liquid
and amorphous metals.

16 2400



16 VIBRATIONS AND ELECTRONIC STATES IN A MODEL. . . 2401

In the present study we consider successively
both the effects of topological and quantitative dis-
order. We assume simple first-nearest-neighbor
interaction Hamiltonians, with varying amounts of
quantitative disorder spanning values which can
reasonably be expected for real amorphous metals.
We obtain results, particularly for vibrations,
which we can confidently apply to real amorphous
metals. In our calculations, we make use of a fin-
ite (500 atom) model with periodic boundary condi-
tions constructed by Rahman et al." This model
has structural features very similar to models for
amorphous or liquid metals, though it was origi-
nally obtained as a representation of a Lennard-
Jones glass.

The principal conclusions of this study are as
follows. We find that for vibrations in real amor-
phous metals, the quantitative disorder should
wash out the two peaks in vibrational density of
states left by the topological disorder alone. How-

ever, the quantitative disorder does not signifi-
cantly affect the rotonlike behavior found in a study
with topological disorder only. ' Although our cal-
culation was made for a one-component model,
this conclusion should apply for the low-frequency
part of the scattering in the amorphous alloy
Pd„Si„, where the modes associated with the rela-
tively light Si atoms should be confined to frequen-
cies above about 200 cm '. From the electronic
calculations we would expect that the quantitative
disorder expected for real amorphous metals has
a relatively modest (-1 eV) broadening effect on
the spectrum. This reflects a somewhat smaller
variation in the near-neighbor interaction compared
to that in the vibrational case.

The paper is divided into five sections. In Sec.
II we describe the 500-atom model amorphous
structure, and we present results for the radial
distribution function, the static scattering function
I(Q), and the distribution of three- and four-mem-
bered rings of near-neighbor bonds. In Sec. III
we briefly review the equation-of-motion method
for obtaining spectra for large finite models. In
Sec. IV we present our results for vibrations. We
discuss in detail the adequacy of the nearest-neigh-
bor, central-force model in crystalline transition
metals and, using the measured anharmonic prop-
erties of such crystals, we obtain quantitatively
the force-constant disorder appropriate for the
amorphous structure. We also consider the be-
havior of S(Q, ur), in the vicinity of the first peak
in 1(Q), and we find a broad rotonlike feature.
Finally in Sec. V we calculate the density of states
for simple electronic Hamiltonians, the quantita-
tive disorder in the hopping matrix elements being
estimated from band calculations in transition
metals.

II. MODEL

The model amorphous structure used in our stud-
ies is a periodic, 500-atom unit cell structure,
originally developed by Rahman et al."to investi-
gate properties of a Lennard-Jones glass. As dis-
cussed below, however, its properties are well
suited for the study of an amorphous metal. " This
model was constructed using molecular-dynamics
techniques and has periodic boundary conditions in
a cube of side I.= 8.07o (density IV/V =0.95/ o'). In
our calculations of electronic and vibrational prop-
erties, therefore, we treat this system as a finite,
500-atom cluster with periodic boundary condi-
tions. In this section we characterize properties
of this model in terms of its radial distribution
function, the static scattering function I(Q), and
near-neighbor ring statistics.

A. Radial distribution function

The radial distribution function J(r) for the 500-
atom model is defined as

Here (r; —r~~z is the distance between sites i and
j, modulo an appropriate translation in the cubic
unit cell. Essentially J(r) gives the average num-
ber of particles per unit shell thickness a distance
r from a given site, i.e., J(r) =4vr'n(r), where
n(r) is the pair distribution function. We have
plotted J(r) for the 500-atom model in dimension-
less units J(r/o) =oJ(r) in Fig. 1. For comparison
we have also plotted J(r/o) for a uniform mass
distribution and for a "thermally disordered" FCC
structure" of the same density.

The spread of nearest-neighbor distances (12%)
is similar to that expected for models of amor-
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FIG. 1. Radial distribution function (in dimensionless
units) for the 500-atom amorphous structure (solid
line), a "thermally disordered" fcc structure (Ref. 12)
(long dashes), and an uniform mass distribution (short
dashes).
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FIG. 2. Static scattering function for the 500-atom
amorphous structure.

precisely defined, the coordination number z does
not have a precise meaning. We shall consider
two atoms to be first-nearest neighbors if their
separation (modulo an appropriate cubic transla-
tion) is less than 1.30'. This distance corresponds
to a pronounced minimum in J(r) (Fig. 1), so that
a somewhat different division criterion would not
significantly change our results. This criterion
leads to an average coordination number of 12.048
+0.67 (the error is + one standard deviation}. This
value is rather close to that in close-packed struc-
tures (12 for fcc}, but slightly larger than that re-
ported for the models of Sadoc (Z = 11) and Bletry
(2=11.5) used in the study of Gaspard. "

phous and liquid metals (15'Q. Also the split sec-
ond-neighbor peak, with peak distances in the ratio
of 2/M3; and the rather long-range oscillations in
J(r) are features typical of amorphous structures
described in the literature. ' '" Note however that
there is little resemblance to the structure in the
fcc crystal. The difference in the average first-
neighbor distances (1.06o for the 500-atom amor-
phous model; 1.14o, FCC) indicates that the amor-
phous structure is substantially more loosely
packed than are fcc crystals. The hard-sphere
diameter 1.06o at density 0.95/o' corresponds to a
packing fraction of 0.60 (compared to 0.74 for fcc),
which is comparable to that reported for other
models. "

ao

ltq)=f d J( 1 (2)

which we have plotted in Fig. 2, in dimensionless
units, Q =pe. The sharp peak reflects the pre-
sence of rather long-range oscillations in J(r)

C. Coordination number and ring statistics

Electronic and vibrational properties (Secs. IV
and V) are strongly coupled to the local distribution
of bonds and their connectivity in a given structure.
Here we discuss the average coordination number
and the distribution of nz-membered "rings, " each
"ring" being a closed, self-avoiding path of n-bond
steps.

1. Coordination number

Since the dividing line between first and second
neighbors in an amorphous metal structure is not

B. Scattering function l(Q)

The static scattering function I(Q) is proportion-
al to the three-dimensional Fourier transform of
the pair distribution function s(r); for an amor-
phous structure this reduces, on averaging, to

2. Three-membered rings

The total number of distinct three-membered
rings for the 500-atom amorphous model is 41.55,
somewhat larger than that in a 5& 5&& 5, 500-atom
fcc structure (4000 rings). This correspondsto an
average of 49.86 +6.4 rings intersecting a given
site, compared to 48 for the fcc.

3. Four-membered rings; elemental rings

The total number of distinct four-membered
rings in the 500-atom amorphous structure is
1'7 140, somewhat larger than the number 16 500
counted for a 500-atom 5x 5& 5 fcc structure.
This corresponds to an average of 274.24 +40 rings
intersecting a given site, compared with 264 for
the fcc.

The numbers mentioned so far might suggest that
the local connectivity properties of the 500-atom
model do not differ substantially from those of
close-packed fcc crystals. This is misleading.
The two structures differ significantly inthe num-
ber of "elemental" four-membered rings, i.e.,
those four-membered rings which cannot be split
(by adding a bond) into two three-membered rings.
The 500-atom amorphous model has only 1063 such
elemental rings; they are broadly distributed with
an average of 17.00 +6.5 such ringsper site, com-
pared with 1500 such rings or 24 per site for the
fcc structure. Furthermore the number of such
rings at a given site is strongly anticorrelated
with the number of three-membered rings. This
suggests that the reduction in such four-membered
rings partly accounts for the increased number of
three-membered rings.

III. EQUATION-OF-MOTION METHOD

In this section we outline briefly the equation-of-
motion method used in calculating the electronic
and vibrational densities of states. For more de-
tailed accounts of this method the reader is re-
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ferred to the papers of Alben et al."(electronic
problem) and Beeman and Alben" (vibrational).
This method has several advantages compared with

other means of calculating densities of states.
Since matrix diagonalization is not required, the
method is quite efficient in dealing even with very
large structures containing thousands of atoms.

A. Electronic density of states —one-band model

The equation of motion method is based on the
following integral expression for the density of
electronic states projected onto a given initial
state of the system )(t() =g; (t,.(0) ~i):

(3)

Here E =ho&, and iI«(t) is a solution to the time-de-
pendent Schrbdinger equation

defined by the initial conditions (((;(0) = e'~, where

pj are random phases uniformly distributed in the
interval (0, 3w}.

Fluctuations in the occupation probability of a
given eigenstate Q;" are largely averaged out by
the resolution function h(&u). However, this pro-
cedure does introduce a small statistical error in-
to the calculated density of states, in addition to
that from the resolution width, finite size effects,
and approximations inherent in the numerical in-
tegrations.

B. Vibrational density of states

The calculation of the vibrational spectra is an-
alogous to the procedure for the electronic spectra,
except that three states per site must be consid-
ered, and the equation of motion is slightly differ-
ent. In this case the density of vibrational states
is given by

(4)

subject to a fixed set of initial conditions (t(;(0),
which defines the initial state, and normalization,

Q, ((t~; (' = l. Equation (3) is evaluated by Simpson's
rule with (t(;(t) determined by integrating the differ-
ential equation (4) numerically, using a simple,
two-step difference equation approximation.

The cutoff parameters T and & in Eq. (3} lead to
a finite resolution function A((d) in the density of
states (which reduces to a & function in the limits
T —~, X-0). This resolution function conveniently
smooths the purely discrete spectrum of a finite
model. The form of 4((e) may be obtained by
evaluating Eq. (3) formally in terms of the eigen-
states Q3' of the Hamiltonian H;, with energies
A(dp.'

(5)

where

1 T
n, (ur} = — cos(etc dt- Xt2

7T 0
(5)

In practice the resolution width in &(u) is typically
5/e of the bandwidth, and the value & =-3/T leads
to a small oscillatory tail in &((e). The numerical
integration requires typically 100 steps.

In principle the total density of states is obtained
by evaluating Eq. (3) for a complete set of initial
states, for example the states defined by the initial
conditions {(1(;(0)= I, QO) =0,j&iJ. There are 500
such states for the 500-atom amorphous model.
In practice it is far more efficient to evaluate Eq.
(3) for a small number of initial states which more
or less uniformly sample the full spectrum. A
convenient set of states for this purpose are those

g(~}=He — P x(0 x«(t)e' ' "' dt.
0 «, a

Here x;gt) is the a-component of the displacement
of the ith ion, with mass mj. These displacements
satisfy the equation of motion

IV. VIBRATIONS

A. Elastic energy

A calculation of the vibrational properties of
amorphous metals has two main ingredients. The
first is a model for the equilibrium structure, for
which we use the 500-atom amorphous model de-
scribed in Sec. II. The second ingredient is a form
for the elastic energy. This must be simple and
free of undetermined parameters, but accurate
enough to describe features of the spectra semi-
quantitatively. We thus assume a restricted har-
monic form for the energy with near-neighbor cen-
tral forces, whose distance dependence is esti-
mated from the anharmonic behavior of crystalline
materials. The specific form of the energy is that
of the Born central force

& = 2g aq&[(u& —u~) ~ r, ~]', (9)

Xj~
«n. &8~~8 y

9, 8

subject to the initial conditions with specified x;
=x; (0), and 2«(0) =0. Equations ('7} and (8) are
evaluated numerically, using techniques similar
to those used in the electronic case. Similarly the
total density of states is obtained statistically, us-
ing initial states with a given set of random phases,

0
X«~ = C0S I(ij «0f .
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we would like to have results for the variation of
the full spectrum of phonon frequencies with bond
distance, but these are not available. The more
readily available anharmonic information comes
from elastic constants. In the table below we show
the measured elastic constants for copper" com-
pared with those due to the nearest-neighbor cen-
tral-force alone. "

Experiment (N/m'} Nearest neighbor

0.5-

0

Cll

Cl2

1.765 x 1Q'l
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Q. 818 x 10»

1.544 x 10»

0.772 x 10»

p.772 y 1p»
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FIG. 3. Vibrational density of states for (a) Cu, 18-
parameter fit; (b) Cu, first-nearest-neighbor interaction
only; (c) 480-atom 4 &&5x6 fcc model.

where the sum is over "nearest-neighbor" pairs of
atoms i and j (as defined in Sec. III C), a&~ is the
force constant for the given pair of atoms, r&~ is
the unit vector from i to j, and u& the displacement
from equilibrium.

The adequacy of such a near-neighbor central-
force model for the overall behavior of the vibra-
tions can be tested against results for force-con-
stant models with many free parameters chosen to
fit the phonon dispersion in fcc crystals. Such a
test is shown in Figs. 3(a}and 3(b}, where the pho-
non density of states of copper, calculated from an
18-parameter force-constant model, "is compared
with the result obtained with a single first-nearest-
neighbor force constant" (o.'=21.9 N/m). Here ~
= &o/(am)'i' is a dimensionless frequency. The
agreement is seen to be excellent. In Fig. 3(c) is
a plot of the vibrational density of states for a
periodic, 480-atom 4x 5& 6 fcc model as calcu-
lated by the method of Sec. III with a broadening
width (full width at half maximum) 6 &0=0.15. This
last result indicates that the overall form of the
density of states for crystalline Cu can be reason-
ably well reproduced by a nearest-neighbor cen-
tral-force elastic energy applied to a model with
about 500 atoms.

In order to apply the form of V to the 500-atom
disordered model, we must account for the varia-
tion of the force constants with bond length. We do
this by examining experimental results for the an-
harmonic properties of crystalline metals. Ideally

It is seen that, despite excellent agreement with
the near-neighbor central-force model for the
overall phonon spectrum, the agreement for the
elastic constants is only approximate. This is not
surprising, since contributions to the elastic con-
stants are weighted by the square of the interaction
range. Thus, we can only roughly approximate the
behavior of the nearest-neighbor force from varia-
tions of the elastic constants. In this spirit, we
consider two results which would roughly deter-
mine the force-constant variation if near-neighbor
central forces were dominant.

We define a dimensionless anharmonicity para-
meter A as

(10)

where I (r) is the potential between a Pair of inter-
acting atoms at separation ~p For near-neighbor
central forces A is related to the pressure deriva-
tive of the bulk modulus":

A = -2(C„,/C„) —3 . (12)

Using the value C», =-13.9 x 10"N/m', we obtain
A =12.8. Of course many other combinations of
third-order elastic properties could be used to esti-
mate A, but the result A -13 is typical and will be
assumed below to be characteristic of copper and
other d-electron metals.

It might be expected that information about the
anharmonicity could also be obtained from the
Gruneisen parameter. In the simple Griineisen
theory, the mode frequencies depend only on the
volume, and it can readily be seen that A = 6y for
the near-neighbor model. The Gruneisen para-
meter y for copper" is about 2.0, giving A =12.

A=3 —1
BB
ap

Using the measured value" &Bj&P = 5.59, we obtain
A =13.8. The second way of getting A is from the
third-order elastic constant" Clll.
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FIG. 4. Effect of disorder on the vibrational density
of states: (a) 480-atom fcc model, (b)-(d) 500-atom
amorphous model with (b) constant force-constants
(A =0), (c) a Morse potential (A =9.8), and (d) a Lennard-
Jones potential (A =19.5). The dashed curve in (d) is the
result of Ref. 11.

desired potential with A =13 is intermediate be-
tween (ii) and (iii) but somewhat closer to (ii).

Results for the vibrational density of states for
the 500-atom model for these three potentials are
shown in Figs. 4(b)-4(d), respectively. In each
case the frequency is normalized by that corres-
pondingtothevalueof o(r) at r=l. lo, which is the
average nearest-neighbor distance, &u = &u/

[ma(l. lo)]'~'. (If the results werenormalized by
the value of u at 1.070', the distance corresponding
to the peak in the RDF, the spectra for the 500-
atom disordered model would be shifted to lower
frequency. ) For comparison, the result for the
periodic, 480-atom 4 & 5 & 6 fcc model, calculated
with the same resolution, is given in Fig. 4(a). In
Fig. 4(d), we also include the molecular-dynamics
result of Ref. 11 for the Lennard-Jones potential
without the cutoff used in our work. The interpre-
tation of these results is that the two-peaked form
of the crystalline density of states is not removed
by topological disorder, in agreement with pre-
vious work. ' However even for a somewhat small-
er force-constant variationthan that expected for
real amorphous metals [Fig. 4(c)], the spectrum
is very much washed out.

The neutron scattering law S(Q, e) is defined by
the relation

Although this number agrees with the above re-
sults, measurements of the temperature behavior
of the phonon frequencies" indicate that this simple
theory does not apply very well to copper, so we
base our value for A on the elastic constant re-
sults.

Given a value for the anharmonicity A, we can
examine various forms for the interatomic poten-
tial and choose one which will approximately re-
produce the force-constant variation with bond
length. In our numerical calculations we have con-
sidered three forms for the interaction potential:
(i) The first is a potential with constant curvature,
for which A =0 and the force constants are taken
to be the same for all atoms close enough to be
considered nearest neighbors. (ii) The second is
a Morse potential, with parameters as proposed
by Girifalco and %eizer, "and the nearest-neighbor
distance for the fcc structure is taken to be 1.1a.
For this potentialA has a somewhatlow value of 9.8,
and the force constant varies by a factor of 2.43 over
distances in the near-neighbor peak (half-maximum
to half-maximum) of the radial distribution func-
tion (RDF). (iii) The third potential is the Len-
nard-Jones potential used by Rahman et a/. " in
their molecular-dynamics calculations of the 500-
atom amorphous structure. For this potential A
=19.5, and the force constant varies in strength by
a factor of 7.0 over the near-neighbor peak. The

1 Z 4 'u&(0)e
1l 0

~g Q ' uq(&)& & cos&vtdt.
f

(13)
Results for a normalized S(Q, v),

S(Q, rD) =S(Q, +)M~/Q fie(flu//rT) +1],
are plotted in dimensionless variables [ Q = Qo; &o

= &/(~ &) ] in Fig. 5, for the Morse function in-
teratomic potential [Fig. 4(c)]. The values of Q
range from a small wave vector, for which a sharp
longitudinal acoustical mode is seen, to a value be-
yond the first peak in the static structure function
f(Q) (see Fig. 2).

The behavior in the vicinity of the strong first
peak in 1(Q) at Qo ='I.21 can be described as "ro-
tonlike"; as Q increases there is a minimum in the
energy corresponding to the maximum scattering.
However the effect here is rather different than the
roton excitation in superfluid 4He. Here, the scat-
tering at low energy is enhanced for Q near peaks
in I(Q), since at these points the structure can
statically absorb momentum, allowing long-wave-
length low-energy excitations to contribute to the
scattering. ' The case treated has somewhat less
quantitative disorder than we estimated for real
amorphous metals. However the rotonlike effect
in Fig. 5 is not much different from that found by
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FIG. 5. Normalized (see text) neutron scattering law

S(Q, ru) for the 500-atom amorphous model calculated
using a Morse potential (A =9.8), illustrating a "roton-
like" behavior.

FIG. 6. Electronic density of states for one-band
fcc models: (a) exact result (Ref. 23); (b) 500 atom
5x5&5 fcc model; and (c) 480-atom 4x5x6 fcc model.

von Heimendahl for case of constant near-neighbor
forces. Thus this roton effect does not seem to be

very sensitive to quantitative disorder, and it
seems likely that it would be found in real materi-
als.

model size were investigated by comparing the re-
sults with those of two fcc structures with nearest-
neighbor, tight-binding Hamiltonians (with hopping
matrix element &): a periodic 50t)-atom 5& 5X 5

V. ELECTRONIC PROPERTIES

In this section we describe the electronic prop-
erties of the 500-atom amorphous model with a
tight-binding one-band Hamiltonian. While this
model is highly simplified it serves to illustrate
the effects of topological and quantitative disorder
in the density of states, without the complexity of
a calculation with five d-orbitals per site. Other-
wise the spectra for this model is largely unrealis-
tic.

To study the effects of quantitative disorder, we
have adopted a simple exponential form for the
hopping matrix element similar to that used in
studies of liquid metals

0.1-

(
0.1-

0.1- (c)

0
g(E)

Ve ~'"~ "o'~"o, r; &1.3v,
~

~

~

0, otherwise .
(14)

(d)
0.1-

The criterion r;~& 1.3a' corresponds to our defini-
tion of first "nearest neighbors" (Sec. II). To study
toPological disorder alone, for which H;& is con-
stant, we set a=0. Densities of states g(E) were
calculated using the equation-of-motion method
(Sec. III) for several values of o.. Effects of finite

0 -10 -5 0 5
Er'v

FIG. 7. Effect of disorder on the electronic density of
states: (a) 480-atom fcc structure, (b)-(d) 500-atom
amorphous structure with (b) no disorder, (c) e =7.5,
and (d) e =15 (see text).



16 VIBRATIONS AND ELECTRONIC STATES IN A MODEL. . .

model, and a periodic, 480-atom 4& 5& 6 model.
All calculations were performed with identical re-
solution functions.

In Fig. 6 we illustrate the effects of finite size,
shape, and resolution in the equation-of-motion
method by presenting calculations for these f~n~&e

fcc crystals .The resolution (full width, half maxi-
mum) is 1.0, that is, about 6% of full bandwidth.
Figure 6(a}shows the density of states of a regular
fcc crystal with this tight-binding Hamiltonian, "
plotted in dimensionless units E = E/ V.

Figure 6(b} shows the density of states for the
periodic 500-atom 5x 5X 5 fcc structure; and Fig.
6(c), that for the 480-atom 4 x 5X 6 fcc structure.
The ripple in Fig. 6(b} is due to degeneracies a-
rising from cubic symmetry and the small number
of modes in the 5& 5& 5 crystal. Evidently the
less symmetric 4& 5X 6 structure has a spectrum
which more uniformly covers that in the infinite
crystal. However, small finite size effects are
still apparent. Note that the band edges are quite
close to the values -12 and +4 of the infinite cry-
stal.

Figure 7 illustrates the various effects of dis-
order. In Fig. 7(a), we have reproduced the den-

sity of states for the 480-atom fcc structure for
comparison. Figures I(b)-7(d) correspond to val-
ues of n in Eq. (1) of 0, 7.5, and 15, respectively.
Note first that topological disorder alone (a =0)
smoothes, but does not significantly alter the na-
ture of the density of states. This conclusion is
basically consistent with the findings of Gaspard
for d bands. The ripple in the low-energy tail can
be attributed to finite size effects: We might ex-
pect that long-wavelength electronic excitations of
our 500-atom models, both fcc and amorphous,
will be rather insensitive to structural details.
That this is indeed the case may be seen by exam-
ining the ripple in low-energy tails in Figs. 6(b)
and I(b). The value o. ='I. 5 is typical of that for
the d-orbitals of the transition elements, "and im-
plies a variation in the hopping matrix element by
a factor of 2.46 over the first-neighbor peak in the
RDF. Since a corresponds to the anharmonicity
A [Eq. (10)], the effect of quantitative disorder on
the electronic density of states should be substan-
tially less than in the vibrational case (A = 12}.
This reflects the comparative softness of the elec-
tronic interaction compared with that for vibra-
tions.
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