
PH YSICAL REVIE% B VOLUME 16, N UMBER 6 15 SEPTEMBER 1977

Theory of tray-controlled transient photoconduction
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An analytic solution of the "conventional" multiple-trapping problem is obtained for a small quantity of
charge moving through a spatially varying, but time-independent, electric field and an arbitrary distribution of
traps. The solution is shown to apply to cases of microscopic hopping as well as free-translation through

extended states. The solution for a discrete set of traps, simply characterized by their mean times for

capture and release (7, and r„, respectively) appears in the form of convolutions of modified Bessel functions

of order unity, but for a uniform electric field and a continuum of traps satisfying the relation

with the r„uniformly spaced on a logarithmic scale, the solution reduces to a simple algebraic

form which is identical to the one obtained by Scher and Montroll for their power-law waiting-time

distribution function Q(t) —t '+ . A general equivalence between trapping and continuous-time random

walk (CTRW) is further established which shows that Q(t) can always be constructed from capture and

release kinetics, and vice versa. The new trapping solution (and its equivalence to CTRW) is illustrated by
reinterpreting transit-time data on a-As2Se3, A trap density satisfying N,- ac v,

' for 10" & v; & 10" sec ' is

obtained, where v, is the coefficient of 7„=v, 'exp(e, /kT) and a; = 0.65 eV(for all traps) is the
activation energy for release. With the plausible assumption that the microscopic mobility and capture
processes are similarly activated (if at all), a trap density for the half-decade interval of v, around 7 X 10"
sec ' is found to satisfy (N;/N„) = 4X 10 p,o(cm'/Vsec), where N; and N„are concentrations of traps arid

transport states, respectively, and ~ is the prefactor in p, = ~exp( —b,„/kT), Both hopping and extended-
state motion are compatible with these results, but the most plausible tentative view is hopping with

N, -10" cm ' and g = 0.2 to 0.002 cm /Vsec. Additional photo- and dark-conduction data could
significantly reduce the range of plausible values.

I. INTRODUCTION

The displacement of charge through a dielectric
material ylays an essential role in a wide variety
of electronic or imaging devices, and a detailed
understanding of the dynamics of the process can
provide considerable information concerning the
electronic structure of a material. Experimentally,
the time rate of displacement of charge, as well as
the efficiency of their generation by light or ener-
getic electrons, has been studied using a time-of-
flight technique. ' In this technique, a sheet of
charge is suddenly injected or created very close
to one side of a layer of the dielectric and pushed
across the sample with an appropriately directed
electric field. The movement of the charge is ob-
served by monitoring the voltage decay across the
samyle as a function of time. Alternatively, the
induced current is often monitored while the vol-
tage is maintained constant. This is an important
distinction, because the measurement method af-
fects the carrier motion. Qn the other hand, the
current and voltage decay become simyly related
via the sample capacitance in the "small-signal"
limit (i.e. , when the field associated with the
moving charge is small compared to the field from
other sources). Because of its greater simplicity,
the yresent theoretical formulations are restricted
to this small-signal case.

Prior to the recent continuous-time random-walk

(CTRW) formalism of Scher and Montrol, ' the only
published analytical solutions of the transient cur-
rent induced by a moving-charge pulse have been
largely restricted to the cases of very fast or no
trapping, ' and one and two traps with arbitrary cap-
ture and release times. ~ ' The solution by Teft' in-
cludes the time domain beyond the first carrier to
transit the sample, but the formalism is difficult to
extend to arbitrary trap distributions and large sig-
nals. The effect of trays on a current transient has
also been studied via Monte Carlo simulation by
Silver et al. ' and Enck, ' but the technique has well-
known limitations.

The general CTRW problem treated by Scher and
Montroll concerns the same basic yhenomena, but
it involves conceyts which ayyear very different
from the conventional trapping concepts. For ex-
ample, the most conspicuous difference is that
CTRW deals with elemental disylacement events
between pairs of sites, while conventional trapping
deals with separate generation, displacement, and
cayture processes. Because of this difference,
there is no place in the CTRW formalism to deal
with the kinetics of capture and release explicitly.
More recently, Pfister and Scher' have presented
a phenomenological description of trayying within
the framework of the CTRW theory. However,
their description does not include the syeeific kin-
etics of capture and release and leads to results
for a-As, Se, which are incompatible with the re-
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suits presented herein.
The objectives of this payer are:
(i) To provide a rigorous analytic solution of the

conventional trayping problem for a small signal
(negligible mobile charge) and an arbitrary dis-
tribution of trays —the results of which have been
used previously" to explain yhotocurrent transients
in a-As, Se,.

(ii) To illustrate the characteristics of the anal-
ytic solution via several numerical examyles.

(iii) To show that the parameter n in CTRW the-
ory implies a power-law relation (7, = v-„,) between
the mean trapping time (v, ) and mean release
time (r„&) for a sequence of traps whose release
times are equally syaced on a logarithmic scale.

(iv) To illustrate, by application to a-As, Se„
how the microscopic mobility and tray concen-
trations can be determined in general by fitting the
present trayying theory to experimental transient
photocurrent data.

(v) To show that the present trapping theory and
CTRW are equivalent in general.

The organization of this payer is as follows: The
complete multiple-trapping problem is formulated
in Sec. II in a way which shows that the basic con-
tinuity equations [Eqs. (1) and (2)] apply to any mo-
bile entity regardless of how it moves between dif-
ferent or similar resting places (traps of different
&„,). The equations are first formulated in the
familiar context of a hole moving through valence
states and trayped by localized gay states. Then,
in Ayyendix A, a concept of a tray for a hopping
carrier is quantified, and Eqs. (I) and (2) are
shown to follow from the master equation for hop-
ping on a lattice, yroviding the capture and release
rate constants are ayyropriately defined.

In See. III, the continuity equations are solved for
the case of a spatially varying, but time-indepen-
dent, electric field. The solution for a uniform
field is recovered in the limit of no syaee charge.

The characteristic features of the analytic so-
lution are illustrated in Sec. IV by progressing
from a single trap to several trays, to finally a
continuum of trays. The case of a single trap is
thoroughly discussed, including a criterion for the
definition of a drift mobility and when it can be re-
lated to a "diffusion coefficient" via the Einstein
relation. The progression from several traps to a
continuum is designed to develop insights for the
eventual interpretation of experimental current
transients and show ho& the continuum limit for a
power law(v, ~v',

&) can be extremely well approx-
imated by a very few traps. In other words, it
shows how current transients previously charac-
terized by the yarameter cv in CTRL, are con-
trolled by just three or four traps having release
times (&„,) which bracket the experimental transit

time. These examples also demonstrate that the
experimental transit time (tr), defined by the inter-
section of tangents to a log (current) vs log (time)
plot, "is given by the free transport time (t,) plus
the total resting time in traps that are visited
twice or more (i.e. , fr=t, +Q'M, ~„„where t, = L/-
p, E, I is the sample length, E is the e1.ectric field,
p, is the microscopic mobility, M&

= L/p-E7'& .is the
expected number of times a carrier visits a tray
whose mean release time is r, and+' means onlyt
traps for which M, ~2 are to be included in the
summation). It is shown that this fully accounts
for the superlinear dependence of transit time on
L/&, as suggested also by others. "" And when

the traps also satisfy the power law v', ~ v'„„both
the scaling law t~ ~ t', and "universality" of cur-
rent shape (previously'~" considered characteristic
of stochastic hopping) are obtained. But to obtain
these features, it is shown that a critical trap (i.e. ,
one for which M, =1 for r„,=fr) must fall within
the trap sequence which obeys the power law. Thus
limitations to universality and scaling are iden-
tified.

In Sec. V, the results of this theory are applied
to a-As, Se, to show how it leads to a determination
of the tray concentration. Unfortunately, this is
presently incomplete because a better measure of
the transient current in the limit as t -0 is re-
quired. In Sec. VI, the basic equations which de-
fine the trapping and CTRW problems are shown to
be equivalent in general. Section VII yresents a
brief summary of the major results and conclusion.

An attempt was made throughout to discuss the
physical meaning of the derived equations, and the
hope is that Sec. IV in particular will yrovide in-
sight for the interpretation of experimental current
transients. The formal development of theory lies
in Sees. II, III, and VI, and the reader who is not
concerned with the use of theory to explain data or
find trap densities, may find a cursory reading of
the other sections adequate.

II. FORMULATION OF THE PROBLEM

The continuity equations which define the mult-
iyle-trapping problem are first formulated in the
familiar context of an electronic carrier moving
through extended states with localized gap states
acting as trays. It is then shown that the same
equations apply to any mobile entity which simply
stops and starts at random from a distribution of
resting places. The mean residence time in a par-
ticular tray is denoted ~„„and the mean travel
time between rests of ~„, is denoted w, . These
times, or rather their reciprocals ~, =~,' and
x, = &„'&, are expressed in familiar terms for the
case of free translational motion through extended



2364 FRED %. SCHMIDLIN 16

states. These parameters are broadly defined,
however, and ayproyriate expressions for (d, and

r, for the ease of mieroscopie hopping are derived
in Ayyendix A. Because of the generality of this
formalism, the term tray is used for any localized
state which basically immobilizes a carrier for an
observable length of time. In contrast with this,
the term "transport state" is used for any funda-
mental state which determines the microscopic
mobility (p) of a charge carrier. Stated differently,
traps are states which are sufficiently isolated
from each other spatially so that direct transitions
between them are negligible. Transport states, on
the other hand, are sufficiently interconnected spa-
tially to sustain what appears to be a continuous
drift speed (pE, where E is the local electric
field). Thus the microscopic mobility is entirely
determined by transitions between transport states
alone, whereas (&u„r,}are determined by transitions
between transport states and traps. These ideas
are exemplified in Fig. I for the case of a hole
drifting through valence (transport) states, with
temporary interruptions in that motion due to cap-
ture and release from gap (trap) states.

Figure 1 also illustrates a possible path of a hole
which was generated near the illuminated surface
at x= 0. The probability of generation per unit vol-
ume per unit time is designated g„(x,t}. Subsequent
to generation, the hole drifts (under the influence
of an x-directed electrostatic force qE, where q is
the fundamental electronic charge} toward a sub-
strate at x=L. At a point x, where the ho1.e may be
caytured and released from a trap, the appropriate
continuity equations may be written

BP af,—=g„(x,f)+ p,r, -p

BP( ~+i ~barf &

where P(x, t) and P,(x, t) are the local populations of

the transport states and trap i, respectively. The
local flux of mobile holes f may be written

f&=PpE —D ap

where the microscopic mobility p, , electric field E,
and diffusion coefficient D can now be treated as
local quantities. It should be noted that Eq. (2} im-
plies a set Of equations, one for each of k distinct
traps. Equations (1) and (3) are also explicitly
written for one dimension, but their extension to
three dimensions is obvious. Similar equations
can be written for the electrons and their solution
will carry through in the same way as the solution
given later for the holes. Recombination also can
be included by assigning zero release from one
"tray. "

Except for an initial condition, such as

p(x, 0) =p, (x, 0) =0, (4)

and an expression for the electric field (given
later) the trapping problem is uniquely defined by
Eqs. (1)-(3). It is merely necessary to know val-
ues for the set (u&„x,) and p. . The diffusion coef-
ficient is given by the Einstein relation D = pkBT/q,
where k~T is Boltzmann's constant times the ab-
solute temperature. It should be mentioned here,
however, that a result obtained later (cf. Sec. IV}
is that the Einstein relation cannot be used in con-
junction with the "drift mobility" (p. ~) except under
very special circumstances.

Since the problem defined by Eqs. (1)-(4) (for any
assumed electric field} depends only on the set of
mean residence times in traps (r„,=r, '), the mean
travel times between type i traps (~, = v, ') and the
microscopic mobility (p), it can be seen that the
formalism presented herein is broadly applicable
to a wide variety of transport problems. It is sim-
ply necessary that the parameters (v„r,) and p be
approyriately defined.

For the syecial case of an electronic carrier
moving through valence or conduction states, the
trapping parameters can be written

(4) = Np)v~
// ////
SUSSTRATE r p g~8 &/AT

i (6}

SURFACE
QR

ELECTRODE

LE TRAPS

X~Q

f(x)' f (x+hx)P
X~L

FIG. 1. Schematic of photoreceptor, illustrating
continuity equations when the transport states and
traps are separated energetically.

where N, is the number of type i traps per unit vol-
ume; 0, is their capture cross section; v is the av-
erage speed of a mobile carrier; v, is an attemyt-
to-escape frequency, and &, is the activation en-
ergy for release. Qf course, there is a well-known
connection between v, and o,v provided by detailed
balancing, as discussed later. But for the purpose
of defining the trapping problem uniquely, one may
treat the ~, and r, as given independent para-
meters. Once these are found to fit a particular
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current transient, detailed balancing can be later
invoked to determine the tray density N, .

The appropriate parameters (id„r,) and p for the
case of microscoyic hoyying on a lattice are de-
rived in Ayyendix A. The r, and co, are given by

Eqs. (A2) and (A3), respectively, and ii, is given by

Eq. (AV).
In anticipation of the problem of interpreting the

trapping yarameters once they are determined by
fitting the theory to experimental current tran-
sients, additional comments are in order con-
cerning temperature and field dependence of the

trapping yarameters. Indeed, changes in current
transients with changes in temperature and field
directly reflect the temperature and field depen-
dence of the controlling parameters (ur„ i,) and p, ,
and their expected theoretical dependence on these
quantities can be extremely useful.

It is customary to treat release from a trap as
requiring an activation energy E, as indicated ex-
plicitly in Eq. (8). It is less common, however, to
take into account explicitly a possible activation for
capture. But with microscopic hopping this is ex-
pected, and one is led to write

e~6& 0 T (8)

where &, and &„ are yossible activation energies
for a cayture event and microscopic mobility, re-
spectively. The form of these equations, which de-
fine the coefficients C, and p,„is clearly general
and independent of the nature of the microscopic
motion. In fact, an interesting case where all
three activation energies (e „&„and &„) are equal
is hoyping between impurities in a crystal. A trap
in this case would be an imyurity near the center of
a local rarefaction in the imyurity concentration.
Direct transitions to corresponding impurities in
similar rarefactions elsewhere in the crystal would
be unlikely. Hence such impurities would qualify
as trays. The activation energies for all hoyying
events, however, would be identical. IncidentaDy,
the capture and release processes in this case
would simply be the reverse of each other. In con-
trast with this, a case in which all three activation
energies are different is the capture of a tran-
slational carrier from extended states by a re-
yulsive center. The microscopic mobility is then
unactivated, of course, and the trapped state could
be at any energy. In fact, it could even be an un-
stable state inside the center lying above the lowest
extended states. An illustration of the general case
in which && and z& are different is shown in Fig. 2.
This shows the expected situation for microscopic
hoyping, particularly for capture from localized
"band tail" states in an amorphous material; but

for capture from extended states one expects && = 0
unless the center is repulsive.

It is clear that one can learn a great deal about
the nature of trapping centers via determination of
the activation energies for the different yara-
meters. Experimentally, this can be done by si-
multaneously fitting a family of current transients
at different temperatures. A similar study of the
field dependence of the yarameters can also be car-
ried out.

Once the temperature and field dependence of the
trapping yarameters is known, one can aypeal to
the steady-state and equilibrium limits for a con-
nection between the cayture and release yrocesses,
and thereby determine the density of trays. In fact,
the steady-state limit of Eq. (2) immediately gives

i e(si Li)lkr ~4 i ceil'&f (E T)
r& v& P N„

(9)

FIG. 2. Energy diagram illustrating different zero-
field activation energies for the capture event (6;) and
the release event (e;). In general, the energy separating
the two eigenstates, e'; = e; —6 &, may be anything.

Here N„denotes the concentration of transport
states, in general, (i.e. , N„ in the case of hoyying);
&', = E~- E„ is the difference between the trap and
transport eigenenergies, respectively; p, and p are
the steady-state population of the traps and trans-
yort states; and f, (E, T) is an appropriate function
of the electric field E and temperature T as needed
to distinguish the steady-state yoyulation from the
thermal equilibrium populations. Note that Eq. (9)
differs from the usual one obtained from the prin-
ciple of detailed balance, which implies f,(E, T) = I.
But in general, detailed balance may be invoked
only at very low fields where the difference be-
tween steady-state and thermal equilibrium be-
comes negligible.

An example off, is the Poole-Frenkel-like ex-
pression, f, = exp[ —oi, (E)/kT], where e, charac-
terizes the barrier lowering due to the interaction
of the applied electric field and the local potential.
For a local Coulomb potential, a, = (q'E/ve)'~',
where E is the yermittivity of the dielectric. An al-
ternative formulation off, has been given by On-
sager. "

It is yossible that the entire effect of the electric
field on capture and release may be due to barrier
modification (as in the Poole-Frenkel example
above) In this cas. e, one obtains C, = v, /Y„, which
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is the usual result obtained from detailed balancing.
Actually, a sufficient condition for invoking this re-
lation between C, and v, is that the experimentally
determinable quantities N&C, and v, have a common
field dependence. Since this can be established ex-
perimentally, one has a direct empirical test for
establishing whether or not the electric field is ef-
fectively low enough to invoke detailed balancing.
This is clearly an important result because it un-
ambiguously establishes when one can invert Eq.
(9) and solve for the ratio N, /N„as a function of
trap depth &&, or attempt-to-escape frequency v, .

The foregoing procedure for determining trap
densities is probably the most useful result of this
trapping theory. It is illustrated by example in
Sec. V and is believed to be the most direct and
sensitive way available for determining very low
tray densities. It should be stressed, however,
that the procedure depends on the determination of
both tr "yping parameters (~„r,) for each trap.
Consequently the procedure is not available to the
alternative CTHW formalism"" unless ((((t) is spec-
ifically determined from the trapping parameters
(cf. Sec. VI).

Before leaving this discussion of the trayping
parameters, a point should be made concerning the
inadequacy of the familiar energy diagram (ef. Fig.
1) to illustrate trays. The point is that a given r,
can be produced by different combinations of v, and

c, [see Eq. (6)]. Thus the energy diagram does not
uniquely relate to a particular set of trapping para-
meters and current transient. It is proposed that
this problem be avoided by replacing the energy
scale in Fig. 1 by a logr scale. To illustrate the
specific dependence of a particular r, on v, and &„
one can extend logr, into a two-dimensional
(e„logv, ) space.

It remains yet to formulate expressions for the
electric field and current. If the bulk of the di-
electric is assumed space-charge neutral in the ab-
sence of any stimulated charge displacements, the
local space-charge density may be written

(10)

where 00 is the surface charge on the "ungrounded"
electrode at x = 0; and n and n& are the local con-
centrations of electrons populating their transport
states and k' distinct traps, respectively. The
electron distributions must be determined by sol-
ving the corresponding continuity equations which
are identical in form to Eqs. (1)-(3), though the
electron flux f„drifts in the opposite direction.
Thus f„ is negative. The grounded electrode (zero
potential) is at x=L (the sample thi "knees). The
surface charge 00 depends on the measurement
mode. In the open circuit (xerographic) mode,

t
o, =o, — Z, (x=0) dt,

0

where p, is the initial corona charge, and

(12)

is the conduction current at any x. In the closed
circuit (constant voltage) mode, o, is continuously
determined so that the voltage across the sample
remains constant. Since the xerographic mode
eliminates this step, it is somewhat easier to an-
alyze.

In either case, the electric field is given by

X pE(x) = —dx.

In the xerographic mode, the instantaneous volt-
age decay rate is given by

dV 1

dt
J (x) dx, (14)

and in the constant voltage mode, the instantaneous
induced current is given by

L
I(t) = — Z, (x) dx.

0
(15)

The latter supplies the additional charge to 00 that
is required to keep V constant. Both of these ex-
pressions follow directly from Gauss's law and
charge conservation. The important thing to keep
in mind is that they are not equivalent, in ge'~eral,
because the electric field which drives J, is dif-
ferent in the two cases. For the small signal case,
on the other hand, they are equivalent because E is
essentially constant as mentioned earlier.

III. GENERAL SOLUTION FOR A SMALL SIGNAL FLASH

Very often, experimental test cells contain a
nearly fixed space charge due to the accumulation
of carriers left over from previous exposures.
This is due to the slow escape of carriers from
weakly populated slow traps. In fact, it is shown
later from the rigorous solution for a constant E
field that the post-transit current is due to release
from slow traps which also have a low probability
of capture. The residual population of these traps
produces an electric field in accordance with Eq.
(10). To derive a solution which includes this ef-
fect, we first present a formal solution of the pro-
blem assuming an arbitrary space-varying field
E(x), which is constant in time. We then specialize
to space-charge-free case by taking the constant E
limit. To justify neglect of the time-dependent part
of the electric field due to charge created in a
given light flash (as opposed to residual charge
from previous flashes), it is necessary to restrict
attention to small signals.
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g„(x,t) =g„(x)5(t—0) . (16)

This provides the Green' s function, which is also
a good approximation to the current transient in-
duced by an actual flash exposure.

Equations (1}and (2) are now solved using the
Laplace transform. The Laplace transform of each
quantity is denoted by a tilde ( ) over the cor-
responding variable. For example,

To accomplish the above in the simplest manner,
diffusion is also neglected. Whence f~=p(x, t)p, E(x).
This is nonessential for the constant E limit; but

by comparing the effect of trays on the transit-time
dispersion with diffusion neglected to the effect of
diffusion with traps neglected, it is shown in Ay-
yendix B that the effect of diffusion is typically neg-
ligible. Furthermore, its principle effect can even
be reincorporated in the results. It should be
pointed out, however, that for strongly absorbed
light, diffusion may drive carriers to the upstream
boundary (against the field), and this may result in
surface recombination and/or surface trapping.
But it can be shown that these effects can be taken
into account by an apparent yhotogeneration ef-
ficiency and/or delayed generation, respectively.
The consequences of the latter have been demon-
strated by Silver et al. ' using a Monte Carlo sim-
ulation of the problem.

A general solution of Eqs. (1) and (2) is now ob-
tained for a 5-function exposure; i.e. , for

and

a(s) =-s+~, —g ' ' =s I++s+r, s+r; (24)

The second form follows from the definition of v,
=Z u&;. The quantity K,(x' —x) may be recognized
as a propagator which represents the probability
that a carrier will arrive at x given that it was
created at x'. It is assumed for Eq. (23) that the
traps are distributed uniformly in space. Other-
wise a(s) must be placed under the integral.

From Eq. (15), the Laplace transform for the
current is

L
I(s) =— p, Ep dx.L Jo

Substituting Eq. (21) into Eq. (25), we obtain

(25)

I(s) =— g„(x')K,(x —x') dx' dx .
0 0

(26)

q L
I(s) =— g„(x')D(x') dx', (27)

where

D(x') = K,(x -x') dx. (28)

The inverse transform of these quantities may be
written

But by interchanging the order of integration, Eq.
(26} may also be written

p(s, x) = p(x, t) exp( —st) dt,
0

p, (s, t) = p, (x, t) exp( —st) dt .
0

(17)

(18)
alld

l(t) =— g„(x')D(x') dx',
0

(29)

Whence Eqs. (1) and (2) become

(s+&uo}p+ (pEp)=g„(x)+Jr, p, ,ax i
(19)

r
p =

)
g„(x')K,(x -x') dx',

ALE x) (21)

spg = (op p —r)p), (20)
where &o, =Z, u„and the initial condition given by
Eq. (4) is assumed. (It may be noted here that this
choice of initial conditions naturally excludes any
thermally stimulated carriers, but since the equa-
tionsare linear, the effect of the latter can always
be superposed. ) Solving (19) and (20} for p,. and p,
we obtain

L
d(x')= J v. (i, *

where

K, (t, x —x')'—= Z (K,)

C+1~

K.(x —x')e""
2gi .-;-

(30)

(31)

K;lnK, = -stf Mo tf + s+r,. ' (32)

is the inverse transform of K, by definition.
Now the inverse transform of K, may be ex-

pressed in terms of known functions by first fac-
toring K, in the following way: from Eq. (23), and
the first form for a(s) in Eq. (24), lnK, may be
written

p~ =[~~/«+«~l p

where

(22) where

t~(x —x') =- dg

~ u&(y} (33)

K,(x —x') —= exp -a
&. u &(y} (23) is the free (untrapped) travel time from x' to x,
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and

K~:y' ~ e ~ t& ~ (34}

'The quantity K; is an "amplified" release rate,
where the amplification factor

m, (x-x') -=(u,. tt =tf/r, , (35)

represents the number of times a carrier is
trapped in the ith kind of trap while traveling from
x' to x. Now the inverse transform of the first fac-
tor in K„namely, exp( stf-), is just 6(t —t~) The.
second factor is a constant, and

2 '(exp [K,/(s+r, )j)—= Y, (t)

=F,(t~K, , r, )+. 6(t . 0),
where

(36)

F;(t
~
K, , r;) —= (K, /t)' 'I, (.2(K, t)' ')e "", (37)

and I, is the modified Bessel function of the first
kind of order one. The convolution theorem thus
gives

K,(t, x-x') =e "0'x6(t —tt) +Y,(t) * ~ ~ *Y,(t),

where

t

Y,(t) "I',(t) -=Y,(t —7)Y,(r) dr.
0

(38)

(39)

Y,(t) * Y,(t) =F, *F,+F, +F,+5(t —0). (40)

Thus Y, * Y, represents the distribution of exten-
sions in the travel times for a carrier which is
trapped m, times in trap 1 and m, times in trap 2,
ox m, times in trap 1 alone, or m, times in trap 2

Substitution of Eq. (38) into Eqs. (30) and (29)
supplies the complete solution to the problem for
rigid space charge. But unfortunately it is tedious
to carry out, because the K,. are a function of x
-x'. Thus the convolutions must be carried out for
each pair of points in space, and the result inserted
into Eqs. (30) and (29). The physical meaning of
the quantities involved, however, will be preserved
when the constant E limit is later taken. The sig-
nificance of K,(t, x-x') is that it represents the
distribution of travel times to x given that a car-
rier started in a transport state at x' at f. =0. The
6(t —t~) means the carriers travel x —x' in exactly
t& if the carrier is not trapped at all —a conse-
quence of neglecting diffusion; and F,. represents
the distribution of times by which the travel time is
extended if the carrier is trapped m,. times. The &

function in Y; quantifies the effect of those carriers
not trapped at all, and therefore, their transit time
is not extended. To elaborate further on the im-
portance of the 6 function, it is of interest to con-
sider

'K, (x —x') dEl+ p.—Qx .
a cfx

(41)

Now, for a uniform electric field (dE/dx =0) the
last term vanishes; and the first two terms become

D(x') = [1 K,(L —x')]= —(1 —e "~ ). (42)a ' a

Incidentally, this expression may be derived also
from Eqs. (26} and (27). But the above approach
shows that one can build solutions for an arbitrary
space charge from solutions for constant E and dif-
ferent sample lengths. The inverse transform of
K,/a becomes the kernel for the transformation of
dE/dx into a modified displacement rate. Equation
(41) may also prove useful in future studies to
analyze the effect of a gradual accumulation of
space charge captured by slow traps when a sample
is pulsed repeatedly.

It can be seen from the above that the price of

alone, ox not captured by either trap. The factor
exp(-~, tz) is needed for proper normalization.

Since the above meaning of K,(t, x-x') will be
strictly preserved in the constant E limit, it can
be seen that the effect of space charge is to alter
the travel time between x' and x. (It can also be
shown that t& is a minimum between fixed x' and x
when E is constant. )

The general solution above makes it possible to
understand (and predict) the effect of residual
charge trapped from previous exposures, or injec-
ted from a contact. Since such char ge is the same
polarity as the moving charge, the field increases
monotonically with x. Hence the mobile carriers
will move the fastest as x-L. If enough of them do
this simultaneously (i.e. , if the dispersion is not too
great), the current will rise to a cusp at the tran-
sit time, much like the Many-Bakavy cusp. ' But
the direct effect of the traps is to cause the pre-
transit current to decay, as shown later, and the
two effects tend to compensate each other. Never-
theless, it can be seen that a built-in space charge
will always make it easier to identify the transit
time if it can be seen at all. This effect accounts
for the inherent advantage of actually using large
pulses and a slightly injecting contact, as found by
Scharfe" in his studies on As,Se,. To avoid exces-
sive disturbance of the transit time, however, the
photoinjected charge should always be large com-
pared to the contact-injected charge or residual
space charge left from previous exposures.

An informative way of specializing to a uniform
electric field is to first integrate Eq. (28) by parts.
Whence,

(,)
pE(x') p, E(L) (,)a a
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l (doI(s) =——' g„(x') [1—e "&'z ~'] dx'.
L a (44)

The inverse transform of I(s) can now be written in
the form

eliminating one space integration is the need to find

the inverse transform of two new quantities, a '
and K,/a. This is done in detail later; but first
several remarks may be already made concerning
their significance. The quantity K,(L —x') by itself
is already familiar —it represents the probability
that the carrier has arrived at the downstream
boundary (x =L) at a time t-a '. And from the dis-
cussion to follow, it will become evident that the
role of K, in Eq. (42) is to limit the maximum dis-
placement of a carrier created at x' to L -x'. It is
obvious that this feature must exist in the mathe-
matics, because once a carrier drifts into the
downstream electrode and recombines with its own

image, it can no longer contribute to the current.
But what may be more surprising is that this fea-
ture is a derived aspect of the formalism and is not
the consequence of a previously imposed boundary
condition. In fact, by neglecting the diffusion con-
tribution to f&, Eq. (1) automatically reduced to a
first-order equation, and the only available inte-
gration constant is used implicitly to make P unity
at x' where the carrier is first created. If this fact
should prove disturbing, it may be comforting to
know that one can show, via a rigorous solution
with diffusion and all boundary conditions included,
that the downstream boundary condition has no ob-
servable consequences unless the electric field in
the bulk of the sample tends toward zero (i.e., un-
less the voltage across the possible accumulation
region in front of the downstream boundary be-
comes comparable to the applied voltage).

Insight into the meaning of a ' may be gained via
consideration of an infinite sample. In this case
K, -O until an infinite time also passes. Corre-
spondingly, Eq. (42) reduces to

D(x') —p E/a = l(o,/a, (43)

=p &d& ——1/7 is the reciprocal lifetime for
capture by any of the traps, and l =—p, rE (known as
the Schubweg) is the expected distance a carrier
moves between the time it is injected into the
transport states and it is captured by any of the
traps. Since l is an "elemental displacement" re-
sulting from a single generation event, &u, /a be-
comes the Laplace transform of the repeated gen-
eration from traps. In other words, a ' is the La-
place transform of a dynamical (or time-dependent)
8 factor.

After substituting Eq. (42) into Eq. (27) and re-
placing pE by &u, l, I(s) becomes

I(t) = (e/L)f [G(t) —X(t)],

where

(45)

1
G(t) —= &uo 2 ' — g„(x')dx',

0
(46}

K, L —x')
X(t) =-(u, g„(x')2 ' ' dx'.

0
(47)

From the above meaning of m /a, it can be seen
that G(t) represents the net time rate at which car-
riers are repeatedly released into transport states
from traps, given the occurrence of an initial pho-
togeneration event. It is also interesting that the
release events may occur anywhere in the sample
(except near the downstream contact), and is inde-
pendent of how g„ is distributed. The function X(t)
represents the time rate at which the photogenera-
ted carriers finally drift out of the sample at the
downstream electrode. In view of the above mean-
ing of G and X, they are referred to as the "genera-
tion" and "exit" functions, respectively.

To finally complete the solution for a discrete set
of traps, we next find the inverse transform of a '.
This is accomplished, by expanding a ' in partial
fractions,

(48)

The constants a& are determined by the zero's of
a(s). Thus one n& ——0 and the others occur where

k

f(s) = P ' =-1.
, , r;+& (49)

By ordering the r, so that rg~r2& rk it can be
seen from a sketch of f(s) that Eq. (49) is satisfied
by a sequence of n,. which fall between the succes-
sive negatives of the r,.; i.e. , -r,„&+n&&-r,. An-
other exception is the final n& which is more nega-
tive than -rk, where r„ is the largest r, Alterna-
tively, one may define a set of positive numbers s&
with s& =- -n;. These may then be ordered in the
same way as the r» with each s& being slightly
larger than the corresponding ry Each s» except
the largest, is also smaller than r&„. Of course,
the smallest s& is so=0. It may be noted that if a
trap (or recombination center) were included, from
which there is no release (r, = 0}, then the pole at
s =0 would no longer exist. All recombination cen-
ters with different capture probabilities may be
grouped together and treated as the first trap (r,
=0). The trivial case of a single trap turning into
a permanent trap or recombination center (r-0)
is briefly discussed in Appendix B.

The corresponding A& may be found by the method
of residues. Thus
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iA, = s~
( ), , j—1,

=l i f

and

Ao= 1+

Alternatively,

and

(50)

(51) (55)

L t
x(((=,/Ax, „(e') e 'i" "

f=0 0 0

the characteristic traps except s, eventually be-
come exhausted.

The partial fraction expansion of a ' may now be
used to compute the exit function. Since

-'K(L .)=gA K('-"',
a ' ' s+s

we can use the convolution theorem once more to
find the inverse transform of each term on the
right-hand side of Eq. (55). It thus follows from
Eq. (47) that

Taking the inverse transform of Eq. (48), we obtain

2 '(I/a} = QA e 's' (53)

and G(t), according to Eq. (46) is

L
G(t}= (d, g„(x')dx' QA, e '~'.

0
(54)

It may be helpful to think of the above partial
fraction expansion as a "normal coordinate" trans-
formation. The sf then become the rate constants
for release from a set of characteristic traps which
are "located" intermediate between the real traps.
The corresponding Af are then the free-carrier
components due to release from each of the char-
acteristic traps independently. This is consistent
with the fact thatA„given by Eq. (51), is just the
familiar 8 factor used to define the drift mobility
for the s teady- state limit.

The characteristic traps have the useful proper-
ty, at least conceptually, that they are truly uncou-
pled from each other. That is, once a carrier is
released from one "characteristic" trap it is never
captured again by a different characteristic trap.
This may be contrasted with the real situation in
which a carrier has a probability of (d&/(d, of being
captured by the ith trap, independently of the spe-
cific trap from which it was previously released.
The important role of the characteristic traps is
that they simply supply carriers to the transport
states at the net rate of &uoA& exp(-s~t). Thus an
interesting consequence is that all the character-
istic traps except the one corresponding to s, =0
eventually become exhausted. A further conse-
quence for sufficiently thick samples is that a
steady-state current must obtain after t approaches
several times s, '.

Another interesting fact, which can be shown
from Eq. (48), is that Z&A&=1. This means each
photogenerated carrier is initially distributed
among the characteristic traps in proportion to A,
Thus charge is properly conserved even though all

G(t) =(7N, (d, A, e '~',
=l

(58)

t
)t(t) =(7N, (d, P A, e 's" "K,(r, L —0) dr, (59)

0

where K,(r, L —0), given by Eq. (38) with x -x' =L
-0, now represents the distribution of transit

&&K.(r, L -x') dx'dr,

(56)
where K,(r, L —x') is given by Eq. (38). When Eqs.
(54} and (56), for G(t) and X(t}, respectively, are
inserted into Eq. (45), the final expression for the
transient current is obtained.

Unfortunately, the above solution is still rather
cumbersome because it requires K,(r, L —x') for
arbitrary L -x. To alleviate this final complexity,
we now restrict attention to the case of strongly ab-
sorbed light. In this case,

g„(x') =N, o(ri(x')e '" „=N,(7(0)5(x' —0), (57)

may be approximated by a 6 function. No is the to-
tal number of nonreflected photons in a flash expo-
sure. c( is the absorption coefficient and (7(x') is
the local effective conversion efficiency of an ab-
sorbed photon into a mobile carrier. The case of
strong absorption is frequently studied experimen-
tally and is essential for studying the motion of the
electrons and holes separately. A further assump-
tion which is implicit in approximating q„(x') by 6(x'
—0) is that all the photographed countercharge
reaches the floating electrode where it simply ne-
gates an equal amount of surface charge. To justi-
fy this, it is essential that the Schubweg of the
counter charge (I say) be large compared to n '.
Thus strong absorption means both nl. »1 and nL
»1. Incidentally, the case of al &1 is interesting
because the associated space charge leads to en-
hanced photogeneration at high fields and recom-
bination at low fields. But the study of this case is
beyond the scope of this paper.

For strongly absorbed light, Eqs. (54) and (56}
simplify to
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times. After executing the convolution with the 6

function in Eq. (38}, the latter may be written

0, for t' -=t —t, & 0

K,(t, L, —0) = e "()'o Y)(t'} A Y,(t'}

* ~ ~ ~ * Y,(t'), for t' & 0,
(60)

where f, = t&(L——0} is the free transit time corre-
sponding to no capture events. Substitution of Eq.
(60) into Eq. (59) then gives

y(t) =t)N, (d, u(f —f,) Q A, e '&(3 'o'

where

t- t()
e'3'K, (t', L —0) df',

p

(6l)

u(f-f, )=
1, t&t, .

(62)

According to Eq. (45), the resulting current can al-
so be written

f(f) = OQA, e '36 u(f-t, )e i« 60)-qgN
tp

t-t
x 't ')t, (t', t—6) dt) . (6.3)

p

I(t), a detailed study of special cases is carried
through in the next section.

IV. DETAILED STUDY OF SPECIAL CASES

Before embarking on the case of a discrete set of
traps, it should be emphasized that any real situa-
tion can be adequately analyzed in terms of rela-
tively few discrete traps. The reason for this is
that x; which differ from each other by less than a
factor of 2 or 3 are indistinguishable. This follows
by analogy from the fact that resolution of rt finer
than this would be equivalent to distinguishing en-
ergy states which differ by less than k~T. Recall

=v, ex. p(-e, /kT). Thus 10 traps say, distributed
equally on a logarithmic scale, would cover a fac-
tor of 104 in the corresponding time coordinate.
The analytical simplicity and insight gained by
treating any arbitrary distribution of traps as a
discrete set is next illustrated by several exam-
ples.

First, the case of a single trap is examined in
depth. From this simple case, the key parameters
controlling the general case can be gleaned. The
resulting insights are then verified by exhibiting
numerical solutions for several different trap
distributions. The case of a power law (~, (3-r()
is studied for later comparison with the corre-
sponding continuum limit.

This is the complete solution to the trap controlled
transport problem for a discrete set of traps in a
uniform electric field. To evaluate the current for
the complete time range, one first transforms the
((6);,r;) -(A&, s,.) in accordance with the procedure
described earlier, and evaluates the distribution of
transit times according to Eqs. (36}, (37), and (60).
It should be stressed that the distribution of transit
times for each trap alone, Y, (t), is dependent only
on (M, , r, ), where M,.

—= m, (L —0) =(3), f, is the ex-
pected number of times a carrier is captured in the
ith kind of trap alone while traversing the sample.
To elucidate the connection between the ((d, , r, ) and

the resulting characteristic features in the current

A. Single trap

In this case it is easy to show that

s —0, s, =

Ao=r, /((6), +r, ), A, =(d3/((A), +r,).
By definition, (d, =(d„t,=L/pE, and

Y, (f') =E,(f'~K„r,)+ 6(f' —0),

E (f')=e "&' ' f I2(K f')'~']

where Kg Myv] and O~t ~t tp.
The corresponding current becomes

(64)

(65)

1(t) A, +A,e' ' — (t =—t)e A, ( ~ , "d'(t )dt'), '
p p

t- tp

+A, l+ e '3" 'o' e"' E,(f')dft
p

(66}

as obtained by direct substitution of Eq. (60} for a
single trap into Eq. (63). Now it may be noted in
general from the definition of M, = (d, t„ that ~ptp
=Z, M, . Thus M, appears in Eq. (66) as the re-
placement of ~,tp. This exemplifies the fact that
the magnitude of the exit function is always
exp(-ZM, }at t= t, . Physically, this is just the

I

probability that a carrier crosses the sample with-
out capture in any of the traps. Such is the sig-
nificance of the exp 3nential prefactor in Eq. (60).
It also follows from this, that the exit function
does not grow substantially until some time beyond
tp and the growth must come from the integral of
I', (t').
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To identify the characteristic time for the growth

of the exit function, it is of interest to examine
the asymptotic forms of E'&(f). From the known

properties of I,(2(K&t)'&'), one finds

F&(t}= e ""M&«,(1+ -,'M;r&t) as t-0, (67)

pl/4
F&(t) = e "" '

&, exp[2(M&r&t)~'] as t-~.

xp( ,f, ) , (f —f,)'
$2«)«'v 2cr'

reduces to a Gaussian, with the variance

0']=2M y]2.

(69)

(70)

Since r&t, = M, = ce,t„ the exponential prefactor in
Eq. (60) may now be combined with the Y&(t) to
give

e-"&"Y,.(f}= exp, ' +e-"&6(f-0). (71)
v2«o& 20',

'This vividly shows that the carriers which are not
trapped at all are weighted by exp(-M, ) compared
to those which are trapped at least once. Since

(68)

Thus I, decays monotonically with time if M, &2,
but it starts increasing at t= 0 and builds to some
peak value for M, &2 (cf. Fig. 3). For large M„
the argument of the combined exponential in Eq.
(68) may be expanded in a Taylor series about the
maximum at t& =M&/r& Whe. nce

M, »1 is required for the Gaussian limit, it is
consistent to drop the 5-function contribution to
Y, . The remaining distribution of transit times
then becomes properly normalized automatically.
In terms of the exit function, this means the in-
tegral of F, in Eq. (66} grows to the order of
exp(M, ) at t —t, - t, and the additional unity (which
originated from the 5 function) should be dropped.

The above transition of F, from a monotonically
decreasing function to a Gaussian is illustrated in
Fig. 3 by a family of curves for M, =1-10. Note
that a maximum in F, appears for M, &2 and that
the Gaussian character is becoming apparent for
M, = 10. The decay is still slower than the rise,
however, which illustrates the difficulty with
which F,. yields to the central limit theorem. It
should be stressed that the above change in the
shape of F, with increasing M, is dependent only
on My The magnitude of ~, merely determines the
time scale. This fact can be seen directly from
the definition of F, and its asymp. otic forms given
by Eqs. (67} and (68).

The current traces corresponding to the above
family of M, are shown in a linear plot in Fig. 4(a}
and a logarithmic plot in Fig. 4(b). To facilitate
comparison of the shapes of the current traces,
they are normalized to unity at t= t„and time is
normalized in units of t,. Correspondingly, the
normalized release ra.te becomes R, =- x,t„and
M, is invariant. The main point to note in these
current traces is that the fastest transit time is
clearly marked by a discontinuity at t, for small

and it reappears again in the neighborhood of

t„= f,™,/r, = t, + M&7 (72)
I.OO

0.90—

0.70

I I I I for large M. This is the mean transit time t and
its identification is clearly facilitated by the log-
arithmic plot. 'The rounded fall off in the neigh-
borhood of t„ follows the approximate normal prob-
ability function with a variance

t = 2M,r„,= 2',v„~
L

(73)

0.30

0.20

0.IO

as shown earlier by the Gaussian approximation to
F,.

The discontinuity at tp is simply an artifact of
having left out diffusion. If diffusion were included,
as shown in Appendix B, the discontinuity at tp

would become slightly rounded due to the diffusive
dispersion

0.00
0 2 4 6 8 IO l2 l4 l6 8 20

t', «= 2Dfo/(l&E)' = 2kTL/I&. E'. (74)

FIG. 3. Qlustration of the distribution function E&(t),
and its approach to a Gaussion (the central limit
theorem) as the expected number of capture events
M& increases from 1 to 10.

This is clearly very much smaller than the dis-
persion due to the trapping and it has a different
field dependence. Use of the latter to distinguish
between diffusion and trapping was pointed out by
Teft. ' It has also been utilized experimentally by
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2kT 2kT
qEL qV

for diffusion,

2M T2 2
fy 1 ry & for M&»t

( I5)

(76)

for trapping. For typical sample voltages (V-500
V), it is obvious that the trapping dispersion will
remain the larger for My ~10'. It should be em-
phasized that it can also be shown from the above
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FIG. 4. Family of transient-current traces on linear
(a) and logarithmic (b) scales for an increasing number
of capture events Pf;=1 to 10) and constant R~ =—

recto
——2.

Juska et al." A simpler quantitative way to dis-
tinguish whether the dispersion in a single current
trace is due to trapping or diffusion is to evaluate
the magnitude of the dispersion relative to the
mean; i.e.,

that trapping can produce a broader relative dis-
persion (t,/t ) than diffusion whenever r, & t, kT/
qV —even when Mg+ g+tp In other words, trapping
can be identified via its effect on the dispersion
even when it does not affect the average transit
time. This is clearly a very useful result be-
cause it shows that traps can be studied via dis-
persion, even when they do not extend the transit
time beyond the expected trap free limit. A good
example may be c-Se at high temperature. It has
been claimed by Grunwald and Blakney' and Juska
et al."that the drift mobility approaches the trap-
free limit slightly above room temperature. This
is supported by fitting the temperature dependence
of the measured average carrier speed with a
single-trap 8 factor. However, an alternative fit
(and possibly a better one) can also be obtained by
admitting a second trap with a much smaller ac-
tivation energy. In fact, this appears more con-
sistent with the available data, though additional
measurements should be made to clarify this ques-
tion.

The physical difference between trapping and dif-
fusive dispersion also warrants emphasis. The
trapping dispersion (for large M, ) is due to statis-
tical fluctuations in M„ the number of times a
carrier is trapped while crossing the sample.
Indeed, this is the reason for the (M, )'~' law that
relates t and t,. In other words, any carrier
which is trapped from a drifting diffusive pulse
falls behind by an amount determined by the mean
release time. It tends to catch up again when the
other carriers become trapped. 'The only reason
they do not stay together on the average is that
some carriers stop and "rest" more often than
others. This is a very different thing from dif-
fusion and the two phenomena should not be con-
fused, even though both are described by Gaus-
sians in the limit of large My It is significant
that there is still a way to tell them apart in the
Gaussian limit via a physical measurement.

A still more fundamental point that should be
made concerning the difference between trapping
and diffusive dispersion is that the Einstein rela-
tion (D = "g"kT/q) cannot be used to relate the dif-
fusion coefficient D to a "drift mobility" 8p, when-
ever the trapping dispersion remains dominant.
Thus the usual way to justify the use of the drift
mobility (or 8 factor) via the "steady-state" solu-
tion of the trapping equations overlooks the fact
that quasi-steady-state (which is sufficient to char-
acterize the average effect of the traps) can be
profoundly different from thermal equilibrium (or
detailed balancing) on a loca/ level. This is bas-
ically what it means when the trapping dispersion
is greater than the. diffusive dispersion. If a
trapped carrier drops behind a diffusing packet
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it can no longer participate locally in detailed
balancing. A more general criterion then for in-
voking the Einstein relation (in connection with
transient conduction) is to require f, &f, ~. In other
problems, of course, where thermal equilibrium
prevails uniformly over a sample, the Einstein
relation can be used in conjunction with the drift
mobility. Indeed, this assumption and the require-
ment of no net current (f,=0) is known to be suf-
ficient to derive the Einstein relation for any kind
of mobility. On the other hand, it seems that the
Einstein relation is invoked more frequently than
is justifiable. Hence, the criterion suggested above
may be found useful in this regard.

Returning to the artifical discontinuity at t, in
Fig. 4, it can now be viewed as a convenience. It
helps to keep track of t, as the mean transit time
shiftsfrom t, to t, +M, /r» while M, changes from
1 to about 5. For large M„ the current transient
approaches a "rectangular" shape again, though
a discontinuity would no longer appear at tp

+M, /r, . It can be seen that a similar cycle would
result from the addition of a second much slower
trap. This time, however, the transit time would
start shifting smoothly once M, exceeded approxi-
mately two. And for M, of the order of unity or
less, the effect of trap 2 would only affect the
dispersion.

It can also be seen from the above that the rate
at which the mean transit time shifts as M, in-
creases from 1 to 5 is modulated by ry 7

Therefore, it can clearly be very large if T

Eo To follow it experimentally then, may re-
quire a great deal of care in adjustment of the time
scale. This alone would be a good reason for
studying current transients on a log time scale,
if it had not already been found efficacious for
other reasons. '"

A second consequence of trapping, which is il-
lustrated in Fig. 4 by the family of curves for in-
creasing M„ is the initial disappearance of the
"plateau" (quasi-steady-state current) for small
My and its reappear ance for large M, . The inter-
mediate region, where the plateau just prior to
the fastest transit is absent, is a very useful ear-
mark. It implies My 1 for ~

g ry ~tpp as follows
from inspection of the condition

formation about all the traps. Note, in particular,
from Eq. (64), that (A„s,) determines (v„r,)
uniquely. This exemplifies the general case in which

any set of characteristic parameters (A&, s,.) can
be transformed to a corresponding set of (&u„r;)
uniquely. For a single trap, the same informa-
tion lies in the dispersion; but this is not true in
general, as shown in Sec. IVB. Because of this,
the current decay in the pretransit region is of
great interest; but unfortunately, much of it will
often disappear too quickly to measure accurately.

Finally, it should be noted that the magnitude
of the quasi-steady-state current is given by

A, pE r, 8pEI = qgNo -- = qg I co +ri (78)

The initial current, on the other hand, is f(t-0)
= qgN, /t, = qqN, pE/L. This shows that the quasi-
steady-state current in the plateau region is quan-
tified by the "drift mobility" 8 p, , while the initial
current is quantified by the microscopic mobility.
Since the mean transit time subsequent to a plateau
provides a direct measure of the drift mobility,

f = t, (1+ ~,/r, ) =L/HpE, (79)

the magnitude of the plateau current then provides
a measure of gN, . Any higher current prior to the
plateau is therefore of great interest, because it
provides a measure of some mobility which is
larger than the drift mobility corresponding to the
plateau region. Although it would be difficult to
claim that one has obtained a measure of the mi-
croscopic mobility this way, one can at least ob-
tain a lower bound for the microscopic mobility.

Incidentally, the reason the average motion of
the carriers can be characterized by a drift mobil-
ity when the dispersion cammt is that a quasi-
steady-state population of all the traps in the entire
sample can obtain even though it does not occur
on a local level. Recall that only the total popula-
tion (as the local population averaged over the en-
tire sample} is manifest in the magnitude of the
measured current.

Many of the foregoing results can now be readily
extended to the case of a distribution of different
kinds of traps.

s, f = ((u, + r, )(to+ M, /r, ) (77)

This rule prevails throughout and is made even
stronger in Sec. EVB. It is the basis of the critical
trap criterion for broad dispersion stated in the
Introduction.

Another manifestation of trapping is the early
current decay prior to the plateau. This is due to
the relaxation of free carriers into traps; and as
the general solution shows, it contains all the in-

B. Several traps |with different r,.)

Consider first the case in which all M, &5, say.
The distribution of transit times (Y,) for each one
alone can then be approximated by a Gaussian,
and the convolution of all such Gaussians produce
another Gaussian (an even better one} whose mean
and variance are given by
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(80)

Recalling from the solution of Eq. (49) that the
smallest characteristic time constant s~ (designated
s,) satisfies the condition r, &s, &r» it follows
that

k

s, t &r, t =M, + r, (to+ Q Mp„()» 1,
5~2

(81)

if M, &5, independently of how small the other

v„, may be compared to 7„,. Therefore, a well-
established current plateau must precede a normal
probability tail off, just as it did in the single
trap case for large M, .

The current decay prior to the plateau, however,
contains much more structure. In fact, it con-
tains all the information necessary to determine
the complete set of (&o„r,). From this, the sub-
sequent current tail off could even be predicted,
in principle. The measured mean and variance in
the transit times, however, provides only two
numbers. Hence the tail off of the current for a
collection of frequently visited traps cannot be
distinguished from the effect of a single trap. The
magnitude of the plateau current is also quantified
again by A, = 8. Therefore, apart from the in-
teresting pretransit decay, which may be too fast
to measure, the entire effect of frequently visited
traps can be characterized by a 6} factor and a
Gaussian dispersion.

It is of interest to compare the above result
with the solution of Eq. (1) when steady state is
assumed for Eqs. (2). It is easy to show, in this
case, that Eq. (1) reduces to the trap-free limit
with a shift in the time scale by 8. Hence, one
would find the correct magnitude of the current
and correct transit time at to= fo/8. The missing
features, however, are the early pretransit cur-
rent decay and the dispersion, which looks like
an exaggerated diffusion. Qf these, the dispersion
is the most accessible experimentally for showing
that the transport is really trap controlled.

I.et us now add one infrequently visited trap to
the set considered above. We assume the added
trap is the slowest one. This is a nonessential
assumption, but it turns out that the added tray
must be the slowest to produce significant con-
sequences —we designate this added trap by (~»
r, ) and advance all the previous indices one unit.
This is in accordance with the assumed trap order-
ing procedure, which requires r1 ~r, . The pre-
vious mean and variance in the transit time may
be designated t,' and t,", respectively.

By comparing Y,(f) to the resultant Gaussian

distribution of transit times for all the frequently
visited traps, it is easy to predict what happens
when the two are convoluted. Recall that F,(t}
monotonically decreases with time for M, &2, and

its characteristic half width is of the order of ~„,.
It follows that the result of the convolution will
not appreciably disturb the Gaussian if &„,« t,',
but the result will appear more like F, if v'„,
& t,'. This shows that &„,-t,'&7„, is necessary
for the added trap to have significant consequences.
It is also a result which is clearly in agreement
with the central limit theorem.

Now it can also be shown from the characteristic
equation [Eq. (48)] that s, = r, + Her, for small ~,.
Therefore, for t-t,', sgtp rytp+My Barring My
« I (which means no capture and no affect), we
obtain M, -1 for ~„1~ tp is necessary to avoid a
plateau prior to the fastest transit (f,'). It is evi-
dent from this that one relatively slow trap super-
posed on the effect of many frequently visited traps
must appear much like the single-trap case dis-
cussed earlier, but with no discontinuity at to.
This demonstrates the critical trap criterion for
broad dispersion under the most general condi-
tions. It is also shown later that t, is identifiable
as the empirical transit time t~.

We are finally left with the case in which more
than one trap satisfies the condition that M1 1
for v'„y ~ to but with the v'„, separated by at least
a factor of 2, only a very few traps can fall in
this category at one time. As a result, this case
acquires a great interest. It not only encompasses
all the practical cases in which the current tran-
sient exhibits an interesting structure (broadly
identified by no plateau), it means the particular
structure observed is sensitive to only a few traps.

To develop further insight for the eventual de-
composition of current transients, into a set of
trapping parameters, the forward synthesis pro-
cess is illustrated in Fig. 5 for the ease of three
traps. The release times for the three traps are
separated by a factor of 5, and the corresponding
capture frequencies are chosen in accordance with
the power law M, =R&'. This is to facilitate later
comparison with the continuum limit. The center
trap (trap 2) is placed at (M, R) = (1, 1}.

All frequently visited traps and diffusion are
neglected. Hence the discontinuity at t, remains
pronounced until the effect of the fastest of the
three traps (trap 3}is included. Notice that trap
3 also speeds up the initial decay rate. Trap 1,
on the other hand, speeds up the pretransit decay
close to the transit time and slows down the long
term post-transit decay.

The effect of choosing the R's closer together or
farther apart is illustrated in Fig. 6. When they
are placed a factor of 10 apart (3a}, the post-tran-
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sit decay begins to exhibit some structure, and
when they are placed a factor of (10)'~' apart (3c),
the long-term decay is increased. It can also be
shown that when the R's are chosen still closer
together (less than a factor of 2 apart), the com-
bination rapidly becomes indistinguishable from
(M = 3, R = 1) for a single trap, as expected.

Finally, it is informative to compare the above
3-trap sequence to a 7-trap sequence which obeys
the same power law. The trapping parameters
are listed in Fig. 7 and the corresponding current
trace (labeled t, x 1) is reproduced in Fig. 6 to
facilitate the comparison. The previous 3 traps
placed (10)'I' apart (3c) are identical to traps 4,
5, and 6 in the 7-trap sequence. It is evident that
the tangents to the pre- and post-transit regions,
which define the empirical transit time t~, are
parallel to each other for the 3- and 7-trap se-
quences. Therefore, trap 7 simply pushes out the
transit time and finishes submerging the discon-
tinuity. Trap 3 straightens out the long-term tail
off, and traps 1 and 2 in the 7-trap sequence are
too infrequently visited to affect anything.

The slower traps in the above sequence become
manifest when t,= L/pE is increased. This physi-
cally corresponds to an increase in sample length

IO

IO

0.5

M

0.2

O. I

0.5

02

O.OI
O. I 0.2

I

0.5 IO

t/to

FIG. 6. Comparison of 3- and 7-trap sequences obey-
ingM;=R; 6 with M» ——I atR;=I. TheR; in the 7-trap
sequence are spaced a factor of (10)' apart. In the 3-
trap sequence, theR are spaced apart by factors of 10
(3a), 3 (3b), or (10)t t (3c). In all cases the center mem-
ber is R,=I.

I+2k 3

0.5—

TRAP 2
02 M R

IQ0 I.OO

2+I

I. or a decrease in electric field E. The effect of
increasing t, by a factor is illustrated in Fig. 7 by
the family of curves labeled t, x multiplier. The
corresponding trapping parameters for these
curves may be obtained from the table by increas-
ing the indicated (M, R) by the same factor. Note
that the "fastest transit time, " defined by the inter-
secting tangents (fr) increases with t,. It can be
readily verified that the empirical transit time is
well approximated by

O.OI
O. I

I

0.2 0.5

0 I TRAPS I+2 TRAP

M R M

0.3eI 0.2OO I.OOO

0 05 I.OOO I.OOO 2.627
A s A

0.256 0 0.396
O. I48 0.350 O. I9

0 02 —0.596 0.223 0.4 I 3

IO

or

fr=f, + QM, r„, (in real time),

=1+ M) R)
f=k+

k
= 1+P —' (in normalized time),

$=k+

(82)

FIG. 5. Comparison of current traces for one, two,
and three traps. See text for discussion of how the
three-trap case may be viewed as synthesized from its
individual members.

where k* corresponds to the slowest trap for which
M, = 2. Therefore, t~ represents the fastest tran-
sit as determined by the "frequently" visited traps
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(meaning M, ~ 2) alone. It is apparent from this
that t~ may be used to define an effective 8 factor
or "effective drift mobility", providing it is un-
derstood that it characterizes only the average
speed of those carriers which successfully avoid
the infrequently visited traps. With this under-
standing one can attach real meaning to the pre-
viously unacceptable idea that the "drift mobility"
depends upon sample thickness. It is simply a
consequence of the fact that more traps qualify as
being frequently visited as the sample size in-
creases. This is manifest in the above example

by the fact that 0* reduces from 6 to 3 as t, is
expanded by a factor of 10. It can also be seen
that the general requirement of M,- & 2 for a trap
to be included among the frequently visited traps
quantitatively accounts for the superlinear depen-
dence of the empirical transit time t~ on sample
thickness. More generally, however, the scaling
of tr is a function of f, =L/pE alone. Superlinear
effects therefore result from the fact that more
and more terms must be included in the sum in

Eq. (82). The basic idea that this is responsible
for the observed scaling of tr with L/E has been
proposed by others" "also, but this is apparently

Io

the first analytical quantification of the concept.
Connection between the fastest transit t~ and an

average drift mobility is supported by the analysis
herein, it is inappropriate to attribute the dis-
persion in transit times to a "distribution of mo-
bilities, " as has been suggested. " The dispersion
is predominantly controlled by the infrequently
visited traps which must be excluded from the set
of traps which control the drift mobility. In fact,
it is more meaningful to view the dispersion as
simply the generation limited discharge" due to
the release of carriers which happen to be trapped
just once in "slow" (meaning r„,. & I r) traps.

The importance of excluding the infrequently
visited traps from the summation in Eq. (82) can
also be clearly seen from the data, provided in
Fig. '7. Note that the slower traps contribute in-
creasingly to the summation. Note also that trap
7 alone gives t~= 1.4t„while the inclusion of trap
6 as well gives t~=2.0t,. These should be com-
pared to the graphical (empirical) result of tr
= 1.'7t, . Thus trap 6 marginally satisfies the cri-
terion M, ~ 2. It can also be readily verified that
traps 3 through 7 give t~= V. ltp. This is in good
agreement with the empirical value of I;~= Vt, for
the case of "I,x 10" (for which M, = 2.51). It should
also be noted how erroneous it would be to not de-
lete the traps for which M, &2. In fact, it is ap-
parent that the sum would even diverge if the trap
sequence were extended to R, -0. This is evidently
intimately related to the diverging moments of the
waiting-time distribution function in an equivalent
CTRW problem. We see here that the divergence
results from the potential influence of the unvisited
traps which are not actually manifest in controlling
the transport.

The particular trap distribution which produces
current traces identical to those predicted by
CTRW for a power law P(t) is obtained next by
passing to a continuum of traps.

O. I

O.OI
O. I 0.2

r I I

05 I 2
TIME (t/to)

0.05

5 I.OOO I . 1000 0. I 280 I .5I I 9
6 l.990 3. I 60 0. l 962 4.7I90
7 3.980 IO. 000 0.432 I 15.6018

0.02

IO

C. Continuum of traps

Passage to a continuum of traps is readily ac-
complished by treating the ordered pairs (~„r,)
as a continuous function, ur(r). Motivated by the
fact that I(s) [cf. Eq. (44) with g„(x') = 5(x' —0)] be-
comes identical to Scher and Montroll's' l(s) [i.e.,
their Eq. (54)] if a(s)-s', we are led to try u&(r)

With this, it is natural to choose the x equal-
ly spaced on a logarithmic scale. Hence, we write

FIG. 7. Comparison of discrete 7-trap sequence
with continuum obeying the same power law, M&=RO ~.
The family of traces for increasing to ——L/pE illustrates
a departure from "universal'. ty" as the critical trap
(see text) approached the end of a finite sequence.

from which it is easy to show that

a(s) "
ur,. &an

= 1+ ' -1+—' „dn.
S X )+ S 1 y P S/9 I+

(ss)
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After substituting u = z"r,/s = r„„/s,

a(s) ms ' " u

1nzry r /s 1+Q
1

But for r, «s,
Ot-1

b(a) —= du=
].+gg 0 1+A Ot S

S11107T Q S

using formula 856.2 of Dwight. " Whence

(84)

(85)

the change in character when the critical trap falls
too close to the slow end (smallest M~) of the se-
quence. The effect is most evident in the pre-
transit region which exhibits a slight curvature. It
is significant that this behavior is often manifest
in measured characteristics. It indicates that a
change in character may be on the horizon with
thicker samples or lower electric fields. Unfor-
tunately, it may not be possible to explore this re-
gion experimentally, because of dark current lirni-
tations.

V. Application to a-As2Se3

b(Q)(di $ &dis
QS) S+

1nz r, r, (86)

The last approximation follows from the facts that
b//inc -1, and

(8't)

We know t, &= t~, if the traps are controlling the
transit time. By substituting &u„/r„ for tv, /r, in
this expression for at„one also readily finds
M„=co„t,-1 for r„=t~'—regardless of u. It may
also be noted that the overwhelming contribution to
b(o) comes from u-1, which again means s =r„

The above results show that the choice of &u(r)

not only reproduces the Scher and Montroll
solution identically, but it also verifies the critical
trap criterion once again; namely, that the absence
of a current plateau near the transit time means
that a trap exists that captures a carrier approxi-
mately once, and releases it after the order of the
fastest transit time.

To show that only a very few traps actually con-
trol the power law character of the continuum lim-
it, the asymptotic solution for the inverse trans-
form of the current for @=0.6 is compared to the
corresponding 7-trap sequence in Fig. V. From
the close similarity it is apparent that the three or
four traps whose release time falls in the neigh-
borhood of the transit time completely controls the
slopes of the pre- and the post-transit current near
the transit time.

The features of "universality" and a superlinear
dependence of transit time on sample thickness
[tr ~ to ~, cf. Eq. (87)], therefore carry over to the
finite-trap sequence as well. It is merely neces-
sary that the sequence extends one or two traps
beyond the critical trap which satisfies the criter-
ion of M; -1 for T„;-t~. Indeed, this defines the
range of validity for the universality and super-
linearity features. The "t,& 10"case in Fig. 7
(for which M, =0.63) provides a good example of

Having established the identity between the cur-
rent transient produced by a continuum of traps and
that produced by the stochastic hopping case of
CTRW, ' it follows that all experimental data pre-
viously fit with the stochastic hopping theory can
now be reinterpreted in terms of traps. Also, in
view of the fact that the two interpretations and
their material implications are different, it is
clearly an important exercise to carry out. Some
of the major differences between trapping and sto-
chastic hopping are discussed in the Introduction.
But a more specific difference that deserves fur-
ther emphasis is that g(t), in the case of stochastic
hopping, may be envisioned to arise from hopping
between a disordered array of intrinsic molecules.
With a trapping interpretation, on the other hand,
transport is controlled by a relatively low concen-
tration of traps, which are most likely extrinsic.
This difference is manifest analytically by the ap-
pearance of a trap concentration and a well-defined
microscopic mobility in the trapping analysis,
while these quantities are missing in the stochastic
hopping analysis.

To illustrate the above differences, a-As, Se,
provides a good example. It has been thoroughly
studied experimentally, """'"'" and apart from
the excessive activation energy for t&, it is in
good agreement with stochastic hopping theory. '
The current transients for a-As, Se, have been fit
with o. [in p(t) -t ~" i] ranging between 0.45 and
0.65. Universality (i.e., a specific a) is well sat-
isfied for a single sample, though significant dif-
ferences arise between different samples. A de-
pendence of current shape on the nature of the con-
tact and process conditions (such as simultaneous
exposure with weakly absorbed light) has also been
noted. But these effects are most pronounced at
lower fields, and it appears that they are explic-
able in terms of bulk space charge. They are also
not a major concern because of their lack of effect
on the scaling laws for the transit time at high
fields (& 2 x 10' V/cm). Inall cases tr~[L/1(E)]'
with t (E) ~ E, Scher and Montroll's expected dis-
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(88)

This assumes a sufficiently low field to justify us-
ing C; = v, /N„, and allows for a possible activation
in the capture process (A;).

Applying the above procedure to the critical
traps for a range of E/L, and assuming the activa-
tion energy is strictly constant, one finds 10"& v»

& 10" sec '. Although the range of v» for c;=0.65
eV could be narrowed substantially if the activation
energy for t& were not strictly constant, a spread
of at least a factor of 10 to 100 appears well esta-
blished.

As shown in general, the concentration of any
trap can be determined from the experimentally
determined trapping parameters at low fields. But
to illustrate the meaning of o., it is informative to
use the principle of detailed balancing and the
power law, co» fx~» to obtain the corresponding
relative trap concentration. Thus

N;' =const'; ' e
N„

(89}

in general, where T is the temperature at which
the trapping parameters are determined. This
means the power law can arise for a distribution
of v» if e» =const, a distribution of e» if v» =const,
a distribution of 6», or a combination of all three.
The most complex case arises when a distribution
of e» and v» produce the same r». The correspond-
ing ~» in this case becomes the net summation of

placement per hop, ' is well satisified; with a
blocking top electrode (Al or metalized insulator),
the activation energy of t& at low fields (less than
5x 10' V/cm is 0.65 eV for temperatures between
220 and 320' K."' With an injecting top electrode
(Au), a smaller activation energy (&.5I eV) is
typical. '

The established scaling of t& carries over to the
trapping solution (for a continuum of traps) iden-
tically if l (E) is replaced by pE Th. is connection
between l and p. for hopping is also the one ex-
pected according to Eq. (104) in Sec. VI.

By making use of the critical trap criterion for
broad dispersion (which is actually well defined for
a continuum of traps), we next determine a connec-
tion between the microscopic mobility and trap
density. The critical trap criterion of M; -1 for
~„» -t~ actually provides two relations which can
be used to determine v; (for known e;) and the rela-
tive trap concentration. For example, from Fig. 9
of Ref. 11 (Chap. III), tr =100 sec at 235'K for 100
V across a 58- p, m sample. The corresponding
activation energy is 0.65 eV. Hence, v» =7@ 10"
sec '. By putting M» -1, for the same trap, we ob-
tain

N; C; exp(-h~/kT} for all traps with a common r;.
Equation (89) imples a must be temperature de-
pendent unless e»=const or ~»= ae». One of these
two situations apparently prevails in a-As, Se3,
because a is found to be insensitive to the tem-
perature. Extreme care must be exercised to
establish this, however, because the maximum
possible dependence of a on temperature is simply
a~ T. Thus the limit of accuracy depends strongly
on the temperature range investigated. Inciden-
tally, to rule out variable a (and variable e;), it is
necessary that both the pre- and post-transit
slopes of log current versus log time be indepen-
dent of temperature. It is not enough to find that
the activation energy of the experimental transit
time (tr} is independent of temperature. This will
happen also when M» for the critical trap is tem-
perature independent.

The above results illustrate how a set of trans-
port parameters can be obtained from current
transients. But unfortunately, it is not possible to
determine p, and N;/N„separately. This is due to
the fact that neither t, nor p, is directly manifest
in the measured time range.

In principle, one can obtain g from p = (L/trE)I(f
-0)/I(tr). But to date a good measure of this cur-
rent ratio is unavailable. This is unfortunate be-
cause it is perhaps the most direct means of de-
termining the microscopic mobility. Because of
the information reflected in the microscopic mo-
bility as well as the trap density, additional exper-
iments are encouraged. Actually, further experi-
ments on a-As, Se, could be very revealing because
the pretransit current decay is so slow. On the
other hand, the dark current is also large in
As, Se„and an associated space charge accumula-
tion can complicate the interpretation.

Fortunately, for a-As, Se„we can turn to dark-
current data for more information concerning the
trap density. The most directly applicable data in
this regard is Ing and Neyhart's" study of the tran-
sient dark discharge of similar samples (i.e., a-
As, Se, with a blocking contact). By analyzing the
data in terms of generation limited conduction, "
a density of populated traps was found which in-
creases linearly with activation energy. The total
trap population for activation energies between 0.64
and 0.84 eV (at zero field) was 10" cm ', and the
equivalent trapped hole concentration for a half de-
cade of release times around the r„» corresponding
to v» = 7 & 10" sec ' and c» = 0.64 eV is 10" cm '.
Although Ing and Neyhart assumed a constant v»

with a spectrum of e, (spaced approximately kBT
=0.02 eV apart), the dark decay data can probably
be fit with a spectra of both v» and e» as well. The
effective average value of v=10" sec ' was found
to fit the dark discharge rate of AB,Se, very well,
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and is in good agreement with the v» determined
above from the transient photocurrent data. The
location of the initial Fermi energy (prior to any
dark decay) is not known, but a reasonable as-
sumption is that it lies either at 0.64 or 0.84 eV
above the activated complex during release. The
corresponding concentration of hole traps is then
found to be N» = 10"or 10" cm ', respectively, for
E» =0.64 eV and v» =2 & 10" sec '. Assuming N„
= 10'9 to 10" cm 'and g = p,, exp( n.„/k-T) with 6„
=0 for free translation, and A„-b,» for hopping,
Eq. (88} immediately gives p, =0.2 to 0.002 cm'/
V-sec, if N, =10" cm ', or p, =2 to 200 cm'/Vsec,
if N» =10'6 cm '. Since the lower value is charac-
teristic of hopping, and the larger value is charac-
teristic of extended state transport, we are led to
the interesting point where the interpretation of the
microscopic motion is dependent on the assumed
placement of the initial Fermi energy.

When all available information concerning the be-
havior of a-As, Se, is taken into consideration —es-
pecially its good xerographic performance, "and
the shift in the activation energy of t~ from 0.64 to
0.5'l eV with replacement of insulated contacts by
Goldg the l—ower trap density (N~ —10" cm ') is
most plausible. The spectrum of v» can then be
attributed to a spectrum of hopping transitions out
of traps. The physical origin of this spectrum may
indeed be due to disorder, as in "stochastic hop-
ping. "' But it should be remembered, that the
required v» also appear defensible in terms of cap-
ture from extended states as well, and cannot be
unambiguously ruled out at this time.

Now the notion of "trap controlled hopping" im-
plicit in the above discussion should not be con-
fused with a different concept of "trap controlled
hopping" recently proposed by Pfister and Scher. '
Although the two concepts are closely related, they
are fundamentally different, as borne out by the
different analysis and results. Pfister and Scher
have pointed out the difficulty of accounting for the
activation for the observed activation energy of t&
in terms of stochastic hopping alone, and have con-
structed a phenomenological description of trapping
which is appended to the pure stochastic hopping
theory. The present analysis, however, has shown
that the previous CTRW analysis already fully ac-
counts for the observed behavior of a-As, Se, . It
was merely necessary to reinterpret the power law
g(t) in terms of traps instead of stochastic hops.
The observed activation energy of t& is then simply
explained as the activation energy for release from
the controlling traps. No additional analysis is in-
volved.

responding master equations. A useful prelimin-
ary, however, is to show that Eqs. (1) and (2) are
equivalent to the following integrodifferential equa-
tion:

at y(t- T)[g„(x)5(T-0)—9 ~ f~] dT, (90)

y(f) = Z-'[S/s(s)]. (91)

This may be readily verified by equating the La-
place transform of Eq. (90} to the Laplace trans-
form of Eqs. (1) and (2) combined. Whence,

where

(93)

+ Z yii P(xi ~, r)]dr (94)

with initial condition P(x„0) = Axg„(7,)5(f-0).
Here P(7q, t) represents the probability that a car-
rier is on a site at x, at time t, and y&, is the con-
ditional probability that if a carrier moves it will
transfer from X& to g, . As Kenkre et al."have
shown, Eq. (92) will yield the same expression for
P(7„ t) as CTRW if Pv =sP/(I - P), with g being the
Laplace transform of the waiting-time distribution
function in CTRW. It may be noted that Eq. (94)
originated from the master equation for hopping
[cf. Eq. (Al) of Appendix A] by factoring the time
dependence Q„(t) out of the intersite transition
probabilities and generalizing it to functions other
than 7* '5(t) It can thus be. said that CTRW and
the trapping formalism are different mathematical
approaches to solving Eq. (Al).

To make the comparison of the above GME for
CTRW with Eq. (90) for trapping more compatible,
it is appropriate to transform the difference rela, -
tion in Eq. (94) into a differential relation. Obvi-
ously, the reverse procedure can be applied alter-
natively to Eq. (90), but it is less natural. By pass-
ing over to a continuous space variable,

is an effective source function [in Eq. (1)]due to
capture and release from traps.

Equation (90) is now to be compared to the gener-
alized master equation (GME} of CTRW"'

&P(7, t)
'dt yet 7)[-P(7-,.7)

VI. EQUIVALENCE BETWEEN TRAPPING AND CTRW
The most general connection between trapping

and CTRW is most easily established via the cor-

1 -P(7, r) +Qyg, , T) —V ~ F

where

(95)
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dx+p-=(rg
~ g, ~gg„, ), P(&~, ~)

VP(x„7}

follows from an expansion of P(x, 7) in a Tayor's
series. Equation (94} then becomes

r*ygt r)[-V-F,]dr
8t

(97)

A time constant r* is introduced in the above to
make Qvr* have the same dimensions as Q and F~
the dimensions of a flux. However, one should
avoid thinking of qE~ as a local conduction current,
which it is not, as the results below show.

It is evident now that Eqs. (90) and (97) have a
similar form except for the conspicuous absence
of the photogeneration source in Eq. (97). But this
is a nontrivial difference which turns out to be es-
sential.

To finally establish the equivalence between
trapping and CTRW, it remains to find the trapping
quantities which correspond to P(x, t) and P„. Phy-
sically, P(x, t) must account for the total local
charge. Consequently, we must have

P(x, t) =P(x, f) +Q P((x, t}, (98)
i=y

or

P(s, s) =P+gP, = I++ ' p=
i r;+s

The latter follows frorz Eq. (2}. After
Eqs. (1) and (2), one also obtains

sP- g„=sP- P(x, 0) = V ~ f&, -

summing

(100)

whereas the Lap1ace transform of Eq. (97}gives

sP- P(x, 0) = r*Qg[ V' Fq]. - (101)

Equations (100) and (101) together finally give
AV

&*IN[-V' Fp]=-V ~j, (102)

which is consistent with the above identification of
P, if

IIV
Ex

u& (Wr( , 1g, &+,,)-

(103)

(104)

These relations therefore establish the complete
equivalence between trapping and CTRW. For fur-
ther verification, one can use the most general ex-
pression for the Laplace transform of the current
in CTRW,"' expressed as a function of g/(I —g)
only, and show that the above correspondence rela-
tions always produce identical current expressions.
In the case of stochastic hopping, it is also neces-
sary to identify r* as 8"&', where 8'~ is the maxi-

mum jump frequency. '
Having established the above correspondence re-

lations, the basic mathematical differences be-
tween trapping and CTRW, which are manifest in

Eqs. (90) and (94), become readily understandable.
The photogeneration source must appear in Eq.
(90}, while it must be absent in Eq. (94). This is
necessary because P must be conserved while the
free carriers relax into slower and slower traps.
To directly verify this, Eqs. (90) and (94) or (97)
may be integrated over the sample length. For
times short compared to the first carrier transit,
one obtains

(105)

while

P x, t =0. (106)

If one now identifies the traps with special sites,
following a procedure given in Appendix A, then
Eq. (98) becomes tantamount to the replacement of
every site by an ensemble average. It should be
stressed, however, that this is a different kind of
ensemble average than the one used by ocher and
Montroll' (cf. their Appendix D).

Using the equivalence between Q~ and P esta-
blished by Kenkre et al."and P = r*Qg, one can
readily verify that

g(s) = 1/[1+ z*a(s)], (107)

where a(s) is explicitly given by Eq. (24} in terms
of the trapping parameters. This may be used in
either direction to convert any trapping problem
into an equivalent CTRW or vice versa.

The above results show that trapping and CTRW
are mathematically equivalent in general; and in
view of their different conceptual bases, this first
appears as a remarkable result. The reason for
this unusual occurrence, however, can now be
seen by comparing the different ways in which the
trapping equations and the QME of CTRW are de-
rived from the master equation for hopping
transport [Eq. (Al)] . In the trapping formalism,
certain sites were identified as traps and these
were separated from the spatially coupled trans-
port states. The kinetics of capture and release
between the traps and transport states were then
dealt with explicitly. But in formulating the GME
or CTRW, all states were treated on an equal basis
(i.e., as if all were transport states). The time
dependence of all transitions were made identical,
though it was recognized that this was done on a
statistical sense. The more important and subtle
point however, is that all spatial transitions were
made identical as well by effectively replacing
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every site by an ensemble average site. This is
why the population of the spatially connected sites
in CTRW is P(x, t), rather than the mobile car-
riers p(x, t), alone. The connection between the
two, however, is just the inverse relaxation func-
tion P ', as shown by Eq. (99). When this is in-
serted in Eq. (99), or rather its Laplace transform
given by Eq. (102), one finds that r~P~Q ' is just
the identity operator. This means P~ in the GME
of CTBW basically undoes the effect of having pre-
viously treated all the sites on an equal basis. In
other words, Q& operates on P to take into account
the fact that only the mobile component of P (name-
ly P) plays a role in the redistribution of carriers
spatially.

VII. SUMMARY AND CONCLUSION

The basic continuity equations which apply to the
interrupted motion of charge moving through a
dielectric material have been shown to broadly
apply to any mobile entity which stops and starts
at random from a distribution of resting places.
The mean resting times (r„,), and the mean travel
times (r, ) between rests of r„;, have been formu-
lated for electronic charge carriers whose micro-
scopic mobility is controlled by either extended
states or hopping states. The basic trapping equa-
tions have been solved analytically and the charac-
teristics of the solution have been illustrated via
several examples. The principal general results
from this study are:
(i) The empirical transit time tr is approximately
the free transit time plus the total resting time in
all traps visited at least twice (M, ~ 2).
(ii) The post-transit current decay is controlled by
the rate of release from the slow traps (r„, ~ fr),
which capture a carrier once or less (on the aver-
age).
(iii) To obtain a broad dispersion of transit times
(or featureless" current trace) a carrier must be
captured approximately once in a trap whose mean
release time 7.„;is approximately equal to the em-
pirical transit time t~. This is called the critical
trap criterion (CTC).
(iv) Superlinearity of tr with L/E (sample thickness
divided by the electric field) results from an in-
crea.sing number of traps satisfying the CTC, or
Mi =L/pEr& & 2.
(v) Previous current traces fit with CTRW using
a power-law waiting-time distribution function,
g(t) ~ t ", imply a power-law relation between
the capture and release times, r&ocr„&.
(vi) The microscopic mobility can be determined
from the transit time and the ratio of the initial
current to the current at the transit time.
=(L/f„E)I(t-0)/l(tr). This provides at least a

lower bound.
(vii) The ratio of trap to transport states densities
(N;/N„) can be determined from trap parameters
(&u;, r;), which in turn, can be determined by fitting
the theory to experimental current traces.
(viii) Trapping and CTRW are equivalent in gener-
al.

The underlying conceptual differences previously
envisioned between trapping and CTRW have also
been explained. In fact, the cancell. ation of Q by

P
' on the left-hand side of Eq. (102) can be traced

to the definition of CTRW [cf. its GME, Eq. (94)]
via the replacement of every site in a hopping ar-
ray by an average site. This can be interpreted
to mean the "relaxation" phenomena associated
with the averages sites does not carry through to
the transport states (or microscopic displacement
events) themselves. Because of this, the associa-
tion of "stochastic hopping" with CTRW acquires a
questionable meaning. In fact, a more appropriate
descriptor of CTRW might well be stochastic stop-
ping, rather than stochastic hopping. The latter
term could then be reserved to have a more speci-
fic meaning in connection w ith the mor e general
master equation for hopping (cf. Appendix A), an
idea which appears implicit in discussions by
Scher." The central question remains, however:
How can stochastic hopping be redefined in a way
which is distinguishable from trapping?

The importance of the above distinction appears
more than semantical. The broad transit-time
dispersion typically found in amorphous materials
was previously thought to be a consequence of dis-
order. It is now found to be indicative of a rare
trapping event. This implies very low trap densi-
ties, which are most likely due to defects such as
dangling bonds, impurities, or combinations there-
of, rather than disordered intrinsic material. It is
conjectured that this broadly applies to both crys-
talline and amorphous materials, though the dis-
order in amorphous materials may very well be
responsible for a spectrum of couplings (v, ) to a
particular defect.

U se of the theoretical r esults derived herein
could find broad use as new tools for determining
the microscopic mobility and localized state densi-
ties (traps) in all dielectric materials. Since the
completion of this manuscript, another analytic
solution of the multiple-trapping problem" has
been published which appears different from the
present solution except for the limit of a single
trap.

For the purpose of probing localized trapping
states, the present formalism for small signals
should be adequate. But for completeness and ap-
plication to certain imaging systems, it remains
to extend the formalism to handle large signals.
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As a first-order assessment of large signal ef-
fects, one might simply average the present small
signal solution over a distribution of trap-free
transit times, as determined, for example, by Ba-
tra and Schechtman. " Such an approach is nonri-
gorous, but the simplicity is appealing and it could
prove to be adequate in many cases.
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APPENDIX A: DERIVATION OF THE TRAPPING

PARAMETERS FOR MICROSCOPIC HOPPING

In this Appendix, we derive the capture and re-
lease rate constants ( o;, r, ) for microscopic hop-
ping on a lattice.

This is accomplished by deriving the trapping
Eqs. (1)-(3) from the following master equation
for hopping on a lattice:

=g & ~'(x, - x )P (x, t)
mls

(A2)

—P ~'(X„-x,)P(x„ t) (A. l)
mal

Here P(x„ t) represents the probability that a car-
rier occupies a localized state centered at 7, and
~ (x, —x„}represents the transition probability
per unit time from the site at x to the site at x, .
'Note that the net probability per unit time for re-
lease from the site at x, is

r, = (d'x —7, .
)fill

Hence, each state may be characterized by its
mean release time v'„, -=r,'. If the transitions
which determine r, do not significantly involve
transitions to other states for which the release
constant (r„say) is less than or equal to r„ then
the state in question is effectively isolated from
all similar (or slower) states. Such isolated states
shall be defined as traps. It may be noted that this
definition is consistent with the general notion of
a trap indicated earlier (immobilization for an ob-
servable length of time} even though some v„, may
be too brief to be manifest in the measured cur-
rent trace (Restric.tions on observability are
discussed in depth later. ) Now, all states that

ro, = g &u', (x -x,)N, /N„, .
1

(AS)

where the subscript i on &o, (x -x, ) indicates the
fact that &o'(x -x, ) may now be conditional on the
nature of the trap that is tacitly assumed to exist
at site 7 . Of course, x can be any site and the
probability that it is a trap having a release time
in the range quantified by v„, is N, /N„If &oI is.
only weakly dependent on the nature of the final
state (so &uf =1/v~), then &o, is predominantly de-
termined by the probability that a transition from
any transport state will simply end in a trap. But
it should be emphasized that &u, (x -x, ) is not, in
general, the simple inverse of the corresponding
transition in r, even though the same initial and
final states are involved. They may differ because
a complex sequence of intermediate transitions
may be involved which require activation (cf. Fig.
2 in text).

Given Eqs. (A2) and (A3) as the definitions of
~, and r, for capture and release from localized
transport states (i.e., hopping states), it remains
to show that they are consistent with Eqs. (1)-(3).
Now, a populated state depends on its nature. To
quantify this, we denote the occupation probabilit-
ies of the transport states and traps by p(x„ t) and
p, (x„ t), respectively. The net rate of filling trap
i may therefore be written.

rP, (x„t), -

do not satisfy the above criterion of a trap are
strongly interconnected, and therefore represent
another example of what is defined herein as trans-
port states. An additional assumption that is now

made concerning these transport states is that the
differences between the release times &„, from one
transport state to another will not be observable
and may be replaced by an average value, designat-
ed v*. Now the location of the traps will generally
not be known a priori. 'Thus it is appropriate to
turn to an ensemble description in which the traps
are distributed at random (i.e., that the samples
are homogeneous). And since a trap is now char-
acterized by its release time v„, not its location,
it is also appropriate to replace the subscript l

(on r,}by t, to indicate that r„,= r, is of a certain
magnitude. Use of i,j to indicate traps in this way
is consistent with previous notation for release
to extend states.

The capture of a carrier from a transport state
is basically release in reverse. However, the
capture event is conditional on the fact that the
final site is a trap. 'Thus the capture probability
per unit time by trap i can be written
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where we have made explicit use of the fact that

x, is now trap i. Next, we assume that the average

of p(x, I) for the states neighboring trap i (assumed

to occur here at x,) is p(x„t} (i.e., the same as if

the trap did not exist at x,). Whence,

(A5)

which is identical to Eq. (2). The reverse of the

processes on the right-hand side of Eq. (A5) also
act as a sink or source of mobile carriers, and

this must be taken into account as we next turn to
the derivation of Eq. (1).

We next focus on the master equation, Eq. (Al),
for the population of a transport state which is
coupled to other transport states alone. If we as-
sume only nearest-neighbor transitions are im-
portant and renormalize all the transitions from
a particular site, then one can write r ~&a'(x,

-x„,) = y„where y. and y are the conditional
probabilities from transitions "with" and "against"
the electrostatic force, respectively. Assuming
further that the transport state population, p(x„ t)
is slowly varying, then a Taylor expansion of

p(x„„I) may be used for the following conversion
of a difference relation into a differential relation:

small error because there are very few traps. In

addition, one can remove this error in the analysis
by superposing transport states at all the trap
positions, and redefine the capture and release
constants given by Eqs. (A2) and (A3) to represent
capture and release between the actual traps and

the virtual. transport states superposed at the
trapping sites. It is not likely, however, that the
corrections that can be made in this manner are
observable.

APPENDIX 8: DIFFUSION VERSUS TRAP CONTROLLED

TRANSIT TIME DISPERSION

By comparing the effect of diffusion alone with
the effect of trapping alone, a simple criterion may
be constructed for when the effect of diffusion may
be neglected. In addition, it becomes readily ap-
parent how the effect of diffusion can be incor-
porated in the trap controlled transport problem
with little added complexity.

It is well known that the solution to Eq. (1) with
diffusion and recombination included, but no car-
rier release (all r, =0), i.s simply

(A6}

where f~ is given by Eq. (3), with

gE -=(y. -y )(x„,-«, )/&* (A7)

where

is now the sum of the conditional occupational
probabilities given that the accumulation point is
either a transport state or a tray. Substituting
Eq. (A9) into Eq. (AS}, and replacing the time de-
rivatives of p,. with their equivalent given by Eq.
(A5), one arrives at Eq. (1). This fulfills the ob-
jective of this Appendix.

One might argue that Eq. (A6) cannot be used for
states connected to traps. However, this is a

and x, =x. Note that P(x„ t} is replaced here by

P(x„ I) because we are dealing exclusively with the
population of transport states alone. It can be seen
from this if there were no traps, Eq. (A6) for the
continuum limit (after adding the photogeneration
source) would reduce to Eq. (1). Therefore, when
one takes into account that a given lattice site may
be a trap, the net accumulation on an ensemble
averaged site (at x, = x) may be written

where the diffusion coefficient D is related to the
microscopic mobility p. by the Einstein relation.
This ignores any effect of the upstream boundary
(at «=0), butitcanbeshownthattheeffectof this
boundary may be included via a modified quantum
efficiency q.

If L» (2Dt)'~' when t-t, =L/pE, then it is an ex-
cellent approximation to replace t by f, in (2Dt)'~'
during the short time interval during which the car-
riers cross the downstream boundary (at «=L).
The dispersion in transit times resulting from dif-
fusion is then given by

t2 = 2M, 72 ~. (B4)

As also stressed in the text, the most effective way
of establishing whether t, or t, ~ is dominant, is to
normalize them with respect to the mean transit
time, whence,

t' ~ 2kT 2kT
for diffusion

t02 qEL q V

r (f}=
1 e-(t t()) I2(yg)

(2v)'~'c

where

o~ = f ~ = 2Dto/(pE)2 = 2kT/p'E3. ,

This is the diffusion dispersion cited and compared
in the text to the dispersion due to trapping. For a
single trap, the latter is simply given by
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t2 2M T (as)

2 2pE for M, v. , »t, .
M coL' 1 re1

1 1

It is easy to verify that trapping can produce a
broader relative dispersion than diffusion when-
ever trays are yresent for which v'„&tokT/qV.

It follows that the transient current due to dif-
fusion alone may be written

function by the integral of Ye(t) I.t is thus ayyarent
that the effect of diffusion is simply to broaden the
dispersion of transit times.

A general solution with both trapping and diffusion
included may now be guessed. One should simply
reylace 6(f —f,) in Eq. (SS) by Y~(f). This is just-
ifiable from a statistical point of view as well, be-
cause the diffusion mechanism for broadening the
transit time dispersion is independent of the trap-
ping mechanism. The total dispersion due to both
mechanisms is then simply

L
I(f) = — il, EP(x, t) dxL

2k TL 2K 1L &~e 1
Of tot O, D O

p 2E3 +
p. E (a9}

1 — YDt dt (a7)

This may be compared to the single-tray case in
the limit of no release. From Eq. (67), it can be
seen that A, -O, A, -1, s, -td, =e„andF, (t}-0
as r, -0. Hence Eq. (66) reduces to

Z(f) = ' e-"«[I u(f —f,)].qqN
tp

(as)

Pence the effect of diffusion is to replace the step

for a single frequently visited trap. In principle
then, one should be able to shift trap controlled dis-
persion to diffusion controlled dispersion by simply
lowering the electric field. There are no known
cases for which this has been observed. To ob-
serve the effect experimentally, however, one
should probably study electronic grade materials,
since there is apparently always such an abundance
of traps in electrophotographic materials that the
transient current becomes immeasurably small at
sufficiently low fields.
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