Mechanisms of dielectric anomalies in BaMnF4[†]

J. F. Scott*

Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United Kingdom (Received 14 March 1977)

The b-axis dielectric anomaly at the commensurate-incommensurate phase-transition temperature in BaMnF₄ has been calculated. Its shape and magnitude agree with the data of Samara and Richards. The *a*-axis anomaly below T_N is also explained; its shape and magnitude are due to the canting of Mn spins. It is a first-order effect and $\sim 10^5$ larger than in Rado's second-order theory for Cr₂O₃.

BaMnF4 undergoes a continuous structural distortion at about 250 K,¹ in which the primitive unit cell doubles in the bc plane.²⁻⁴ The wavelength of the distortion along the twofold *a* axis is incommensurate with the lattice constant of the high-temperature phase.⁵ The transition is characterized by the presence of a "soft" optical phonon, which is polar in the incommensurate phase, with dipole along the a axis.² Measurement of the temperature dependence of this optical mode allowed predictions² of a λ -shaped *a*-axis dielectric anomaly for temperatures near $T_C = 250$ K; these predictions were confirmed in detail by the recent measurements of Samara and Richards.⁶ Their work also showed the presence of a b-axis dielectric anomaly, unpredicted in previous work, with shape opposite that of the *a*-axis anomaly; i.e., $\epsilon_b(T)$ rises rapidly from its value 21.5 at T_C to 23.0 for $T \le 180$ K. The purpose of the present note is to suggest an explanation for that anomaly.

In the original Raman study² of BaMnF₄, two lowfrequency optical modes were found. One was strongly temperature dependent, with low-temperature frequency 40 cm⁻¹, and was inferred to have polarization along \hat{a} . The second was weakly temperature dependent, with frequency 28 cm⁻¹ at 77 K, and was inferred to have polarization along \hat{b} . The intensities of these two modes vanished above T_C .

The presence of the mode at $\sim 28 \text{ cm}^{-1}$ in the incommensurate phase of BaMnF₄ should increase the *b*-axis dielectric constant. The value ϵ_b below T_C can be related to $\tilde{\epsilon}_b$ at $T \ge T_C$ by the equation

$$\epsilon_b(\omega=0) = n_b^2 \prod_j \left(\frac{\omega_{LO}^j}{\omega_{TO}^j}\right)^2, \qquad (1)$$

where n_b is the *b*-axis index of refraction; ω_{10}^{j} , ω_{L0}^{j} are the *j* transverse and longitudinal optical-mode frequencies of long wavelength; and the product is over the modes of B_2 symmetry. This can be approximated as

$$\epsilon_b(0) = \tilde{\epsilon}_b(0) \left(\omega_{\rm LO} / \omega_{\rm TO} \right)^2 , \qquad (2)$$

where ω_{LO} and ω_{TO} are for the mode at about 28 cm⁻¹. For all other B_2 modes present below T_C but not above T_C , the ratio ω_{LO}/ω_{TO} is assumed nearly unity.

Far infrared measurements at 2.4 K give⁷ $\omega_{LO} \sim 34.9 \text{ cm}^{-1}$ and $\omega_{TO} \sim 33.7 \text{ cm}^{-1}$ for BaMnF₄, from which Eq. (2) predicts

$$\boldsymbol{\epsilon}_b = \tilde{\boldsymbol{\epsilon}}_b \times 1.07, \quad \boldsymbol{\epsilon}_b = 21.5 \times 1.07 = 23.0 \ . \tag{3}$$

This value $23.0 = \epsilon_b$ is in exact agreement with the data of Samara and Richards⁶ for $T \ll T_C$ but T greater than the temperature (~70 K) at which magnetic ordering begins.

The shape of the curve $\epsilon_b(T)$ vs T below T_C can be explained in the following way. The mode at about 28 cm⁻¹ has zero oscillator strength above T_C (since it is not at zero wave vector). Because the structural transition is continuous, the oscillator strength of this mode increases with decreasing temperature below T_C , approximately as the magnitude of the displacement parameter.

FIG. 1. Dielectric anomaly $\Delta \epsilon_b'(T)$ vs T for BaMnF₄, from Ref. 6. $\Delta \epsilon_b$ is taken as zero ($\epsilon_b = 21.5$) at $T_C = 248 \pm 2$ K. The dashed line is the mean-field expectation.

2329

16

In Fig. 1 the $\epsilon_b'(T)$ are plotted on a log-log plot, and compared with the mean-field prediction

$$\Delta \epsilon_{b}'(T) = d[(T_{C} - T)/T_{C}]^{1/2}, \qquad (4)$$

where d is a dimensionless constant. Good agreement is found between $180 \le T \le 235$ K. Between 220 K and $T_C = 247$ K, Shapiro *et al.*⁵ found that the order parameter varied as

$$\varphi(T) = \varphi_0 [(T_C - T)/T_C]^{0.225} .$$
(5)

The data of Ref. 6 do not seem sufficient to deduce an exponent in this region, but the apparent deviation of the data in Fig. 1 from the $\frac{1}{2}$ mean-field exponent near T_C is not incompatible with the results of Shapiro *et al.*⁶

The theory presented here does not explain the abrupt saturation of $\epsilon_b'(T)$ at about 180 K. Below 70 K another *b*-axis anomaly occurs. It is thought to be due⁹ to the onset of in-plane spin ordering¹⁰ and to the paramagnetoelectric effect.¹¹

Below T_C BaMnF₄ lowers its symmetry from $C_{2\nu}$ to C_2 . The distortion along the *a* axis is not commensurate with the high-temperature lattice; but this characteristic does not alter the C_2 point-group symmetry. The magnetoelectric properties are therefore assumed characteristic of magnetic point group symmetry 2'. For this symmetry, the magnetoelectric tensor α_{ij} defined as

$$H' = \alpha_{ij} E_i H_j \tag{6}$$

has the form

$$\alpha_{ij} = \begin{pmatrix} 0 & 0 & \alpha_{13} \\ 0 & 0 & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & 0 \end{pmatrix},$$
(7)

where \hat{a} is axis 3; \hat{b} is 1; and \hat{c} is 2.

In BaMnF₄ the spins are canted¹³ along \hat{c} (a fact unknown in Refs. 4 and 5). The α_{ij} in Eq. (7) produce a nonzero term $\alpha_{ac}E_aH_c$ when averaged over all spins. This term will renormalize the a-axis dielectric constant below T_N , where $\langle H_c \rangle$ becomes nonzero. The presence of such a $\Delta \epsilon(T)$ renormalization was first pointed out by Rado,¹⁴ who derived explicit expressions for Cr₂O₃. His theory cannot readily be applied to BaMnF₄, which has an off-diagonal magnetoelectric tensor and canted spins. Rado's theory for $\Delta \epsilon(T)$ yields a number of order 10^{-6} at T = 0 for Cr_2O_3 , an unmeasurably small quantity, and an $M^2(T)$ temperature dependence (M is the sublattice magnetization). In contrast, the measured^{6,9} $\Delta \epsilon_a(T)$ in BaMnF₄ is 0.1 at $T \approx 0$ and varies as M(T), as shown¹⁵ in Fig. 2.

The disagreement between the experimental $\Delta \epsilon_a(T)$ and Rado's theory arises primarily from the canted spins. For a ferroelectric like BaMnF₄ the free energy

FIG. 2. Dielectric anomaly $\Delta \epsilon_a'(T)$ vs T for BaMnF₄, from Refs. 6 and 9, compared with M(T) from Ref. 15. M(T) varies approximately as a Brillouin function for spin- $\frac{5}{2}$.

involves the square of the total electric field, where

$$E_{\text{total}} = E_0 + \mathcal{E}_{\text{app}} \,, \tag{8}$$

where E_0 is the electric field due to the spontaneous polarization $(E_0 = 4\pi P_a)$ and \mathcal{B}_{app} is the external applied field. Thus, the free energy is of form

$$F = \epsilon E_0^2 + 2\epsilon E_0 \mathcal{E}_{app} + \epsilon \mathcal{E}_{app}^2 \tag{9}$$

and is linear in applied fields for small E_{app} . We would like to use perturbation theory to calculate a correction to F linear in \mathcal{B}_{app} .

In Rado's theory the renormalization $\Delta \epsilon(T)$ below T_N due to magnetoelectric effects is zero to first order and proportional to $\alpha^2(T)$ in second order. Since α is of order $10^{-4}-10^{-6}$, this gives an unmeasurably small effect and one proportional to $M^2(T)$.

For canted spins, several mechanisms¹⁶⁻¹⁹ give *first*-order contributions to $\Delta \epsilon(T)$. Either Rado's single-ion anisotropy, or Dzyaloshinskii anisotropic exchange involves terms of form

$$V = N \mu_B g a_\perp \langle m | S_z S_x | m \rangle \mathcal{E}_{app} \neq 0$$
 (10)

(here S_z is the spin component along the *b* axis; S_x is an orthogonal component) since $\langle S_x \rangle \propto M \sin \phi$, where ϕ is the canting angle (3 mrad in BaMnF₄). This gives²⁰

$$\Delta \epsilon_a(T) \sim \alpha(T) \sim M(T) , \qquad (11)$$

as observed, and a magnitude²¹ of order 10⁻¹ (dimen-

2330

sionless), instead of Rado's 10^{-6} , and in agreement with^{6.9} the measured 10^{-1} .

In summary, the shape and magnitude of $\Delta \epsilon_b(T)$ for $T \leq T_C$ and $\Delta \epsilon_a(T)$ for $T \leq T_N$ are calculated to be in agreement with experiment. The $\Delta \epsilon_b$ anomaly at the in-plane spin-ordering temperature has not been calculated, but could be due to paramagnetoelectric interaction of form

$$\mathfrak{sc}' = \sum \gamma_{ijk} E_i H_j H_k \tag{12}$$

or to a linear interaction taken to second order

$$\mathfrak{sc}^{\prime\prime} = \sum_{n} E_{n}^{2} H_{n} , \qquad (13)$$

where E_n , H_n are local fields at the *n*th ion. Two things favor the later interpretation. First, since H_n is $\approx H_1 \hat{b}$, the specific form¹² of the tensor γ_{ijk} in Eq. (12) predicts a large ϵ_a anomaly but no large ϵ_b anomaly. Second, from Eq. (13) the temperature dependence of $\epsilon_b(T)$ should be given by $\langle \sum \vec{S}_j \cdot \vec{S}_1 \rangle$, i.e., proportional to the magnetic energy, which is predicted to be²² a sigmoidal curve from T = 0 to $T \sim 2T_N$, with inflection point at T_N . The *b*-axis dielectric data agree with this description, as shown in Fig. 3.

^tWork supported in part by NSF Grant No. DMR-76-0456 and by a grant from the Science Research Council.

- Permanent address: Dept. of Physics and Astrophysics, University of Colorado, Boulder, Colo. 80309.
- ¹E. G. Spencer, H. J. Guggenheim, and G. J. Kominiak, Appl. Phys. Lett. <u>17</u>, 300 (1970).
- ²J. F. Ryan and J. F. Scott, Solid State Commun. <u>14</u>, 5 (1974).
- ³I. J. Fritz, Phys. Lett. A <u>51</u>, 219 (1975); Phys. Rev. Lett. <u>35</u>, 1511 (1975).
- ⁴V. Dvorak, Phys. Status Solidi B <u>71</u>, 269 (1975).
- ⁵S. M. Shapiro, R. A. Cowley, D. E. Cox, M. Eibschütz, and H. J. Guggenheim, *Proceedings of the Conference on Neutron Scattering, Gatlinburg, Tennessee, June, 1976*, edited by R. M. Moon, Natl. Tech. Info. Ser. (U.S. Dept. of Commerce, Springfield, Va., 1976), p. 399.
- ⁶G. A. Samara and P. M. Richards, Phys. Rev. B <u>14</u>, 5073 (1976).
- ⁷L. Holden and M. C. K. Wiltshire (unpublished).
- ⁸M. Di Domenico, M. Eibschütz, H. J. Guggenheim, and I. Camlibel, Solid State Commun. 7, 1119 (1969).
- ⁹G. A. Samara and J. F. Scott, Solid State Commun. <u>21</u>, 167 (1977).
- ¹⁰L. M. Holmes, M. Eibschütz, and H. J. Guggenheim, Solid State Commun. <u>7</u>, 973 (1969).
- ¹¹S. L. Hou and N. Bloembergen, Phys. Rev. <u>138</u>, A1218 (1965).
- ¹²R. R. Birss, Rep. Prog. Phys. <u>26</u>, 307 (1963).
- ¹³E. L. Venturini and F. R. Morgenthaler, AIP Conf. Proc. <u>24</u>, 168 (1975).
- ¹⁴George T. Rado, Phys. Rev. Lett. <u>6</u>, 609 (1961); Phys.

FIG. 3. Dielectric anomaly $\Delta \epsilon_b'(T)$ vs T for BaMnF₄, from Ref. 6, compared with the nearest-neighbor magnetic energy (Ref. 22) normalized to unity at T = 0.

ACKNOWLEDGMENTS

We thank L. Holden for private communication concerning LO and TO splittings in the far-infrared data of BaMnF₄. Discussions with D. L. Fox, N. J. England, and G. A. Gehring were very helpful.

Rev. <u>128</u>, 2546 (1962).

- ¹⁵S. V. Petrov, M. A. Popov, and L. A. Prozorova, Zh. Eksp. Teor. Fiz. <u>62</u>, 1884 (1972) [Sov. Phys.-JETP <u>35</u>, 981 (1972)].
- ¹⁶M. Date, J. Kanamori, and M. Tachiki, J. Phys. Soc. Jpn. <u>16</u>, 2589 (1961).
- ¹⁷R. Hornreich and S. Shtrikman, Phys. Rev. <u>161</u>, 506 (1967).
- ¹⁸M. Mercier, E. F. Bertaut, G. Quezel, and P. Bauer, Solid State Commun. <u>7</u>, 149 (1969).
- ¹⁹R. Englman and H. Yatom, *Magnetoelectric Phenomena in Crystals*, edited by A. J. Freeman and H. Schmid (Gordon and Breach, London, 1975), p. 17.
- ²⁰This follows from $\langle S_x S_z \rangle = \langle S_z^2 \tan \phi \rangle \approx \langle S_z^2 \rangle \langle \phi \rangle$, where for $T \leq T_N$, $\langle S_z^2 \rangle \approx \text{const}$ (due to in-plane spin order); and $\langle \phi \rangle \sim \alpha(T) E_0 \sim M(T)$, i.e., the canting is assumed due to the spontaneous electric polarization and magnetoelectric coupling. David L. Fox and J. F. Scott, J. Phys. C <u>10</u>, L329 (1977).
- ²¹Equating energy densities below T_N :

$$\Delta \epsilon (\mathbf{\mathcal{S}} + E_0)^2 = V = N \mu_B g a_0 \langle S_z S_x \rangle (\mathbf{\mathcal{S}} + E_0)$$

yields

 $\Delta \epsilon \sim N \mu_B g a_0 S^2 \phi / E_0 \equiv 10^{-5} a_0 \quad .$

 a_0 is unknown, but is thought to be large in ferroelectrics [G. T. Rado, Phys. Rev. Lett. <u>13</u>, 335 (1964)] compared with $a_0 \sim 1$ in Cr₂O₃.

²²L. J. de Jongh and A. R. Miedema, Adv. Phys. <u>23</u>, 1 (1974).