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Calculation of the dielectric function for an electron liquid
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A theory for calculating the frequency- and wave-number-dependent dielectric function of an electron liquid is

presented by solving the equations of motion for the double-time retarded commutator of the charge-density

fluctuation operators. It is based on a decoupling of the higher-order Green's functions, which has been

achieved by demanding certain proportionality between the higher-order Green's functions and the lower

order. The proportionality coefficient is determined by conserving the various frequency moments. It is shown

that by conserving the first frequency moment only, we reproduce the Toigo-Woodruff result for the dielectric

function. However, the present theory has the advantage of conserving frequency moments to an infinite

order. The dielectric function obtained in this paper is a functional of the function G (k, co) which is

considered to account for the short-range correlations arising from both the exchange and Coulomb effects.

This turns out to be the same as the one derived by Rajagopal who solved variationally the integral equation

for the irreducible vertex function containing only linear exchange processes. Numerical evaluation of the

function G (k, co) has been made for various values of k in the limit co = 0, and the results are compared with

those of the earlier theories. In contrast to all the earlier theories, we find a very sharp peak in the value of
our G(k) around k = 2kF. It is further interesting to note that the present theory satisfies exactly the

compressibility sum rule. An important result of this theory is that the value of G(k), obtained in this paper
in the limit k ~ ao, happens to be 1/3, which is in complete agreement with the value of G(oo) in the Hartree-

Fock approximation. This we consider to be a great success over the other existing theories.

I. INTRODUCTION

It is well-known that many important properties
of metals can be related to a model in which the
conduction electrons form a system of degenerate.
Fermi gas with the ions replaced by a uniform
positive background. The dielectric formulation of
the many-electron system has been found to be
very useful in studying various metallic properties
like the density-fluctation excitation spectrum, the
correlation energy and those related to transport
phenomena. Properties such as the interionic po-
tential and the screening of defects can also be
studied provided one assumes that the dielectric
function is not essentially altered by the discrete
nature of the ions of the lattice. All these proper-
ties depend strongly on the electron-electron in-
teractions. It is therefore of great importance to
have a dielectric function, in the range of electron
densities encountered in metals, which should have
all the corrections that are due to the electron-
electron interactions.

There have been many efforts at calculating the
frequency- and wave-number-'dependent dielectric
function for the many-electron system. The di-
electric function first given by Lindhard' is the one
which corresponds to the random-phase approxi-
mation (BPA).2'3 Though it provides a good. des-
cription of the plasmon excitation modes and of the
long-wavelength screening phenomena its validity

is limited to high electron densities (x, & 1) only.
The inadequacy of the RPA dielectric function be-
comes manifest from the fact that the pair-distri-
bution function, which should be positive definite,
becomes negative" for small interparticle separa-
tions over the entire range of metallic densities
(1.8 &r, &6}. This arises due to the failure of the
RPA to take into account the short-range correla-
tion effects. An approximate procedure to improve
upon the RPA dielectric function was first proposed
by Hubbard' who could approximately sum an infi-
nite number of ladder-bubble diagrams. Hubbard's
approximation yields a modified expression for the
dielectric function e(k, &u) which is given by

1 Q,(k, &o)

e(k, &u) 1+[1—G(k)]@0(k, e) '

where

Qo(k, &u) = —v(k)xo(k, u), (1.2)

x,(k, co) being the usual free-electron polarizability,
and v(k) =4ve'/k'. The function G(k) appearing in
(1.1}takes into account the exchange efforts. Hub-
bard's G(k) is of the form

G(k) = —,'k'/(k'+k~) .

It is known that the Hubbard scheme is an approxi-
mate solution to the integral equation obeyed by the
irreducible vertex function which incorporates all
the exchange processes in the lowest order. Many
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other forms of G(k) have since then been pro-
posed, ' "but we shall refer particularly to the
ones suggested by Singwi et al. through a series of
papers, "o the one by Va, shishta and Singwi (VS),"
by Toigo and Woodruff, "and by Rajagopal. " Sing-
wi et al. in their first paper (hereafter referred to
as STLS) have arrived at an expression for the di-
electric function, formally equivalent to (1.1), by
solving the equation of motion for the one-particle
distribution function in the presence of an external
potential. By using an ansatz they have been able
to relate G(k), S(k) (the static structure factor),
and c(k, &u) self-consistently. This theory yielded
a physically acceptable pair correlation function,
but the compressibility sum rule was not satisfied.
In order to rectify this deficiency these authors, in
the later version of their work (hereafter referred
to as SSTL), screened the Coulomb potential en-
tering into the local-field correction term of their
paper. By doing this, the compressibility was im-
proved, but was not still very satisfactory. A fur-
ther modification of the STLS theory was made by
Vashishta and Singwi by accounting for the change
in the pair correlation function with respect to the
external potential, which was ignored in the two
earlier theories. With this, the compressibility
sum rule was satisfied almost exactly and satisfac-
tory results for the pair correlation function at
small interparticle separations were obtained for
densities up to &, =2.

Though the VS theory gives a very good dielectric
function, still it is not devoid of the unphysical fea-
ture of having negative values of the pair correlation
function for metallic densities in the range 2& r, & 6.
Besides, a first-principle justification of this the-
ory and also of the earlier ones is not yet under-
stood. A method of calculating a dielectric function
beyond the RPA starting from first principles and
using the equation-of-motion approach was first
given by Toigo and Woodruff (TW)." The TW
method is based on decoupling and solving the
equation of motion for the double-time retarded
commutator of density-fluctuation operators, using
the moment-conserving method suggested by
Tahir-Kheli and Jarrett. '4 The dielectric function
obtained by Toigo and Woodruff closely resembles
the form written in (1,1); but it is more gener-
al in the sense that the function G(k) is now a func-
tion of ~ also. An interesting feature of the TW di-
electric function is that it satisfies the compressi-
bility sum rule" justifying that the small-momen-
tum behavior of the TW dielectric function is quite
good. From the work of Shaw' it is well-known
that calculation of metallic properties depend
strongly on G(k). Numerical results obtained by
Toigo and Woodruff for G(k) show that there is a
peak in their value around 4' =2k~. This is in con-

trast with the results of Singwi et al. However, in
the asymptotic limit, the function G(k) should, ac-
cording to Shaw, satisfy the inequality

—' & G(00) & I (1.4)

if the ansatz of STLS is valid. This relation is
satisfied in the work of STLS for values of x, ~ 5,
and in that of SSTL for smaller values of r. [The
G(k) determined by the self-consistent procedure
depends on r, jI.n the work of Va, shishta and Sing-
wi the relation (1.4) is satisfied only for r, ~3.
The pair correlation function calculated by Toigo
and Woodruff' is almost the same as Ref. 11, al-
though for larger r„ it becomes more negative.

The major drawback in both the TW theory and
VS theory lies in the value of G(k) in the asymptot-
ic limit. As pointed out by Geldart and Taylor, "
the value of G(~) in the Hartree-Fock (HF) approx-
imation should be equal to —,'. Since the value of
G""(~) obtained by Vashishta and Singwi is 2 and
the value of G(~) of the TW theory is —, (instead of
being 0.762 which is due to the inaccuracy of their
numerical computation" ), this shows that both
these theories do not reproduce the HF value of
G(k) in the large k limit. According to the remark
made by Vashishta and Singwi, "negative values of
their pair correlation function g(r) at r =0 for den-
sities r, & 2, may very well be due to this defect.

In the present paper we have made an attempt to
improve upon the TW dielectric function by gener-
alizing their theory so as to conserve the frequency
moments to an infinite order in a certain sense to
be explained later. We have determined the dielec-
tric function by solving the equation of motion of
the double-time retarded commutator of the den-
sity-fluctuation operators by using a decoupling
procedure according to which the higher-order
Green's functions are set equal to the lower-order
ones through a certain proportionality constant.
The proportionality constant is determined by con-
serving frequency moments to an infinite order.
This is different from the TW approach in the sense
that TW method is based on the moment-conserving
scheme suggested by Tahir-Kheli and Jarrett. " In

. our theory, by conserving the first frequency mo-
ment, we obtain the TW expression for the dielec-
tric function. This is wha. t one should expect.

Conserving higher frequency moments appears to
be extremely difficult in the TW approach. In the
present theory we have been able to bypass this
difficulty. Doing so has led us to terms which
form a geometric series and as such, they have
been summed. The dielectric function obtained in
this way turns out to be identical to the one ob-
tained by Rajagopal" who solved variationally the
integral equation for the irreducible vertex func-
tion. It is seen that our dielectric function has the
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merit of satisfying the compressibility sum rule.
The asymptotic value of the function G(k), as ob-
tained in this paper, happens to be 3, meaning
thereby that the large k limit of our G(k) is the
HF value. Obviously this violates the condition
given in (1.4). An interesting feature of this theory
is that there is a very sharp peak in the value of
G(k) at k =1.9"lk~, which is in contrast to the theo-
ry of Singwi et al. It has been pointed out by Gel-
dart and Taylor" that such a peak is very much
expected around k =2k„ if one assumes the dielec-
tric function to be of the form shown in (1.1).
There is, of course, the indication for the appear-
ance of a peak in the TW result at k = 1.95k+, but it
is not so sharp as it is in our case. We find that
the numerical values of our G(k) differ drastically
from those of Toigo and Woodruff in the momentum
region k & 1.6k+. Comparing our G(k) values (which
are same for all r,}with those of Vashishta and
Singwi [whose G(k} values change with r,] we find
that for certain values of k around k =2k~, our re-
sults, like those of these authors, exceed unity.
For larger k values our results for G(k) start fal-
ling with k, whereas in the VS theory they go on in-
creasing with k till they attain a saturation limit.

II. GENERAL THEORY

(k) «pI'(t); pX(0)» *'='

('~ (d

= v(k) 8(k, &o), (2.1)

where the symbol ((pp(t);, pg(0}»s"~ stands for the
Fourier transform with respect to time of the dou-
ble-time retarded Green's functiong„(k, t- t'):

~,(k, t- t') =t~(t- t'}(I[ t(t), p~(t')]I&,

( ) being the average over the ground state of the
fermion system. The pg's are written as

(2.2)

pg(t) =Q a~q ~,(t)ag+q, (t)
q, a

(2.3)

where a and a are the creation and annihilation
operators for the electrons in the Heisenberg rep-
resentation, and the symbol 0 denotes the spin in-
dex. Using (2.3), one may write (2.1) as

According to the theory of linear dissipative pro-
cess" the dielectric response function e(k, &u) is
given by the relation

1 — - = v(k) Z ((aq (t)ay+ q (t); ay+ q (0)aq (0)»s ~= v(k) E Eq q (k, &u),
ql 1'q2 2

+ql& 1 2 ~ 2 2& 2 ~ ~ 1 1' 2 2

(2.4)
where Eq...-„,,(k, u&) is the Fourier transform with respect to time of

E-, -, (k, t) =((a-, (t)ag -„,(t); a];;, , (0)a-, (0)&) .
The Hamiltonian of the many-electron system at zero temperature is

(2.5)

1

3 a, 3'a'

where 8- =P'/2m in the unit h = 1. Differentiating now (2.5) with respect to time, we write down the equa-
tion of motion for E„,q, (k, t) as

t
d E q ~ q ~ (k, t) = 6(t)(I[a~q g (t)a-„+q g (t)~ ax+q ~ (0)aq ~ (0)] I&

(2.6)

—«[If, a'-„.(t)ag;, .(t)];ag;„. (0)a-„.(0)»"' . (2 't)

Evaluating these commutators using the anticommutation relations for the fermion creation and annihilation
operators, we obtain

t
d Eq...,q...(k, t) = (t)(nu+q, a -nq, a )5a,,a,5q, , q, +&a(j„k)E-„.-, .(k t)

+ ~ v(k')(([a-„. (t)a-„g..(t)a-, .(t)a-, ,-,-, .(t)

-a g, (t)a, +&,(t)a, ,(t)a g, (t)];a~,q, (0)a„,(0))&, (2.8)

where e(j„k)=(8„+q —hq, ) and n„ is the Fermi distribution function:

I;,l~ ~z
g q 0 otherwise .
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Taking the Fourier transform on both sides of (2.8) and assuming that the interaction is switched on adia-
batically, we obtain

[(u (u(q, k)+i&]Eq q2 2(k (u) =(nT q nq )6 &q q + + Ep q q (k (u) (2.9)

where EI'~(k, u&) denotes the Fourier transform of the second term on the right-hand side of (2.8). It is
seen that we can decouple (2.9) by putting k' = -k and then pairing off the operators with equal momentum

by writing (a-q, aq, ) =n„, . With this we obtain

[& —~(ql k)+'~~]Eq, q (k, &) =(&t+q, —"q o )6 6q q
—"(k)("ti+q, —~q, )~E,q (k, &),

s, a

(2.10)

g(k, ~) = + Eq, -„(k, cu).
1 1' 2 2

(2.11)

To determine 9 we sum both sides of (2.9) over
q„o, to obtain

[cu —cu(q„k+i&]6'q (k, cu)

where

b „ , (k, u) = Z E q, , „, ,(k, e)
q2O2

and

(2.12)

which leads directly to the RPA result. Since we
will be interested in going beyond the BPA we shall
try to use a better method of decoupling of the
higher-order Green's function denoted by E ' (k, a).
This would, of course, yield better results than can
be obtained with the RPA. One such improved de-
coupling scheme is due to the method proposed by
Tahir-Kheli hand Jarrett. ' This is the one which
has been adopted by Toigo and Woodruff. " We
shall not try to proceed in the way Toigo and Wood-
ruff have done to evaluate the coefficients appear-
ing in the expansion of the higher-order Green's
function in terms of the lower-order ones. Our
approach will be a different one.

We concentrate on the evaluation of the function
8(k, &u), where

this sense, different from theA-„, „(k) of Toigo and
Woodruff's paper, where it was taken to be a func-
tion of k only. Later on we shall show how the
Aq, (k, ~) would be determined. Substituting (2.14)
into (2.12) and using the fact that +-,6'-, (k, &o)

=9(k, ~), we obtain

P„, (k, e)

(nT, -, —n, ) +A q (k, (u)9(k, &u)

~ —(u(q„k) + i&
(2.15)

III. DERIVATION OF A (k,w)
qy P1

Following (2.14), A„(k, &o) may be written as

A q, (k, e) = 5„,(k, &o)/9(k, &u),

which, with the help of Fourier transform, can be
written in the form

(3.1)

Summing both sides of (2.15) over q„o„and solving
for 9(k, v), we get

9(k, (u)

n~ - -n-
+qy, ay qy, ay

qua& (d —(d(q» k) +$6

(2.16)

With the help of (2.16) one can write down the ex-
pression for the dielectric function using the form-
ula (2.1).

(i)
k', s o, q2op

(2.13)
{x)

In the RPA decoupling one expresses F q (k, co) as
1

a linear combination of all the W's, i.e.,

Aq. ..(k, (u)

q I O I
~

t
~~ t(z)

Fq, ,(k, t)e

where

9(k, t)'"'dt, (3.2)

6'-„, (k, u) =A q, (k)Z 6',(k, w) .
ma

(2.14)
{j.)

k, s a ~ q2O2

(1)We shall try to express the 5 „,(k, ~) appearing
1 1

in (2.12) in the same way shown in (2.14), the only
difference being that the Aq, ,(k) is now to be con-
sidered as a function of both k and ~. This is, in having

=ie(t) 2 &(k')&I [a(t), ~8(O)l I&,
P, S Oiq2O2

(3.3)
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and

ft(t) =~&.(t)e&;;,.(t) ~,.(t)~;„»,» ...(t)
1 1

—a', , (t)al,;, .(t)a;.(t)~ , -».(t), )

1 1

(3.4)

& I[8(t), e(0)] I&
=

& I [e(0), t9(0)] I &

t ( I[[H, 8(0)] a(0)] I&

+ ", & I[[H, [H, e(0)]], t9(0)] I&

t9(0}=a»~;q (0) aq . (0). (3.5)

H, H, . . . HO. . . (3.6)

Following (3.6), we find

The commutator in (3.3) can be expanded into a
power series using the well-known expansion of
the Heisenberg operator

O(t} =e'" Oe '"'

+ ~ ~ ~ ~ (3 7)

As it is seen from (3.3) Ff'~ (%, &u) depends linearly
on the potential g. Since here our aim is to ac-
count for the effects of the potential to first order
'only, we will replace all the H in (3.7) by H, . By
doing this we are able to evaluate the commuta-
tors in (3.7) to all orders in time. The detailed
evaluation of these commutators is shown in Ap-
pendix A, It is interesting to see that the results
of these commutators form a geometric series.
Thus we are able to write

((q q) =«(e) E (n)'.. . -n; ...)(gv(iq')( „,«( ., -n;,,'« ... ) e. .e- - «v(iq)(n-„,(.-«v
1 2

«v(Zi, -q(, )(nq, —nq, «, )e-, ;)e ' (3.8)

Using (2.5) and (3.6) one can now write down the expression for 9$, t). As shown in Appendix A, we have

9(k, t}=ie(t)P~ (nq, —nq, ), a)e '" "2 "'.
q2 ~ ~2

(3.9)

Now, if we define

A-„. $)=0"' (%, t)/9(k, t)
q1 Q1

(3.10}

and use (3.8} and (3.9) it can be easily shown that by keeping up to the terms proportional to it only, which
is equivalent to conserving the first frequency moment, we find

A-„,, (%) =Q (n»,-q, -nq.
~..)

q2~2

x Q ~%')~(4„&)(nq,.»-» ...-nq, ,g...)5.„.,5,„q,+i $)(d(|I„&)(n»,-„... n-, )1 q 1 & 1 1~ 2 1s 2 +~1~ 1 q1 &1

(q, —(()n(q„)()(n-, , —n)i, ,)e „,) Z n(q(. , n)(n-, „., -qq..)i...) .
q2 ~2

(3.11)

This is what Toigo and Woodruff have obtained. As it is seen from (3.11) the coefficient Aq, (k) is inde-
pendent of &u. To determine Aq, , we will use (3.2) instead of (3.10), because it is not possible to conserve
higher moments if one uses (3.10}. Using the expressions for 6'()(k, t}and 9(k, t) and performing the in-
tegration over time, we now obtain

Aq (k (o) =v(k)(nq n» )

-n- q a —n» a
— (|I %)+i6 ' ~ '"" ~ '»-»'" ' - — (4., &)+'5

1& C[2 02

~ ~(q) -|I,)("q...) -«+q. ..,~+q("( ~
u& —(d(q %) +t 5

q 27
2

n
q

(d —(d(q» R)+ 15
q 02

(3.12)

From (3.12) it is seen that A q, depends explicitly on u). In the second term in (3.12) we make the change
1 1of variables R -Q, —q, . Dividing A-„, by (() —(()g„%)+t5 and summing over q„v, we can write

1
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(o —(o(q„%)+is ' '
Q,$,(o)

(3.13)

where

and

Q,(R, (o)= —v(Q Q ' '( -) '. ' = —v(k)y, $, (v)
1&

q I al

1 1 1
' td —td(q„k)+ik io —aitqk, k)+iq e v(q„k)+iq)

Q2~ Qyfyy

(3.14)

(3.is)

The function P,(k, &o) in this case accounts for the
non-RPA contribution; hence it should include the
exchange and correlation effects. Using (3.13) the
expression for 9(k, &u) is written from (2.16) as

-X,(k, ~)
1+q,(k, (d)[l —P,(k, &u)/Q, (k, (d)j

(3.16)

The dielectric function is obtained using the rela-
tion (2.1):

Qo(k, ~)
e (k, (d) 1+Qo(k, (d)[l -Po(k, to)/Qo(k, (d)j

(3.17)

Comparing (3.1V) with (1.1) we identify the function
G to be

G (k, (d) =P,(k, (d)/Q, (k, &u), (3.iS)

which shows that in our case G depends explicitly
on +.

where +o and X are, respectively, the compressi-
bility corresponding to the free and the interacting
electron gas and kF~ is the Thomas-Fermi screen-

IV, CALCULATION OF G(k, cu) IN THE STATIC LIMIT (cu = 0)

A. Compressibility

In this paper we shall study the properties of the
dielectric function given by (3.1 t), using the static
value of G(k, &u). In this approximation the dielec-
tric function assumes the form

q, (k, ~)
G(k, o)q (k )

' (4.1)

Since we will be interested in the study of the com-
pressibility of the system of electrons we shall
look into the form e (k, e) in the limit k - 0 at ur = 0.
It is well-known that the. dielectric function e(k, 0)
in the limit k-0 is connected to the compressibili-
ty through the relation"

Iim ~(k, O) = i+ (k„/k)'X/~„ (4.2)

ing wave vector. The behavior of Q, (k, o) in the
limit k-0 being known, we shall here investigate
the form of Po(k, 0) in the limit k-0. Putting
(d =0 in (3.15), we find after doing the summation
over spin,

P, (k, O) =-2g v(q, -q, )
(o q„k)

X
1 1

td(q„k) ~(q„k))

mk~ k~ k k+ 2k~
X(k, o)=

2 ' 1+
k

1 —
4k, ink —2kW p F

(4.4)

In order to extract the small-k behavior of P,(k, 0),
we shall expand the 6 functions in (4.3) for small
k. The detailed calculations are shown in Appendix
B. Using this result, we have

lim G(k, 0) =yk'/k2~,
k~O

(4.s)

where y= —,'. Following (4.1) the dielectric function
in the limit k -0 and +=0 is, therefore, written as

(kyar/k)'lim E (k, 0) = 1+ (4.6)

Comparing (4.6) with (4.2), we find

(X,/&) = i - y(k„/k, )', (4.V)

with y=4. This value of y gives compressibilities
which are in close agreement with the values tab-
ulated by Rice22 following a calculation of the sec-
ond derivative of the ground-state energy for the
electron gas. This also agrees very well with the
value obtained by Hedin and Lundqvist. " The fact

x(n; -n„- - )(n; n„„)/-g,-(k-, 0),
(4.3)

where Xo(k, 0) is given by
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that our calculation leads to y = 4 suggests that the
small-k behavior of our dielectric function is well
represented, that is, the exchange effects have
been well taken care of for small k. It may be
mentioned that Toigo and %oodruff have also ob-
tained this value of y from k -0 limit of their
G (k).

B. Asymptotic limit

To determine the value of G(k, 0) in the limit
k -~ we have to look into the large-k behavior of
P, (k, 0) and Q, (k, 0). By suitable change of vari-
ables, the expression for P, (k, 0), as given in
(4.3), can be written in the form

It, (k, O) -; lq, +q, +kl' Iq, -q, l' (k'+2q, 'k)'

~ ~

~

1 1 1

lq, +q, +kl' Iq, —q, l' (k'+2q, 'k)(lP+2q, 'k)-
(4.6)

Expanding the integrand in (4.8) for large k and using the value of X,(k, 0) =-4m@3~/3m'k' as k- ~, we have

96m e rn'" "=(2.) u u
;, ;, „2 (q, )(q. ) - (q,

q~ q2 +—
2 (4.9)

where the summation over q, in (4.8) has been replaced by the integration [1/(2v) ]fdic„and so on. To
carry out the integrations in (4.9) we choose the coordinate system such that q, is taken along the z axis.
Let 8, and 8, be the angles between the vectors (k, q, ) and (q„q,), respectively. If 0 be the angle between
(k, q ), then we have

cose = cos8, cos8, + sin8, sin8, cosP,
where p is the azimuthal angle for the planes [q„q,] and [q„k].

After the p integration is done, (4.9) reduces to the form

(4.10)

I
P,(k, 0) =, '~ ( —,m)'+8m' dq,2r'k'

p

1 1 q172 1 2 ql j.X2x — 2x2
dq, dx, d, q q,-1 -1 ql Q2 qlq2 1 2

as k (4.11)

where x, and x, represent cosines of 8, and 8„respectively, and o, =(4/9n)' ' In wr. iting (4.11) we have
expressed all momenta in the unit of k~. The integrations over x, and x, in (4.11) can be done trivially.
%e then have

12(yy, 2 2 qx+0'aP,(k, O) =,'
9

—
3 t dq, dq~ q,q, q q, +

p p q2
as k (4.12)

In (4.12) the integral involving the logarithmic term is zero, because the integrand is odd with respect to
the interchange of the variables q, and q2. The remaining term when integrated gives

Po(k, 0) =16~x, /9wk' as k

Following (3.14), the large-k limit for qo(k, 0) is given by

Q,(k, 0) =&6n~, /3nk' as k-~.

(4.13)

(4.14)

From (4.13) and (4.14) the asymptotic limit of G(k) follows as

G(k, O) =—', as k-~. (4.15)

The fact that G(k) =—', as k-~, justifies that the value of our G(k) in the large-k limit is the HF value. This
suggests that our dielectric function takes into account the exchange effects for large-k values. The TW
approach does not reproduce the large-k limit of the exchange correction to the static dielectric function.
This has been discussed in detail by Geldart, Richard, and Resolt. " The theories of STLS, SSTL, and
Vashishta and Singwi have also this deficiency.

C. General method of calculation of G(k,0)

Here we discuss the general method for calculating G(k, 0) numerically, for various values of k. For
this, we need the function Qo(k, 0), where
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2mk ' k k
(4.16)

ln order to proceed to evaluate Z,(k, 0) from (4.3), we break up the integral into two parts by writing
t

(n -n- - )(n- -n- - ) =(n- -n- - )n —(n- -n - )n (4.17)ql q2 k q2 qI k+ql q2 ql k+ql k+ 2

Usmg (4.17) in (4.3) if we now make the change of variables q~+k--q~ and q2+k--q2, in the second term,
we have

64ve'm' 1 1 1

~,(k 0) ~ q, -q, ~' (u'+2q, k)' (y'+2q ~ k)(k'+2q k)

Further introducing the transformation q, -q, ——,
' k and q, -q, ——,'k, we write (4.17) as

16 e ~ 1 (q q)'k
(p &k 0&= - n- -2n- -2-n- 2n-- 2

z,(k, O) ~
~q, -q, ~2 (q, k)'(q, k)ql' q2

In the second integral in (4.19) we change q, --q„and write

(4.18)

(4.19)

(4.20)

(4.22)

l,(k, O) =- ' [I'+I-],
(2v)6 q,(k, O)

where the summations over q, and q, in (4.19) have been replaced by corresponding integrations. The sym-
bol I ' in (4.20) denotes

(q~+q2 ' k I
(4.21)

q, ~q, ~2 (q, ~ k'(q, k)

At this stage we express all the momentum variables in units of k~. Kith this we find

@ (k, o) =[o,x, /27t'F(P)] [I++I ],

0+2
F(u) =1+—(1-—,'u') ln

k k —2

Following (4.16) we have

(4.23)

q, (k, o) =,' F(u}. (4.24)

Using the results of (4.22) and (4.24) the explicit form of G(k, 0) can now be written as

(4.2 5)

Evaluation of I' is done by choosing a coordinate system in which the vector k is taken along the z axis.
If the coordinates of the vectors q~ and q2 are denoted by (q„8„$,) and (q2, 8,), respectively, and 0 is the
angle between the vectors (q„q2), then cose =cos8, cos8, +sin8, sin82cosp, . With this choice of coordin-
ates, the p, integration is done analytically, and one gets

4 2 oo oo I I q q q 1
qI/2 nq -k/2nq -k/2 y

0 0 -I -I X2 Xl X2 ~ IXI I I I~ I 2

where x, and x, are the cosines of angles 8I and O„respectively, and

1 f103 ~ 1 Pl f2+2(ql q2) c 1 'V192+2 + (Ci 'l2)

(4.26)

(4.27)

To perform the x, and x, integrations we have to analyze for the angular restrictions imposed by the 8
functions associated with I'. From the fact that

I1 for ~q, ——,'k(&1,
q -k/2I

&. 0 otherwise,

we find
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fox' 0&ql& 1 —
z k

) k«2,
fol 1 2k&ql&1 +2k

1&Xi&1
~

for ~k —1&q, & —,'0+1 '] k~2,
yg&x) & 1

(4.28)

where y, =(q2+4k2- 1)/q, k. From n- „-~„asimilar set of restrictions follow. With the help of (4.28) we2""
vrrite

-k/2

4+2 1+k/2 leak/2 1 1
I=I +I dxn dx) F(q2) q~y x2y xg) for k «2k' 1 1-k/2 y y2 1

(4.29)

4~2 k /2+1 k /2+1
I= dq, dq,

k/2-1 k/2-1

1

dxa dx) F( q2q)))x2)x) ) fol k ~2
y

~1

(4.30)

1 q2 q2 q, 1
+ 2 +

x x x (a,x -b,x +c, ) y x x, x ) (a,x xb, x xc, )'y (4.31)

y, =(q', +-,'u'- 1)/q, u.

As it can be seen from (4.21), the integral in both I and I contains singularities which are due to the en-
ergy denominators and the bare Coulomb interactions. While performing the integrations over x, in (4.29)
and (4.30), one will have to take care of these singularities. This has been done here by grouping the inte-
grand in the fashion as shown in (4.31). After doing the x, integration in (4.29) and (4.30), we obtain

4~2 1+k/2 1+k /2 1
I= dq2 dq~ dx2R (q2, q), x2) for k «2

1-k /2 1-k /2 y2

(4.32)

4&2 k /2 pl
I k2 dq2

k /2-1

vrhere

k /2y1

2-1
dq, dx2R(q~, q„x,) for 0 ~2, (4.33)

q,q 2 [c,(a, y', +b,y, +c,)]'~'+2c, +b,y,
R(q2)qxyxs) =

x,c, 2 [c,(a, +b, +c,)]' '+2c, +b,

2 [c,(a, y', b, y, +c,)]'~'—+2c, S,y, -
2 [c,(a, —b, +c,)]')"+2c, —b,

2 [ax(azy~+b, y, +c,)]' '+2a, y, +&,

2 [a(ay — (y), ]x'c,'x*,ya, , y, , —5,
)

1/2
—In ~~+")]'"+" (4.34a)

qlq2 glyl+ 2g, g ly1 —2g
R (q2 q~y x2) =

~pa
ln

2
+ ln

Cl ~1 ~ 1 1 C1

ql 2~1yl +~1 2 Iyl ~l
—2)nly, [)—,C, )n +)n

gl .
, Ql+51 2g 1

—g 1

for q~t q~, x2= 1, (4.34b)
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1 7R q, q„x,) =(l/x', ) in| x, /y, , = x xfor q, =q„x,X,q2i 11~ 2

and

x ) =-ln~ y&~ for q| —q» x2 —l.R (q2t q» 2 (4.34d)

I.S

I. 6

ne can safelyve conditions in mind on
1 computation o evfor numerzca

maining integrarais in (4.32 an
done this by app y' slao 1. ing the Gaussia
formu a 01 for multiple integrals.

s ofk.k) for different valuesTABLE I. Values of 6{k or i

C{k) a{k) G{k)k

.10 0.00248 2.03 1.12736 3.90 0.38898
4.00 0.38566

0.
0.20 0.00995 2.04 1.06708

1.01850.30 0.02255 2.05 . 185
0.978030.400 0.04048 2.06
0.94335 7 00 0.348420.50 0.06407 2.07
0.91312 8.00 0.344760.60 0.09372 2.08

9 0.88639 9 00 0.342300.70 0.13003 2.09
0.86250 10 00 0.340580.80 0.17371 2.10
0,70973 11 00 0.339310.90 0.22572 2.20
0.62802 12 00 0.338361.00 0.28727 2.30

0 0 ~ 57537 13 00 0.33762.10 0.35994 2.40
0 0.53814 14 00 0.33704f.2 0 0.44576 2.50

0.51025 15 00 0.336571.30 0.54745 2, 60
0 0.48852 16 00 0.336191.40 0.66862 2.70
0 0.47109 17.00 0.335871.50 0.81420 2.80

0.45681 18.00 0.336611.60 0.99096 2.90
0 44489 19 00 0.33539~70 1.20813 3.00

3.10 0.43479 20.00 0.33520
14 25 00 0 334561.90 1 .79698 3..20 0.42614

1.95 1.94114 3.30 0.41866
.40 0.412121.97 1.96407 3.4

50.00 0.333711.99 1.89920 3 50 0 40636
113 3.60 0.401262.00 1.751

5

2512 3.70 0.2.01 1.3
2.02 1.20682 3.80 0.

V. RESULTSS AND DISCUSSION

'n 4.32) and (4.33) have beeng
'

(
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This agrees with the values o
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the dielectric func-mall-k behavior of e
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0. 8
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0
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ior of the dielectric functio .'
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()is seen from the fact that our
that of these authors.different from a oare very muc i e
that conserving fre-words, means a

quency mom ents to infinite or er m
e-rrection to the va uesignificant corr

3 . Because of this
1

we find that these vvalues of TW w t
me in the region

f the cancellation effectso the lack of t e can
the conservation othat come from

We feel that thisments beyond the first order. e
r the VS theory, be-ma be true for ey g

e VS case the G k va ue

b th t th
attain a satura ion

=6. We further o ser= 1.07 for r, =

G(k) around k = 2kF.is a peak ln the value of our
this peak is veryen from Table I,As it can be seen

ase. For the sa e o ck f comparison,
) k (F l) thwe have given plots of G(lz vs
r those of the TW

eor of Vashishta and Singwi
e resent theory, o

theory and of the theory of Vas is

note that an entirely differentIt is gratifying to note tha an
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analysis based on a different set of principles
should yield the same result'for the dielectric
function as that of the linearized vertex function
analysis of the same problem. Geldart and Tay-
lor" calculated a perturbative solution to this in-
tegral equation approach. Recently Eau and
Rajagopal24 have developed a different but equi-
valent formulation of the problem not only to set
up the integral equations including terms beyond
the lowest-order exchange processes, but also
provide a method of obtaining variational esti-
mates of the irreducible polarizability as well as
the spin susceptibility. This method yields cer-
tain integrals which are similar in structure to
the perturbation answers of Gelda. rt and Taylor.
To deduce these higher-order terms in the present
moment conserving scheme, one will have to in-
clude the interaction part of the Hamiltonian in
calculating the moments. In principle, the ex-
change processes should involve a screened Cou-
lomb potential (a result which follows naturally in
the integral equation approach" '4) which again
probably will involve extending our moment con-

serving techniques in some important ways.
In conclusion, we like to point out that our di-

electric function is a good one both in the low and
high momentum regions, whereas the TW dielec-
tric function is goo'd only for small k. From the
results of the calculation of the pa, ir correlation
function g(r) made by Toigo and Woodruff" in the
range of metallic densities we get the feeling that
with our G(k) values we will get physically accept-
able results for g(r) in the entire density range.
By this, we will succeed in the eliminating the un-
physical features of the earlier theories. This
will be reported in our forthcoming paper.
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APPENDIX A: DETERMINATION OF W~ (k,t) AND g(k, g)
1 1

Using (3.7), we write 51q'], $, t) as

t~". $, ()=(o(~) Z ~$)(&l(&((0),a(0)]I)+((&l[[»8(0)],a(o)ll)+ 2', (l((H (»&)(o)1],a(o)]l)+ ),~1
k y SQ pq2Q2

(A1)
where

H=Ho+K

Ct(0) = a q (0)a ]-. .. (0)a (0)aq ]-, k (0) —a q ]-, (0)a ]-, ~ (0)a a q ], (0) (A2)

g(0) = a]& ~ q 2(0)aq (0) . (A3)

Since we will take into account the potential energy effects to first order, we will replace all the H in (Al)
by H, . Considering the first term in (A1) and carrying out all the commutations involved therein, we now
apply Wick's theorem to evaluate the product of four operators as follows:

(a",a2~a3a, ) = (at a,)(a2ta, ) —(a~~a, )(a~ta, ) .
When this is done, we find

k yS Qg+2Q2

where

v$')(~[8(0), @(0)]~)= g S(q,c„q,o„k), (A5)

i(o' ~)=(~i+a, . +q. . .)( Z "( )("l,~ i —i', "a ~ i'
k

(A6)

Considering the second term in (Al) with H replaced by H„we find
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[Hos ft(0)] (b qs+ ~k'+s ~s ~qs+k +k')(ass. asas+k '.aas .aaqs+k+k ',as)

(~qs -k'+ ~k'+s ~s ~qz+k)(aqua -k', a as +k, aas, a q +k a ) ~ (A7)

It is seen from (A7) that the commutator [H„Q(0)] gives two terms which involve some multiplication factor
times the operators that are contained in Q(0). Taking the commutation of (A7) with $(0), with the help of
(A4), we get

v$')(I[[H„+(0)], dI(0)] I) = —g oI(q„k)s(q, o„q,o„k) .
k ', S a. q2&2 q2a2

Considering the third term in (Al) it can be similarly shown that

(A8)

k ', s a, q2a2

v$')&I[[H„[H„Q(0)]],$(0)]I) = Q [(u(q„%)]'S(q,o„q,(x„%).
q2G

(A9)

Continuing in this way one can evaluate the commutator associated with the factor (it)". It is found that
these terms form a geometric series, which when summed, gives rise to (3.8).

Following (2.11) one can write using (2.5),

9(k, t) =ie(t)
qiana q2~2

(A10)

According to (3.7) this becomes

s(%() ~s(o,
( Q =~(l(a-...,(s)a-, , -,.,..(()), ~~s, -„...(s)o-„.,(s)II)

+it&I[[H, aq (0)ak, -„(0)],ak, q (0)aq „(0)]I)

+
[ (Il(H I+ +~q (s)+i+s, (s)II i +i s* ~

(s)+I
~

(s)I I) ' ' '
)

where in this case one finds

(A11)

g [H„at (0)a;„- .(0)]=0.

Following in the manner that we have used in evaluating 5;(si (k, f), we find

(A12)

[a';, „(0)ark~. ..(0), a;~, „(o)a;...(0)] I) = Q (ssq„; —ssi ~„.,)
g161@282 Q2s 62

&I[[H, a;. ..(0)a„-„"...(0)], a„-.,"...(0)a,"...(0)] I) = —g ~((T„)(e;,, —nk„-, , ),
11 1'~2 2 /262

& I [[H, [H, a;, (0)ak,-, (0)]],ak -, (0)a", (0)] I) = P [z()(q„k)]'(m-, nk;, ), —
+2~ g2

(A13)

and so on.
As it has happened in the previous case, all the terms in. (A11) form a geometric series. Pn summing

this series, we get the expression for qi(k, t) to be of the form given by (3.9).

APPENDIX B: CALCULATION OF G(k)/k IN THE LIMIT

k~0

To find the small-k behavior of Po(k, 0) we expand
the 8 functions in (4.3) for small values of k. That
is, we write

5(u„- Iq I).q, k

q1

Similarly we expand ss;;„. Now expanding 1/s()(q„k)
in (4.3) for small Is, we have

1 nz
~ ~ ~

o) (q„k) q, k 2q, ~ k 4(q, .k)

(a2)

From (4.4) the value of go(k, 0) for k-0, is ob-
tained as
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lim y, (k, 0) = —my»/w'.

This gives

lim Q, (k, 0) = 4me'k»/nb'. (84)

In evaluating (85) we choose the same coordinate
system as used by us while evaluating I'. Thus we
have

lim P, (k, 0)
'k o

Using (81), (82), and (83), we write

limP, (k, 0) =
2m 'k»

1x dq~dq2 —,

Jq, -q, )

(86)

The remaining integrations in (86) are done without

much difficulty, and we get

lim P, (k, 0) = e'rn/wk». (87)

x5(a —/q, [)5(a —
f
j,)).

(85)

Using (84) and (87), we have

lim G(k, 0) = lim Po(k, 0)

a-o
'

r-o Q.(k, o) 4&»
(88)
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