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The magnetic susceptibility of various one-dimensional (1-D) disordered models is studied. At low
temperatures and small transfer integrals the Hubbard model reduces to that of a disordered 1-D Heisenberg
antiferromagnet with probability distribution of exchange of the form P(J) « 1/J 1=¢_ Via a cluster argument
we find that the low-temperature magnetic susceptibility behaves as x « 1/ T'~°. That is, it has a singularity at
T = 0°K of the same form as that of the probability distribution. Various exactly soluble model Hamiltonians
were also studied using the same probability distribution. From these studies we have inferred that for a
sufficiently disordered system the quantum 1-D Heisenberg model can be adequately represented by the classical

Heisenberg model.

I. INTRODUCTION

One-dimensional electron systems are the ob-
ject of increasing interest, especially in connec-
tion with the behavior of crystals containing
tetracyanoquinodimethanide’ (TCNQ). Among
them a class including the materials N-methyl-
phenazinium-tetracyanoquinodimethanide (NMP-
TCNQ), quinolinium (TCNQ),, and acridinium
(TCNQ), has unusual magnetic properties. Ex-
perimental results®"* for the magnetic suscepti-
bility of these substances indicate the existence
of a singularity at 7 =0 °K, with the susceptibility
behaving at low temperatures as 1/7?, y<1. One
model extensively used in the study of one-dimen-
sional systems is the Hubbard model. In the case
of the infinite periodic Hubbard chain it was prov-
en® ® that the magnetic susceptibility at zero tem-
perature is finite. Thus the periodic one-dimen-
sional Hubbard model is inadequate to explain the
magnetic-susceptibility data of these materials
and a modification of it must be sought.

The noticeable increase in the magnetic suscep-
tibility seems unlikely to be connected with para-
magnetic impurities present in the specimen, but
it appears to be an intrinsic property of the mate-
rials.>” The following experimental facts are in
support of this argument: (a) at low temperatures
the paramagnetic susceptibility does not obey the
Curie law expected from paramagnetic impurities;
and (b) the amplitude is too large to be attributed
to impurities. We believe that the intrinsic prop-
erty of the materials to which the behavior of the
magnetic susceptibility can be attributed is the
structural disorder. Observed variations in the
susceptibility in materials of comparable purity
could then be attributed to variations in the degree
of disorder, but would be difficult to understand
in terms of partial charge transfer.?

Accordingly, in a previous paper we studied the
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Hubbard model
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with random single-site energies {Ei}. As are-
sult of the randomness, the occupation of single
sites at low temperatures is as follows®: Sites
with energy €> u are empty, those with energy
@ - U<e<pu are singly occupied and sites with
energy €< u — U are doubly occupied. Here pu is
the chemical potential of the system. It was found
that in both cases of {< U< ¢ and ¢« U=~0¢ the
coupling constant J between the spins of two singly
occupied sites separated by » intermediate doubly
occupied or empty sites is given by

J(n)=Dn*p", 1.2)

with D, ¢, and B<1 depending on the parameters

of the Hamiltonian. Approximate analytic expres-
sions are given for them in Ref. 10 [Eqgs. (3.10) and
(3.12)]. Furthermore it was found that at low tem-
peratures and small transfer integrals and by ig-
noring interactions involving more thantwo spins,
the Hamiltonian (1.1) reduces to an effective Ham-
iltonian

Hpy= E! Ji§i°§i+1! (1.3)

with J; a positive random variable whose probabil -
ity distribution P(J) for J< ¢ has the behavior

P(J)=T/(J/D)*~ |In@/D)|]>, (1.4)

where c=p/2 |lnB| , with p the probability for a site
to be singly occupied. We consider p to be suffi-
ciently smaller than unity that In(1 - p) ~~p. The
analytic formulas for I" and D as well as for the
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probability distribution P(J) for arbitrary J are
given in Ref. 10. The number of spins involved
in Hamiltonian (1.3) is N,=pN, with N the number
of sites of the Hubbard Hamiltonian. From Eq.
(1.4) we see that the main feature of P(J) is a
singularity at J=0, for ¢<1.

The quantum spin-3 Heisenberg antiferromagnet
has not been solved analytically in one dimension
for the periodic case, let alone for the disordered
case with a complex distribution of exchange inter-
action. Accordingly in this paper we study various
simple one-dimensional disordered model Hamil-
tonians for which exact solutions can be obtained.
We are particularly interested in the low-temper-
ature region, using Eq. (1.4) as the probability dis-
tribution of exchange. We find a simple interpreta-
tion of the main features of the susceptibility based
on cluster arguments, which leads us to the con-
clusion that for sufficiently disordered systems,
the spin-3 Heisenberg model is adequately approxi-
mated by the classical Heisenberg model in one
dimension for all temperatures.

In Sec. II, we derive the behavior of the low-tem-
perature, zero-field magnetic susceptibility of a
one-dimensional disordered system from an argu-
ment based on the formation of clusters of spins.
In Sec. III we derive the zero-field magnetic sus-
ceptibility for the following one-dimensional dis-
ordered models, using as the probability distribu-
tion of exchange the one given by Eq. (1.4): (a)
quantum XY model; (b) quantum Ising model with
parallel magnetic field; (c) quantum Ising model
with perpendicular field; (d) classical Heisenberg
model; (e) classical planar model; (f) classical
Ising model; and (g) a semiclassical model, where
the z component of the spin is treated quantum
mechanically and the x and y components are con-
sidered components of a classical vector. Finally
Sec. IV is devoted to discussion of our results and,
in particular, the argument that the spin-3 Heisen-
berg model is well represented by the classical
Heisenberg model.

II. CLUSTER APPROXIMATION

The coupling constant between spins separated
by n intermediate sites is given by Eq. (1.2). At
temperature T we consider the coupling to be
strong if J>kT and weak if J<kT. Therefore the
minimum separation n, between two spins re-
quired in order to consider them weakly coupled
is given by

Dnlg2mo~pT, 2.1)

where n, is considered a continuous variable.
From Eq. (2.1) we obtain

alnng+ 2n, Ing ~In(kT/D) . (2.2)

For KT« D the separation 7, becomes large and
in that case we can make the approximation

alnny+2n,1ng ~2n,InB. (2.3)
Combination of Eqs. (2.2) and (2.3) gives
no=~1n(kT/D)/21n8. (2.4)

Thus the probability that the spins §; and §,,, are
weakly coupled is given by

Qge-noPg(kT/D)ﬁlzllnBI , (2.5)
and consequently the probability for a strong coup-
ling is

W=1_ (kT/D)?/2' 8! (2.6)

A collection of spins which are coupled strongly

among themselves but weakly to the rest is called
a cluster. The probability for a given spin to have

n -1 spins strongly coupled to it from the left and
m -1 from the right is given by

W=(1-W)y>Ewm+n2, (2.7

Therefore the probability for a given spin to be-
long to a cluster of size & is

Qu=k(1 - W)Wk, (2.8)
The number of clusters of size % is then equal to
N,=Np (1 - W)PW* (2.9)

with N the total number of sites of the Hubbard
Hamiltonian (1.1).

The susceptibility can be considered as a sum
of contributions from each cluster. To estimate
the latter, we consider whether internal excitation
of the clusters is important. Two effects must be
examined. First, as the average size of a cluster
increases, its minimum internal excitation energy
decreases and may become smaller than kT. We
study this effect by replacing the varying exchange
coupling within the cluster by an appropriate aver-
age value. The average strength J of a strong
coupling is given by

)
T= p(1 - p)un). (2.10)
n=0

We are interested in estimating the order of mag-
nitude of J. For this purpose, it is sufficient to
approximate J(n) by D" since these two terms
are the ones which dominate the behavior of J (n),
the term »® being of minor significance. In that
case Eq. (2.10) becomes

J=p[D - (kT)B*(1 - p)™*)/[1 - B2(1 - p)],
and for 2T <« D we obtain
J=~pD/[1 - (1= p)].

Consequently J is of the order of D. The average
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size of a cluster is given by
n=(1- W)= (D/kT)ﬁlzllnal

For an infinite periodic chain the excitation spec-
trum is given by*!

E(q)=%J7|sing]| . (2.11)

For a large but finite chain we assume that the ex-
citation is approximately given by (2.11) plus the
condition ¢g= (27/N)n,n=0,1, ...,N -1, with N the
size of the chain., In that case the energy gap be-
tween the ground and the first excited state is
given by

A~3Jm2n/N«<J/N .

Therefore the energy gap existing in a cluster of
average size %, and whose spins are coupled with
average strength J, is

A/RT o< (T/RT) /7~ (D/RT)~#/21181

and for p/2|Ing| <1 and kT << D we obtain A> kT.

The second effect is that some of the exchange
couplings may not be significantly larger than kT.
Let us evaluate the probability for this to happen.
Equation (2.4) gives the minimum separation n,
required for a coupling to be weak. The coupling
in the case where the separation is »n, -1, this
being the minimum coupling which can exist within
a cluster, is given by

In( /D) = 21nB(ny — 1) . (2.12)
Combining Egs. (2.12) and (2.4) we obtain
Jpin=kT/B?, (2.13)

and for =~0.5,J,,,=4kT. Thus the minimum
coupling in a cluster is approximately equal to
4kT. The probability to have J,, inside a cluster
is given by

R, =p(1—p)o-t/[1-(1-p)™], (2.14)

and the probability for a coupling stronger than
Jmin to OCcur is

Ry=[1-(-p)ot)/[1-(1-p)e]. (2.15)

For kT < D we have n,> 1 and thus (1 - p)"™! ~0.
This gives R, ~0 and R, ~1. That is, the proba-
bility that some of the exchange couplings are not
significantly larger than kT goes to zero for £T/
D-0. From the above analysis we conclude that
internal excitation of the clusters is not important
in determining the magnetic susceptibility.

Thus we can consider that the clusters which
contribute significantly to the magnetic suscepti-
bility are in their ground state and have a finite
gap of size much greater than 2T between ground
and first excited state. The total spin of an odd
cluster then will be equal to 3, and the total spin

of an even cluster will be zero because of the anti-
ferromagnetic coupling. Thus only the odd clusters
will contribute to the magnetic susceptibility.
Furthermore, since the coupling between clusters
is smaller than 27, we can assume to a first ap-
proximation that there is no coupling between odd
clusters. This argument can be justified better as
follows: the number N,, of even clusters is given
by

Ney=WNog, (2.16)

and for #T< D we have N, =N 4. Since we con-
sider our system to be random, on the average we
can expect that between two odd clusters there will
be an even one half the time. This further reduces
the coupling between odd clusters making it a bet-
ter approximation to consider it zero. Thus our
system consists of free clusters each having a
total spin of 3 or zero, and the magnetic suscepti-
bility is given by

X = Noga&2 W3 /4kT . (2.17)
The total number of odd clusters is equal to
Noga=Np(1 =W)/(1+ W), (2.18)

and using (2.6) we obtain
(kT/D)b/zllnBl

Noaa=Np 2 (kT/D) P72 * (2.19)
Using Egs. (2.19) and (2.17) we obtain
2
y=ogky 1 1 (2.20)

—ap°c  (kT)Y—< 2-(kT/D)’

where ¢ = p/2|Ing|. Thus the asymptotic behavior
of Eq. (2.20) for RT<< D is given by

X «<1/Tte, (2.21)

From Eq. (2.21) we see that the singularity in the
probability distribution of J has as a result the
introduction of a singularity of the same type in
the magnetic susceptibility.

In what follows, it will be convenient to have,
for comparison with (2.21) and with exact results
for various models, the contribution to the suscep-
tibility from isolated single spins, coupled weakly
to the rest of the chain. The number of such clus-
ters of size one is given by

N =NpW(QA -W).
Therefore their contribution to the magnetic sus-

ceptibility is, according to the cluster argument,
for k«T< D

xo1/Tt2¢ (2.22)

III. EXACT RESULTS
Here we examine the consequences of the proba-
bility distribution (1.4) for the magnetic suscepti-
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bility of some exactly soluble one-dimensional
random models.

A. Quantum models

1. Random one-dii I XY model

The Hamiltonian for a disordered one-dimension-
al XY model with the magnetic field placed along
the z direction is given by

H=Y J,(SiS7,,+SiSt, ) +gugH 9, S5, (3.1

with §, the spin operator. Smith'? pointed out that
the random XY model with S= } is isomorphic to
Dyson’s!® model of a linear chain of identical atoms
coupled by random springs. In the case for which
the probability distribution of the coupling constant
is given by

P, () =[2n"/(n = 1)1 (T /I )" te 2/ I8
n=1,2,....

Dyson’s model can be solved exactly. The solution
reveals that there is a singularity in the density of
states at zero energy of the following form?:

n(E) <1/E [In(E/J,) |3 . (3.2)

Therefore the susceptibility of this model will
have for T -0 the behavior?®

X(T)<1/T|In(T/T,)|?. (3.3)

That is, an infinitesimal amount of disorder pro-
duces a 1/T singularity in the magnetic suscepti-
bility. In our case, where the probability distribu-
tion of J has a singularity at the origin, we have a
greater number of spins weakly coupled. There-
fore a strong 1/T singularity in the magnetic sus-
ceptibility will occur. This seems to contradict
the result of the cluster argument according to
which x should have a singularity of the form
1/T*-°. We can, however, explain why the cluster
argument cannot be invoked for this specific case
as follows:
Application of the well-known canonical trans-
formation*
1-1
S§;=C}exp (iﬂ Z C’;C,) ,
j=1 (3.4)

Si=(s)*, Si=Cic,-3,
which relates the spin operators associated with
site I to Fermi operators C} and C, associated with
sites »=1,2, ..., I -1, I reduces Hamiltonian (3.1)

to that of spinless fermions with nearest-neighbor
interaction and off-diagonal disorder only

H= Z‘:Ji(czciu"‘cli'uci)- (8.5)
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Theodorou and Cohen have shown in that case, that
there exist strong amplitude fluctuations in the
wave function of the state of the middle of the
band.!> These fluctuations are too large to allow
decomposition of the spins clearly into separate
clusters and this prevents us from applying the
cluster argument. Therefore the 1/7T behavior
of the magnetic susceptibility of the random XY
model is a special characteristic of this model
which, however, does not hold in the case of the
random Heisenberg model.

In what follows we will briefly outline why the
cluster argument can be made for the case of the
random antiferromagnetic Heisenberg model.
Making the canonical transformation (3.4) and
subtracting a constant term Hamiltonian (3.1) be-
comes

1 1
H=§Z JI(C;CH-I+C'l'+lcl)-EEZ(JI"'JI-I)C"ICI

+Y_ 4 Checl,,Cy,, (3.6)
We separate it into the following two parts:

1 1
Ho=§ ZJI(C;CI «1+C1,,C) -3 Z(J,+J,_1)C',C,
and

V=) J,CiCCl,.Ch., . 3.7

H, is equivalent to a Hamiltonian of spinless
fermions with nearest-neighbor interaction only,
and with diagonal and off-diagonal randomness.
According to a general theorem,'¢"!8 all states
are localized in that case. Let us now examine
the effect of V upon the localization. This term
introduces an interaction between particles sitting
on neighboring sites. Since J>0, they tend to
avoid each other. Thus the presence of V will
further increase the localization and reduces the
effect of the fluctuations. The clustér argument
can then once again be made, and any singularity
in the density of states will be a consequence of a
singularity in P(J).

2. Random one-di ional Ising model with parallel field

The Hamiltonian of this Model is given by

H=1) J,0%0f, +3gusHY of, (3.8)

where the o; are the Pauli matrices.

The zero-field magnetic susceptibility for this
model was calculated by Cabib and Mahanti!® and
was found equal to

Xi /No=(g2u3/4RT)(1 + (u))/(1 - (u)) , (3.9)
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with

u=tanh(-J/4kT) . (3.10)
From this we get that if J is a positive random
variable with a probability distribution having a
singularity of the form J =~ at the origin, the
magnetic susceptibility will have the behavior

b 1/THe . (3.11)
This result is in agreement with the cluster argu-
ment.

3. Random Ising model with perpendicular field
The Hamiltonian of the model is given by

1
H=53 0,005, +3gusly o} . (3.12)

The zero-field magnetic susceptibility of this
model is given by!®

X g%l 2”: (J;/2kT) tanh(J ;/2kT) - (J; .,/2kT) tanh(J, ,/2kT) (3.13)
N, " 4N,kT £~ /2T - (J, _,/2kT)? : :
For large N, we can apply the central-limit theorem and obtain
XL _g%ud ((J/ZkT) ta.nh(J/2kT)—(J’/2kT)tanh(J'/2kT)> (3.14)
N, 4rT (J/2rT)? - (J'/2RTY : :
For J and J’ independent positive random vari- H=) J,;8,-5,,+gusHYy Si, (3.16)

ables with probability distributions having a sin-
gularity of the form J -~ at the origin, we learn
by using Eq. (3.14) that the magnetic susceptibility
has the behavior

X 1/T2¢ (3.15)

This result again seems to contradict the cluster
argument, but this is not the case. We can indeed
explain the behavior of x!, given by Eq. (3.15), in
terms of the cluster argument as follows: A
cluster of size n>1, with the spins pointing in

the z direction has energy of the order —(n - 1)J,

where J is the average coupling between the spins.

Rotation of the spins to the x direction will in-
crease the energy of the cluster from —(n —1)J

to zero. Therefore for J > kT the spins belonging
to clusters of size n>1 will not contribute to xf
since it is energetically unfavorable for them to
rotate from the z to the x direction. The only
clusters which will contribute to x! are clusters
of size one. Their contributions will be propor-
tional to N,/7 and using Eq. (2.22) we get x!
«1/T'"2°, a result identical to (3.15).

B. Classical models

In addition to the quantum models we consider
the case of a chain consisting of randomly inter-
acting v-component classical spins. For v=1,2,3
the model reduces to Ising, planar, and Heisen-
berg, respectively.

1. Classical Heisenberg model

The Hamiltonian of a classical isotropic Heisen-
berg chain is given by

with S a classical vector of magnitude [ S(S+1)]*/2.
For the case of a periodic chain the zero-field
magnetic susceptibility was calculated by Fisher.?®
Fisher’s method, with only minor modifications,
can be applied for the case of the classical random
chain. The zero-field magnetic susceptibility of
the random chain is given by*

_ Nyg?u3S(S+1) 1+(w)
X= 3T T-(u) ’

(3.17)
with

u=kT/JS(S+1) - coth[JS(S+1)/kT] .
For S=3 the average value of « is given by

(u) ==1+1+4kT/3J — coth(3J/4kT)) . (3.18)
when J > kT,

1+4kT/3J - coth(3J/4kT) ~4kT/J ,

and therefore the region J > kT will not contribute
significantly to the average. In the case where

kT <« o the major contribution to the average will
come from J << 0. Consequently we can use as
P(J) the asymptotic form given by (1.4). Further-
more we can approximate cothx by

1/x+3x for x<1.5,

cothx2{ (3.19)

1 for x>1.5.
Using these approximations we obtain

(W) ~—14 L(kT)°D*"°  /2° L4 1
[Iln(kT7D)I]°‘° ( c  32T°°(1-¢)

21+ c

T +c)> © (3.20)
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Thus the magnetic susceptibility of the chain for
kT < o is given by

I'N,
(rT/D) " ¢[1In(kT/D) 1] *°

xﬁ

ML;FN

2(: 4 1 2100
>((c_+§2""’(1—0)_4(1+c)>' (3.21)
Equation (3.21) shows that the magnetic suscepti-
bility of a random classical Heisenberg chain has
a singularity at T=0 identical to the singularity in
the probability distribution of the coupling con-
stant. Result (3.21) is in agreement with the
cluster argument. This is because the cluster
argument does not make a distinction between
classical and quantum cases.

2. Classical planar model

The Hamiltonian of the system consisting of
randomly coupled classical planar spins with the
magnetic field placed in the spin plane is given by

H=Y J(SjS},,+5%S}, ) +gusH ) Sf. (3.22)

The zero-field magnetic susceptibility can be cal-
culated in a way similar to that of the three-com-
ponent classical model previously outlined. The
result is

Xplanar = (Nogzu‘zssz/sz)(l*' (u) )/(1 -(w)) ,
(3.23)
with

u= 1,(JS2/kT)
" TI,WS?/RT) °
S is the magnitude of the spins and I, I, are the
modified Bessel functions of order zero and one.
Using the asymptotic behavior of the modified

Bessel functions we can prove that the contribu-
tion to () from J > kT is unimportant. Thus for
kT < 0 we can use the asymptotic probability dis-
tribution given by (1.4) and obtain

(u) + 1 < (T)° . (3.24)

The zero-field magnetic susceptibility will then
have the behavior

X planar <1/T 7€, (3.25)

3. Classical Ising model

For classical spins lying along the z axis and
with the magnetic field placed in the same direc-
tion the magnetic susceptibility of the system is
identical to that of the quantum Ising model.
Therefore for a probability distribution of the
coupling constant given by Eq. (1.4) the magnetic
susceptibility at low temperatures will have the
behavior

x<1/Tc, (3.26)

C. Semiclassical model

In this model we consider that the z component
of the spin can take the values +3, while the x and
y components are components of a classical vector
of magnitude S2=S(S+1) - S2 =} which rotates in
the XY plane. We also assume that the compo-
nents of the spin commute among themselves.

The Hamiltonian of the system in the presence of
a magnetic field which lies in the XZ plane and
makes an angle 6 with the z axis is given by

H=Y J,8,-5,, +guBH(c0592 Si+sindy s:)
{

(M) =-gugcoso T!‘[Z H exp(—BZJ,Sfo“ —BguBHCOSQZ sl‘ol)]
7 7

X[Tr exp(— 32 JiSfS5, ~BgugHcosoH s,')]
1

- gl siné Tr[Zs;‘exp <- B Z Ji(SFST.1+51SY,,) ~BguyHsin0y s,x)]
1

-1
x{Tr exp<_3): J,(S;S’;“+s,’s¥,1)-BguBHsinGZ S’,‘)] .

From Eq. (3.28) we obtain that the zero-field mag-
netic susceptibility is given by
Xsemiclassical = COS20 X + sin?6 Xplanar (3.29)

Averaging over all possible orientations of the

(3.27)
The magnetization then can be written as
-1
(3.28)
magnetic field we obtain
Xsemiciassical = 3 X1 + 3 Xplanar » (3.30)

where x{ is given by Eq. (3.9) and X ;... by Eq.
(3.23). Making use of Eqgs. (3.11) and (3.25) we get
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that the low-temperature behavior of X g icassical
is

«1/Tt ¢, (3.31)

X semiclassical

IV. DISCUSSION

In this paper we were confronted with the dif-
ficult problem of finding the magnetic susceptibility
of the disordered one-dimensional Heisenberg
antiferromagnet for a probability distribution of
the coupling constant which has a singularity at
the origin. Since we were unable to find an ana-
lytical solution, we developed instead a cluster
argument which gives the low-temperature be-
havior of the magnetic susceptibility of the above
mentioned system. The main feature of the sus-
ceptibility is that it diverges at 7=0 and its di-
vergence is identical to that of the probability dis-
tribution of the coupling constant at J=0. Since
the cluster argument makes no distinction between
classical and quantum cases, this means that the
magnetic susceptibility for both the classical and
quantum disordered models, has the same low-
temperature behavior. In order to test the cor-
rectness of the cluster argument we examined the
susceptibility of various exactly soluble dis-
ordered models always using as the probability
distribution of exchange the one given by Eq. (1.4).
Our examination proved that indeed the behavior
of the low-temperature magnetic susceptibility for
most of these exactly soluble models was identical
to that provided by the cluster argument. Two
quantum models, namely the Ising model with
perpendicular magnetic field and the XY model
raised doubts as to the validity of the argument.
We were able to resolve them by proving that the
first case had the special characteristic that only
clusters of size one were contributing to the mag-
netic susceptibility and thus we should apply our
cluster argument only for them, while for the XY
case the strong fluctuations of the state at the
middle of the band prohibited the application of
a cluster argument. Furthermore we gave strong
evidence that for the case of the one-dimensional
quantum disordered Heisenberg model, which is of
our main interest, the cluster argument can be
applied.

From the arguments thus far, however, we have
been able to obtain only the low-temperature be-
havior of the magnetic susceptibility of the quan-
tum Heisenberg model. Our main purpose in ana-
lyzing the susceptibility of the Heisenberg model
is the application of our findings to describe the
magnetic properties of a real material. For this
purpose the knowledge of only the behavior of the
susceptibility at low temperatures is not enough;
we need an analytic formula holding throughout

the entire experimental temperature range in or-
der to undertake a systematic fitting of the data.
Since, as we mentioned above, we cannot obtain
an analytic expression for the susceptibility of the
quantum Heisenberg model, our next task is to
find another model to take its place which must
fulfill the following requirements: (a) to be ana-
lytically soluble; (b) the behavior of its low-tem-
perature susceptibility to be identical to that de-
rived for the quantum Heisenberg model from the
cluster argument; and (c) to be a good approxi-
mation to the quantum-mechanical model in the
whole temperature region. Our choice for such

a model is the one-dimensional classical Heisen-
berg model. The low-temperature behavior of its
susceptibility agrees with the results of the cluster
argument, and it is analytically soluble. In order
to test how close it is to the quantum Heisenberg
model we must have an approximate formula for
the latter. Since numerical results are available
for the periodic quantum Heisenberg model, we
thought that if we can make a connection between
the susceptibility formulas for the periodic and
disordered quantum models, we can then succeed
in obtaining an approximate formula for the dis-
ordered Heisenberg model. The best way to make
such a connection is to look at the exactly soluble
models. For the periodic Ising as well as for all
the periodic classical models, the susceptibility
has the general form

Xpar =Xo(L+2uye)/ (1 —u,g) , (4.1)
with

Xo=Nou%g%/4kT, u,, =-tanh(J/4kT),

1,J/2kT)/1,(J/2kT), 4kT/3J - coth(3J/4kT)

for the Ising, classical planar, and classical
Heisenberg, respectively. For the disordered
models, formula (4.1) becomes

Xass = Xo(1+ o0 )/ (1 = Sy, )) (4.2)

with u . the same as before. Therefore, the only
difference is to replace » by its mean value. Equa-
tion (4.2) can also be written

1+ {(X por = X0)/ (Kper + Xo))

X=X01 ‘dxpsr‘xo); (xvor"'xo» ) (4.3)

Thus Eq. (4.3), using as X, the susceptibility of
the quantum Heisenberg model as calculated by
Bonner and Fisher,? provides us with an approxi-
mate formula for the disordered quantum Heisen-
berg model.

In a previous paper'® we calculated the probabil-
ity distribution of the coupling constant for the
values £ =0.055 eV, U=0.130 eV, and 0=0.136 eV,
where £, o, and U are the parameters of the Hub-
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FIG. 1. Magnetic susceptibility of (a) the classical
Heisenberg model (solid line); and (b) the approximate
quantum model (X), given by Eq. (4.3), where the proba-
bility distribution of the coupling constant for both cases
is given by Eq. (1.4) with ¢ =0.055 eV, U=0.130 eV, and
0=0.136 eV.

bard Hamiltonian (Eq. 1.1). Using this probability
distribution we evaluated the magnetic suscepti-
bility for the classical Heisenberg model and the
approximate quantum one. The results of our cal-
culations are shown in Fig. 1. The results of our
calculations are shown in Fig. 1. We note that
there is a difference of ~11% between the two
models at T=5 °K and this difference remains

practically the same as the temperature increases.

This indicates that it is a rather good approxima-
tion to represent the unknown quantum Heisen-
berg model with the classical one for this partic-
ular case where we are dealing with a sufficiently
disordered system. Indeed, one can argue that the
disordered classical Heisenberg susceptibility
bounds the disordered spin-z Heisenberg suscep-
tibility from above because the zero-point motion
of the spins reduces the susceptibility in the latter
case. Similarly, one can argue that the use u,,,,
calculated by Bonner and Fisher,? bounds the dis-
ordered spin-3 Heisenberg susceptibility from be-
low because the use of u, overemphasizes this
zero-point effect, underemphasizing the disrup-
tive effect of disorder on the propagation of spin
deviations. The percentage of error in using the
classical Heisenberg model is therefore less than
11% throughout the entire temperature range, as
the temperature dependence must be the same
A/T? for all three cases below 5 °K. For com-
parison we have calculated the magnetic suscep-
tibility of various exactly soluble spin-% periodic
models. The results of our calculations are
shown in Fig. 2. In the same figure the results

of calculations of Bonner and Fisher for the quan-

2KT
J

FIG. 2. Susceptibility vs temperature for periodic one-
dimensional antiferromagnetic models: (a) classical
Heisenberg; (b) classical planar; (c) semiclassical; (d)
Ising; and (e) quantum Heisenberg.

tum spin-3 case are also shown. These calcula-
tions show that the susceptibility for the quantum
Heisenberg model starts to deviate significantly
from the classical models at temperatures kT <J.
Also the quantum susceptibility is always smaller
than the classical, due to zero-point motion. We
note that Fisher has already given a comparison
of the classical and quantum Heisenberg models.??
However the classical model he used was one in
which §/S was treated as a classical unit vector,
whereas we have used S/[S(S +1)]*/2. The latter
normalization is more accurate for small spin.

In the particular case of interest to us, S= 3, the
temperature scale used by Fisher for the classi-
cal case is contradicted by a factor of 3 relative
to the quantum case and to our classical case.
Our choice of S/[S(S +1)]*/2 leads to an asymptotic
approach of the susceptibilities of the two models
at high temperatures.

Turning now to the question of the appropriate
range of values of the parameters U, o, and ¢, all
of the previous analysis of the susceptibility of the
disordered Hubbard model was for the case U<so,
for which we found that the susceptibility has a
singularity at 7=0. Let us briefly examine the
case where U is considerably larger than 0. Ac-
cording to the analysis of Ref. 10, in that case all
sites are singly occupied and the exchange cou-
pling between two nearest-neighboring spins has
a minimum value J_; for J<J_, . For the case
of the disordered classical Heisenberg model it
can be easily derived that a singularity in the sus-
ceptibility at T =0 is the consequence of a singu-
larity in the probability distribution of the coupling
constant at J=0. This must also be true for the
susceptibility of the spin-z Heisenberg model,
since as we argued before the latter is bounded
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from above by the classical Heisenberg suscepti-
bility. For the case where U is considerably
larger than o, the probability distribution of the
coupling constant is not singular at J =0, there-
fore the magnetic susceptibility of the system will
have a finite value at 7=0. The above analysis
also casts strong doubts on the argument of
Bulaevskii et al.? that a nonsingular probability
distribution of the coupling constant can produce
a singularity in the magnetic susceptibility of the
quantum Heisenberg model with S = 2. They justi-

fied their argument by reference to the XY model,
which as we argued in Sec. III is different in that
regard from the Heisenberg model.

ACKNOWLEDGMENTS

I am deeply indebted to Professor Morrel H.
Cohen for his constant guidance and encourage-
ment. I also thank Professor J. A. Hertz for sev-
eral helpful discussions. Access to unpublished
work of F. J. Di Salvo and Y. Tomkiewicz is grate-
fully acknowledged.

*Submitted in partial fulfillment of the requirements for
a Ph.D. degree in the Department of Physics, The Uni-
versity of Chicago.

TSupported by the Louis Block Fund, the NSF and by the
Materials Research Laboratory of the NSF at The Uni-
versity of Chicago.

ISee the review article by I. F. Shchegolev, Phys. Status
Solidi 12, 9 (1972).

L. N. Bﬁaevskii, A. V. Zvarykina, Yu. S. Karimov,

R. B. Lyubovskii, and I. F. Shchegolev, Zh. Eksp.
Teor. Fiz. 62, 725 (1972) [Sov. Phys.-JETP 35, 384
(t972). -

3F. J. DiSalvo (private communication); and susceptibili-

ty data in M. A. Butler, F. Wudl, and Z. G. Soos, Phys.

Rev. B 12, 4708 (1975).

4Y. Tomkiewicz (private communication).

M. Takahashi, Prog. Theor. Phys. 43, 1619 (1970).

SH. Shiba, Phys. Rev. B 6, 930 (1972).

A. N. Bloch in Energy and Charge Transfer, edited by
K. Masuda and M. Silver (Plenum, New York, 1974).

®M. A. Butler, F. Wudl, and Z. G. Soos, Ref. 3.

5T, A. Kaplan, S. D. Mahanti, and W. M. Hartmann,
Phys. Rev. Lett. 27, 1796 (1971).

9G. Theodorou, preceding paper, Phys. Rev. B 16, 2254
(1977). -

13, Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131
(1962).

2E. R. Smith, J. Phys. C 3, 1419 (1970).

BF. J. Dyson, Phys. Rev. 92, 1331 (1953).

“E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.)
16, 407 (1961).

15G. Theodorou and Morrel H. Cohen, Phys. Rev. B 13,
4597 (1976); and unpublished.

!8N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961).
"R. E. Borland, Proc. Roy. Soc. A 274, 529 (1963).

BE. N. Economou and Morrel H. Cohen, Phys. Rev. B 4,
396 (1971).

*D. Cabib and S. D. Mahanti, Prog. Theor. Phys. 51,
1030 (1974).

M. E. Fisher, Am. J. Phys. 32, 343 (1964).

3. C. Scott, A. F. Garito, A.J. Heeger, P. Nannelli,
and H. D. Gillman, Phys. Rev. B 12 356 (1975);

T. Tonegawa, H. Shiba, and P. Pmcus, ibid. 11 4683
(1975).

223, C. Bonner and M. E. Fisher, Phys. Rev. 135, 640
(1964).



