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%'e examine the effect of pressure on the order of phase transition in some antiferromagnetic systems in

which the transition is of first order at zero pressure. By using the renormalization-group equatihns we give a
qualitative description of how the transition changes from first to second order as a uniaxial stress is

applied.

The modern theory of continuous phase transi-
tions uses the renormalization-group method' to
describe the critical phenomena near a second-
order phase-transition point. This theory was able
to account properly for the effect of critical fluc-
tuations in the values of the critical exponents in
contrast to the classical Landau theory which neg-
lects completely the fluctuations. As a further
development, it has been shown recently by
Brazovsky and Dzyaloshinsky' and Bak, Krinsky,
and Mukamel' using the renormalization group that
the Landau-theory predictions on whether a phase
transition can be second-order or is necessarily
a first-order transition are not always correct.
The critical fluctuations can prohibit the transition
from being second order. This is manifested in the
renormalization-group calculation' in the nonexist-
ence of stable fixed points.

There is a proof by Brezin et al. ,' which states
that there is always at least one stable fixed point,
the isotropic fixed point, when the number of com-
ponents of the order parameter is less than four.
The above described situation with no stable fixed
points can therefore occur only for models where
the number of components is at least four. Muka-
mel and co-workers" have shown that many phys-
ically interesting magnetic systems are in fact de-
scribed by order parameters with n ~ 4. For sev-
eral antiferromagnetic systems, MnO and UO„
e.g. , the experiments clearly show that the transi-
tion is of first order.

It has also been observed experimentally, ' that in
some of these antiferromagnetic systems the order
of the transition changes under pressure. A quali-

tive description of this phenomenon has been given
by Bak et a/. ' They have pointed out that a non-
isotropic stress can lift the degeneracy in the com-
ponents of the order parameter, thus reducing the
number of critical compoents. If the number of
critical components is less than four the system
can then be scaled to a stable fixed point and the
transition will be second order.

The question one may ask is whether an arbitrary
small pressure, which will produce a very weak
tetragonal or orthorombic anisotropy, can change
the nature of the transition, or if a finite distortion
is required, what will determine its value. Bak
et al.' answer this question in a qualitative way
saying that at small pressure the components are
almost degenerate and the noncritical but almost-
critical components will renormalize the coupling
constants of the critical components. This re-
normalization effect determines whether the sys-
tem can have a stable fixed point or not. In this
paper we want to formulate this statement in a
somewhat more quantitative way and give a pro-
cedure by which this renormalization effect can
be calculated. The procedure is described for the
special case of UO, which has the dimensionality of
the order parameter equal to 6 and belongs to the
space group Fm3m (05&}.8 The analysis follows
analogously for systems with different n values
such as MnO (n = 8) and will not be given here.

The Ginzburg- Landau-Wilson Hamiltonian cor-
responding to the particular model with a six-
component order parameter (the notation follows
Mukamel and Krinsky') is
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This is the Hamiltonian for the system without ex-
ternal stress. We know that it has no stable fixed
point in the e expansion to first' or second' order
in e, indicating that the transition should be of
first order.

Let us assume that a uniaxial stress along the
z axis is applied to this cubic system and it be-
comes tetragonal. This will split the six-dimen-

sional irreducible representation into three two-
dimensional representations, where p1 and (g)„

p2 and p„and (t)3 and T()3 belong to the same repre-
sentation. Using the symmetry properties of the
tetragonal phase and writing all the possible sec-
ond- and fourth-order invariants, the Ginzburg-
Landau-Wilson functional will have the form

3

H= J d'X ~23'»(P21+T()22)+2r02($22+ &f&', )+2r„(f32+g)+'—P [(V(t),)'+(Vg, )2]+ —,g»(P41+iP)
f =1
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(2)

The choice of the invariants is convenient, be-
cause it clearly shows how the original couplings
g, split under pressure.

The really important point here is not the split-
ting of the couplings, but the splitting of rp into r»,
r02, and 303. In the Hamiltonian (I) r0 is a mea-
sure of the temperature, it is proportional to T.
It is usually convenient to introduce r instead of r,
by measuring the temperature relative to the crit-
ical temperature T„ i.e. , r —(T —f,}". Perform-
ing such a subtraction for the system under pres-
sure, we can introduce r„r» and r, but now only
one of them is proportional to T —T„ the others
remain finite at T,. In order to be a little more
specific we shall study the case when the pressure
is applied in the z direction and the ferromagnetic
sheets are in the (x,y} plane. In that case, the
critical modes are Q3 and Q„r3 vanishes at T,.
The other components are not critical, r, and r,
may be small at small pressure but they do not
vanish. The question is how can one take into ac-
count the effect of these nearly critical compon-
ents in the behavior of the system.

A convenient way to study this problem is to use
the Gell-Mann- Low multiplicative renormalization
in a somewhat modified form, using the physical
cutoff as a scaling parameter. ' The basic idea of
that approach is that the Green's functions and ver-

tices, when calculated with a finite-momentum cut-
off A, obey asymptotically, near the critical temp-
erature and for small momenta, a Gell-Mann-
Low-type multiplicative renormalization relation
with the cutoff as a scaling parameter. More pre-
cisely, the original problem with cutoff A and cou-
plings g,. can be mapped on a problem with cutoff A' and
couplings g'„ in such a way that the Green's func-
tions and vertices in the two systems differ only
by a multiplicative factor, independently of the
momenta and temperature variable. Such relations
can hold only if instead of r„r„and r, the re-
normalized masses ~„~„and 8 are introduced by
the definitions

1 (P ) (P1i IP2, IP3) 32 „2=0 i
1

(3)

G2 (P, IP1) IP2, IP3) 32 „)=0, (4)

G,'(P2, (P„(P„)P3) P (5)

where G„G» and 63 are the Green's functions
for the components (t)1 and (t)„$2 and $„and (i))3

f3, respectively. Qne of the renormal. ized masses
say ~„vanishes at T„ the others remain finite.
Introducing the dimensionless Green's functions
d, =G, /G,"', d, = G,/G,"' and d, =G,/G,"' and the di-
mensionless vertices I;, corresponding to the twelve
couplings, the following scaling equations hold

dg pl-27AA 7AI2 7A~ 7AIS ZJ A2 7 A3 df A2 7 A2 7P 7A2 7+& 7 j =17273 (6)
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2
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Of gpf Of A2 A6 Zf (13)

and similar equations for the other couplings. The
original problem is mapped on a new problem in
which one of the variables is1. Looking at the
Green's functions and vertices of the new prob-
lem, the logarithmic terms, when the argument is

and similar equations for the other couplings.
We performed the calculations to lowest order in

s in two limiting cases: (i) when z23 is much small-
er than a, and 8 very near to T,; and (ii) when 8„
K'„and K3 are not equal but are of the same order
of magnitude. In both cases, we assume that K, and

K, are still much smaller than the physical mom-
entum cutoff A. Therefore, we restrict ourselves
to the leading logarithmic approximation and col-
lect the g, In(&2/A') and g', In'(a~/A') terms.

In these two cases the multiplicative factors and
the invariant couplings turn out to be the same, in-
dependent of the choice of Kf, indicating that the
scaling equations (6)-(10) can be satisfied. The re-
normalization-group equations for the new cou-
plings are rather lengthy and are not given here.
In addition to the fixed points which were present
in the cubic case, there is the tetragonal fixed point
with g,*,o0 and g,*,w0 and all the other couplings
are zero, and many other fixed points. None of
these fixed points is stable against perturbations
given by the other couplings, if one looks at the re-
normalization-group equations of the couplings
formally.

One should remember that a fixed point can be
reached when the new cutoff is scaled down to zero,
and so we reach a situation where the masses K1

and K, are much larger than the cutoff. The re-
normalization-group equations can be used reason-
ably only until the new cutoff A' becomes equal to
the largest of the Kf's, say K, . The equations then
have the form

1, give no contribution, and one can easily con-
vince one's self that these functions are the same
as that of the model with fields Q„$„Q„and

and couplings &O2 gp3 g12 g21 g32 g43 only, and
all the terms which are related to Q, and Q2 having
renormalized mass K„are frozen out. This means
that apart from multip1. icative factors which de-
pend on z', /A', the original six-component prob-
lem with 12 couplings is equivalent to a four-com-
ponent problem with 6 couplings.

A similar renormalization procedure can now be
applied to this new problem with the new couplings

gp2 gp and effective cutoff K, ~ The cutoff is
scaled down until we reach K, and again one can
convince oneself that in this way, the four-compon-
ent problem can be mapped into a new two-compon-
ent problem, where only the components Q3 and

f3 w ith coupling s gp3 and g12 survive, now with an
effective value gp3 and g12 The above procedure
gives a straightforward prescription, of how these
couplings should be calculated. If gp3 and g» are in
the domain of attraction of the stable fixed point of
this two-component system g*,a 56 g12 5 E then
we will finally obtain a second-order transition.
The requirement for this is g»&0 and g»-g„&0.

We can now describe the effect of pressure in a
simple way. For small pressure, K1 is too small
at the critical point and the first step in the scaling
when A' reaches K1 takes us way down the scaling
trajectory of the couplings. Since there is no fixed
point on this trajectory, gp3 is scaled to large neg-
ative values. " From there the stable fixed point
of the two-component system cannot be reached in
the next steps. If, however, the pressure is large,
we stop on the scaling trajectories of the six-com-
ponent system very early, when go3 is still positive
and finally we can get to the stable fixed point of the
two- component system.

Whenever we reach the stable fixed point of the
two-component tetragonal system, the critical
behavior is governed by the fixed point value and
the noncritical components do not influence the
critical behavior. This follows automatically for
the Green's function, for which the scaling equa-
tions have been shown to hold. It does not follow
from these formulas, however, that other quantities
like the specific heat have the usual value for the
critical exponent. It has been shown" that the
specific heat does not obey a scaling relation simi-
lar to Eqs. (6)-(10). It is, however, possible to
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introduce an auxiliary quantity which obeys scaling
and by which the specific heat exponent can be
determined. Using the same procedure for the
present problem it can be shown that the specific-
heat exponent for large pressure is the same as
for an ordinary tetragonal system as expected.

After we completed this work, we received a
paper by Domany, Mukamel, and Fisher" who con-
sider systems which classically are predicted to
exhibit second-order phase transitions but known

to yield first-order transitions within the renorm-
alization-group approach because the stable fixed
points are not physically accessible. Their calcul-
ation differs from ours since we consider a differ-
ent case, where no stable fixed points exist.
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