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We describe in detail how to construct momentum-shell recursion relations for classical fixed-length spins

in d = 2+ & dimensions. The theory is then applied to anisotropic spin systems and to a model of nematic

liquid crystals. We also develop a trajectory-integral formalism, which is used to produce the free energy,
magnetization, and susceptibilities of isotropic spin systems to first order in a = d —2.

I. INTRODUCTION

It has recently become possible to study critical
phenomena in fixed- length n- component classical
spin systems near two dimensions. The original
work on this problem by Polyakov and Migdal
was generalized and extended to O(c') (& = d- 2) by
Brbzin and Zinn- Justin. ' Subsequently, we made
use of these ideas to study bicritical points and
cubic symmetry-breaking fields near d =2.'

Although Brbzin and Zinn- Justin used a field-
theoretical approach, ' we have found it convenient
to construct recursion relations using the momen-
tum-shell technique of Wilson and Kogut. ' Mo-
mentum-shell recursion techniques in 2+ & di-
mensions will be described in detail here, in the
hope that this approach will be useful to investi-
gators who have used simij. ar methods near d = 4.
We shall illustrate these methods by applying
them to anisotropic spin systems, ' and to a model
of nematic liquid crystals in two dimensions. Our
conclusion for the liquid-crystal system is that de-
viations from an isotropic XY model are irrelevant
variables at low temperatures, and that the iso-
tropic XY behavior should consequently be access-
ible to experiment.

With a momentum-shell renormalization group at
hand, we shall then use a trajectory integral
"matching" formalism to produce closed-form ex-
pressions for the thermodynamic functions which
characterize isotropic spin systems. A similar
technique' has been rather useful in determining the
thermodynamic functions which characterize com-
plicated multicritical phenomena near d = 4.' Al-
though Brezin and Zinn- Justin have calculated sim-
ilar quantities near d =2,' some of our results ap-
pear to be new.

We wish to stress at the beginning that the cal-
culations described here are only carried to first
order in &=d-2. In Ref. 3, it is explained how to
go to 0(&') using field-theoretical methods. In
practical calculations near dimension four, one
typically only uses a momentum-shell renormali-
zation group to first order in 4- d. Once the fixed-

II. ISOTROPIC RECURSION RELATIONS

Following Polyakov, ' Migdal, ' and Ref. 3, we
consider an n-component isotropic spin model
(with n ~2) in d=2+ e dimensions with reduced
Harn iltonian

'xa sx (2. la)

with the restriction

i
s(x) i'=1. (2.1b)

A convenient continuum notation has been used
in (2.1}, although one actually expects the spine
s(x) to populate a lattice. When transforming (2.1)
into momentum space, we shall reinstate the lattice
by the standard trick' of restricting the Fourier in-
tegrals to a Brillouin zone of unit radius. In the
field-theoretic literature, (2.1) is called the non-
linear o model, the nonlinearity arising from the
constraint (2.1b). We shall follow standard con-

point structure of a particular problem is under-
stood, it is straightforward to apply the Feynman
graph approach of Wilson' to extend the calculations
to O[(4 —d}'].' We expect that similar considera-
tions will apply in 2+ & dimensions.

The organization of this paper is as follows: In
Sec. II, we derive recursion relations for iso-
tropic spin systems with n ~ 2 components by in-
tegrating out the short-wavelength components of
the spin fields. In Sec. III,' we describe the re-
normalization of a quadratic symmetry-breaking
perturbation, and the resulting bicritical, phase
diagrams near two dimensions. A nematic liquid
crystal in precisely two dimensions is studied in
Sec. IV. Deviations from the one coupling-constant
approximation are shown to be irrelevant variables
at low temperatures, so the critical behavior
should be that of the two-dimensional XY model.
Finally, in Sec. V, we derive expressions for the
free energy, magnetization, and susceptibilities of
isotropic spin systems near d = 2.
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ventions, ' and denote the t field by s -=(o, w), where

w is an (n —1)-component vector, and o +
~

w ~'= l.
Near four dimensions, one is used to doing cal-

culations for (2. la) with additional rs' and us' in-

teractions, and in the absence of the constraint
(2.1b). However, as Wilson has pointed out, " (2.1}
is a special case of this familiar Landau-Ginzburg

model, provided r--~ and u-+~ with the ratio

-r/u fixed. Amit and Ma" have shown that de-
viations from this limit are irrelevant variables
near d=2. Indeed, we expect that the nontrivial
fixed point found by Wilson and Fisher" near four
dimensions migrates toward this limit as d-2,
provided the spins have more than two components.

Consider the partition function associated with

(2.1), namely

~(") ~'(*)Ho(+(*)+ I'(*)I*-'I~xy(- f&'*((' ) +(~.„*l*)) . (2.2)

d'x[(e„w)'+ {w s„w)'+ F(w s„w)'.
—TpP —g Tpw + '] . (2.5)

Following Ref. 3, we integrate out the o field,
taking into account contributions coming from the
product of 5- function constraints:

1
g

(&,w)' —~2 p ln(1 —w')

(2.3)

The final term -2 pin(l w') results from integra-
ting over the 6 functions, where p=N/V is just
the number of degrees of freedom per unit volume
associated with our spherical Brillouin zone:

1 -

~ S~ ' „, S~ 2 4p= ), dq= ), q (fq=„(2), . (. )

The factor S~ is the surface area of a d-dimension-
al sphere. The density of degrees of freedom p is
written as the integral of unity over the Brillouin
zone to suggest how it can be incorporated into a
momentum- shell recursion scheme.

A standard way of obtaining results from the
Hamiltonian (2.1) at low temperatures is spin-
wave theory. However, it is well known that ser-
ious infrared divergences invalidate such a direct
approach in precisely two dimensions. The crucial
observation of Polyakov' was that a spin-wave ap-
proach can nevertheless be used to construct re-
cursion relations, which are well behaved even in
d=2. With spin-wave ideas in mind, we take 0

along the direction of mean magnetization, and
assume fluctuations about this direction are small.
If necessary, a small uniform magnetic field can be
imposed to insure that this direction js well de-
fined. Nonlinearities such as (1 —w2}'~~ and
ln(1 —w') in (2.3) are then expanded in w' to produce
a systematic low-temperature theory. The range of
integration of the m variables is extended to + ~
in, such an approach.

Carrying out this expansion in (2.3), we obtain

w, (q), 0&
~ q ~

& e '
w(q =

w, (q), e-'&~q~&i,

and integrate out w&(q). Polyakov' proceeded in a
similar fashion, using an otherwise rather dif-
ferent approach. Upon rescaling momenta by e
=- b and the spine w& (q) by l, we obtain a Hamil-
tonian of the form (2.5) with new temperature pre-
factor multiplying (S„w), namely,

(2.6)

T' = f 'b~" [T (1/2w)T' lnb]-. (2.7)

= —{ a )
1 ~ 2

2T

1 «p««p{~.a ~)2T

-p
7f2

-p
7T4

1

2T (a+~)

FIG. 1. Vertices entering the perturbation expansion
of the partition function {2.3). Slashes on lines indicate
derivatives. Dashed lines separate pairs of spins with
common indices.

After transforming (2.5) into momentum space, we

are ready to construct recursion relations in the
standard way, ' treating all terms except the first in

perturbation theory. The meaning of the various
vertices entering such an expansion is summarized
in Fig. 1. The importance of a particular Feynman
graph at low temperatures can be determined by
noting that each propagator carries a factor of T.

Following Wilson and Kogut, ' we decompose the
Fourier-transformed spin field w(q),



MOMENTUM-SHELL RECURSION RELATION S, ANISOTROPIC. . . 2193

b)
I I

(n-1)

V

This term is readily incorporated into the above
analysis by including the & hwz/T part of (2.10) inthe
propagator, and treating ,' hw4—/T as a perturbation.
The very simple graphs which renormalize h/T
are shown in Fig. 2(d) and lead to the result

a 1 ~„ u
a lnl

)T' T 4m 1+&

However, since h/T really represents a magnetic
field, it must renormalize trivially under a mo-
mentum- shell renormalization group, '4

h'/T'= Lh/T . (2.12)
I & 0I I I Equation (2.12) can only be consistent with (2.11) if

1 T lnb
& =b 1 ——(n —1)

4w 1+8 (2.13}

which is a generalization of (2.9). The analogous
generalization of (2.7) to include a finite magnetic
field is

T~ - +2bd42
T' ling

1+h (2.14)

FIG. 2. (a) Graphcontributing to the recursion relation
(2.7) for the two-point function (8„7r)2. (b) Graphs
which renormalize the four-point interaction (w '9„7r) .
{c) Pairs of graphs which cancel identically. (d) Graphs
relevant to the recursion relation (2.11) for the magnetic
field. The first two graphs are derived from a four-
point self-interaction due to the magnetic field rather
than from the four-point coupling shown in Fig. 1.

T'= P'bi"[T (n/2w)T'1nb-] .
By requiring that (2.8) and (2.7) agree, we de-
termine &,

(2.8)

f = b [1—(1/4w) (n —1)T lnb ] . (2.9)

A less tedious route to this result is obtained by
adding a magnetic field term to (2.1):

The single graph contributing to this recursion
relation is shown in Fig. 2(a).

To determine the spin rescaling factor f, we
consider the renormal. ization of the four-point in-
teraction (w ~ S,w}' which also carries a tempera-
ture prefactor. The relevant Feynman graphs
are displayed in Fig. 2(b), while pairs of graphs
one might expect to contribute but which actually
cancel identically are shown in Fig. 2(c}. The
temperature-recursion relation obtained in this way
is

In deriving (2.11), we have been careful to con-
sider the —, Tpw' part of (2.5), writing

e-& 1
S~ d-1 $d d 1p=

}
q dq+

( } q dq, (2.15)

dT(l) n —2 T (l)
dl 2w 1+h(l)

dh(l) n —3 h(l)T(l)
dl 4w 1+ Jll (I)

(2.16a}

(2.16b)

These equations are generalizations to finite (pos-
itive) magnetic field of the results of polyakov, '
and are momentum-shell versions of the lowest-
order equations of Brbzin and Zinn- Justin. ' The
approach taken here is easily extended to more
complicated situations, as we shall illustrate in
Secs. III and IV.

III. ANISOTROPIC SPINS

and incorporating the shell integral into the re-
normalized magnetic field. Feynman graphs have
been evaluated in precisely d = 2 throughout.

With the results (2.11), (2.13), and (2.14) at hand,
we can readily derive differential equations for the
"dressed" temperature T(l) and magnetic field
h(l) by taking the limit b-1:

h
=+r+

T
d x(l —a w —a w + ~ ~ ~ ). '

h
3L', - R=3C, + —d xo(x)

(2.10)

Anisotropic quadratic and cubic perturbations to
(2.1) were originally considered in Ref. 4. Brezin,
Zinn- Justin, and Le Guillou" subsequently cal-
culated the eigenvalues of arbitrary relevant per-
turbations near two dimensions to O(c'). In this
section, we present a recursion relation treatment
of quadratic symmetry breaking, described by the
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reduced Hamiltonian

(3.1)

Near four dimensions, such a model is believed to
describe spin-flopping uniaxial antiferromagnets
The parameter g is then a function of the applied
magnetic field along the direction of uniaxial sym-
metry. For g positive, (3.1.) is expected to dis-
play (n —1)-component isotropic critical behavior,
while an Ising transition should occur for g nega-
tive. As g is adjusted to zero, the (n —1)-Heisen-
berg and Ising critical lines should meet at a bi-
critical point, "as shown in Fig. 3(a}.

Unfortunately, the simple description (3.1}of
spin-flopping antiferromagnets is only expected
to hold provided higher-order perturbations of,
say, cubic or hexagonal symmetry can be neglected.
Although this is almost certainly the case for most
spin systems in three dimensions, "we have found
that cubic perturbations, for example, are strongly
relevant perturbations near d = 2. Consequently,
we expect that bicritical phenomena near (and
including) d=2 will actually be controlled by a
fixed point with the discrete symmetry of the
underlying lattice. Such fixed points are not easily
analyzed by the techniques of Sec. II.

The Hamiltonian (3.1) is, nevertheless, of con-
siderably theoretical interest in its own right in

precisely d=2. Furthermore, &-expansion results
for (3.1) above dimension two should have some
validity when evaluated at & = 1, where higher-
order perturbations are indeed irrelevant. In con-
trast to previous work'" near d= 2, we shall study
the complete crossover from a fixed point of O(n)
symmetry to one describing the O(n —1)-sym-
metric critical line [see Fig. 4(a)].

Momentum-shell recursion relations will be
derived for (3.1) with g Positive, so we expect
the spontaneous magnetization to lie in the plane
perpendicular to the o direction. Similar results
are easily produced for g& 0, as well as for other
symmetry-breaking perturbations. Regarding (3.1)
as a phenomenological description of a real crys-
stal, we would expect an additional term like
g(s„a)'. This term was shown to be an irrelevant
variable in Ref. 4, so we shall set it equal to zero
from the start.

Suppose the magnetization is along m, direction.
It is then natural to expand the reduced Hamilton-
ian (3.1) in powers of v and w„ i = 2, . . . , n —1,
using the 5-function constraint to eliminate the
w, field. In this way, one readily obtains the
Hamiltonian

X=— d x „S '+gSx+ S 8„+~ ~-

where S is an (n —1)-component vector defined by

S=—(o, v,), i =2, . . . , n —1. (3.3)
(n- I ) - HE I SENBE

ORDER

ISING ORDER

DISORDERED
Qf course, we must be careful to include a term
proportional to ln(l S') in (3.2}, similar to the one
appearing in Eq. (2.3}.

Considering now the renormalization of (s„w,}',
(s,S,)', S'„and (v, s„w,)', respectively, in (3.2),
a straightforward application of the methods of
Sec. II gives us the following recursion. equations:

b)

T'= f, 'b ' [(T (1/2w}T lnb], —

TI g 2bd+2
2w I+g

(3.4a)

(3.4b)

DERED

IS I N

FIG. 3. (a) Bicritical phase diagram for q &0, n ~ 4.
The bicritical point is located at T =T~, g= 0. (b) Bi-
critical phase diagram for d = 2, n = 3. Note the un-
usually sharp cusp at the bicritical point, T =g = 0, in
contrast to (a).

lnb ,
g', ~ g 1 g
T' ~& T 2g 1+g (3.4c)

T'=g ~ b3~'2 T — lnb . 3.4d
T' n-1 +n

2m 1+g

We have introduced separate spin rescalings g„
and 4 for S, and v, (i=2, . . . , n —2) spin fields.

1These spin rescalings are fixed by demanding
that (3.4a), (3.4b), and (3.4d) lead to identical re
cursion relations. These, in turn, produce our
final results for the renormalization of partially
dressed couplings T(l) and g(l), namely,
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dT 1 [( —3)((+2)+(])
dl 2m 1+g

dg 1 Tg= 2g ——
dl m 1+g

(3.5}

(3.6)

An arbitrary symmetry-breaking interaction can,
in principle, couple to an infinite spectrum
of relevant eigenoperators in 2+ E dimen-
sions. "" This does not happen for quadratic
symmetry-breaking fields: Brbzin et al. have
shown" that the eigenoperators associated with
the symmetric model are just Gegenbauer poly
nomials in o, C",~' 2(&x). The quadratic perturba-
tion considered here corresponds to C(~2 )(o)- o —1/n; the constant term proportional to 1/n
has been surpressed in Eq. (3.1). Since we have
considered an eigenperturbation about the sym-
metric model, no additional relevant operators
are generated by the renormalization procedure
to linear order in g about the isotropic g= 0 be-
havior. It is straightforward to check that the
nonlinear description of crossover implied by
(3.5) and (3.6) is correct to first order in e.

The flows induced by (3.5) and (3.6) in 2+ e di-
mensions are shown in Fig. 4(a) for n~4. Two
trivial zero-temperature fixed points appear at g
= 0 and g= ~. The O(n) symmetric fixed point dis-
covered by Polyakov' and Migdal' appears at

g* = 0, T*= T, = 2m&/(n —2), (3.7}

while a fixed point with O(n —1) symmetry is lo-
cated at

The fixed point (3.7) should describe the critical
behavior of (3.1) for g= 0, while (3.8) controls
the critical properties for all g&0. The bold line
connecting these two fixed points corresponds to
the O(n —1)-symmetric phase boundary shown in

Fig. 3(a).
The crossover exponent entering a scaling de-

scription of the fixed point (3.7} is given in terms
of the eigenvalue of g,

X,= 2 — +O(a') .2E

n —2

The actual crossover exponent is~

E2
= 2 e+ +O(e')

2

n —2

(3.9)

(3.10)

where we have made use of an expression for the
correlation-length critical exponent v derived in
Ref. 3. The exponent (3.10) should enter scaling
expressions for thermodynamic functions such as
the susceptibility,

X(t g)=t 4'(glf ) (3.11)

2 '=, 3+0(d'), 1= (T — . (3.12)
n —2 n-2

A more general homogeneity expression can be
derived by techniques developed in Sec.V, namely, '

2(T,d) = 323 ((2 ~ 3)) ——( —1) T(l')dl'1
2'

g"=~, T*=T, =2ve/(n —3). (3.8) x X[ T(f),g(l)), (3.13)

a)

b)

g
i+g

g
1+g )

27' E
ll 2

XY Fixed line

where T(l) and g(l) are the solutions of (3.5) and
(3.6). This expression is useful in deriving a pre-
diction for the interesting case E = 0, n = 3, speci-

fically~~

(3.14}

for small T and g. The corresponding Hamiltonian
flows are shown in Fig. 4(b). For g&0, all flow
lines terminate in a fixed line at g= ~. Although we
cannot demonstrate it in the context of this theory,
this XY(n = 2) line of fixed points is believed to
terminate"" at some finite T, of order unity.
The phase diagram corresponding to this picture
is shown in Fig. 3(b), where we have also dis-
played the Ising critical line for g&0. According
to phenomenological crossover scaling theories,
the shape of the Ising and XY bicritical lines in
Fig. 3(b) should be given by

ge" = const. (3.15)
FIG. 4. (a) Renormalization-group flows induced by

(335) and (336) for d &2. 'fhe arrows indicate the direc-
tion of the flow of the effective Hamiltonian under itera-
tion. (b) Renormalization-group flows for d=2, n =3.

This conclusion has also been reached by Khokhla-
chev, "and is consistent with Monte Carlo work
by Binder and Landau. '
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IV. NEMATK LIQUID CRYSTALS

The renormalization-group ideas presented in

Sec. II are not limited to magnetic systems, and

can, for example, easily be applied to nematic
liquid crystals. In an ideal nematic liquid crystal
below the nematic —isotropic transition, the mole-
cules are aligned along a preferred axis n. How-

ever, even in equilibrium this direction may vary
from point to point. If the variations are small
on an intermolecular scale, we may describe the
liquid crystal by a continuum elastic theory. "

The elastic theory yields the following expres-
sion for the free-energy density of a two-di-
mensional liquid crystal':

F(r)= wK, [& ~ n(r)]'+~K, [n(r)x(Vxn(r)}]'. (4.1)

The K, Franck coefficient corresponding to "twist"
is absent in two dimensions.

Upon making the substitution

n(r) = cosg(r)x+ sing (r)y, (4.2)

we may rewrite (4.1} in two equivalent forms:

F(r) =
w K~ g [8,8(r)] '+ ' ~ [sing(r)8, 8(r) —cosg(r)8, 8(r)] ',

1 2

2

F(r) = 2K, p [s,g(r)]'+ ' ' [cosg(r)s, g(r) —sing(r)8, 8(r)]',
2

(4.3a)

(4.3b)

where 8, =O„and 92 ~y. Typically, one considers the one-constant approximation, i.e. , K, =K, and the
two forms, (4.3a) and (4.3b) are equivalent to the ferromagnetic classical XY model. Within this approxi-
mation, one may calculate, e.g. , the correlations and light scattering in a nematic film floating on the sur-
face of a fluid. '4 Using the renormalization-group methods outlined in Sec. II, we may now study the gen-
eral case K, t K„ treating the second terms in (4.3a) and (4.3b) as small perturbations. To insure that we
expand about a stable Hamiltonian, we will use (4.3a) when K, &K„and (4.3b) when K, & K,.

We consider the low-temperature nematic phase where the fluctuations of the director n(r) about the locally
preferred direction are small. For convenience we choose this direction to be along 3ii,

' and thus
8(r) «1. Expanding the reduced Hamiltonian 8= (1/kw T) f F(r) d'r in powers of 8(r), we obtain from
(4.3a),

H= — d'r([8, 8(r)]'+(1+6)[8,8(r)]'+ 68'(r)[8,8(r)]' bg'(r)[8, 8(r)]' & ng'(r)[8, 8(r)]'
2k~ T

+ 3 (ag'(r)[8, 8(r)] ' —2&8(r}[8,8(r) ] [8,8(r)] + -' &8'(r}[8,8(r) ] [8,8(r) ] + O(8 )j (4.4)

(4.5)

where n= (K, -K,)/K, . A similar expression can
be obtained from (4.3b) for the case K, & K,.

By considering the renormalization of the
[8,8(r)], [828(r)]2, and 8(r)[8,8(r)] [8,8(r)] terms,
respectively, we obtain the following equations:

lnb t 2

2 (( ~ 0)"') '

For the case K, &K, we obtain

dt ~t' 1
dl 2w (1 —n)" '

dl 2w (1 —n)"' &

(4.9a)

(4.9b)

lnb 2n
t~ t 2w (1+n)"' (4.7)

dt Llt2 1
dl 2w (1+4}"'
dh dt rL 2

2, (1+n)"

(4.8a)

(4.8b)

where t=ksT/K, .
After determining f, as usual, from a self-con-

sistency requirement, we find recursion relations
for t and 4, namely,

where f =ksT/K, and Z= (K, —K,)/K, (0.
From the recursion relations (4.8b) and (4.9b)

for ~ and ~ we see that K, —K, is an irrelevant
parameter. Thus, at low temperatures, the one-
constant approximation is correct in describing
the long-range or critical properties of a nematic
liquid crystal (e.g. , the long-wavelength scattering
intensity), even when K, o K,.

The irrelevancy of the parameter K, —K, is indi-
cated graphically in Fig. 5, where the renormali-
zation-group trajectories are plotted. If we begin
with a system where K, K„successive iterations
will transform the initial system to one exhibiting
the fixed-line behavior of an isotropic XF model.
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ed line,

=K~

T
Kt

FIG. 5. Renormalization-group flows predicted by
(4.8). These flows terminate in a fixed line character-
ized byK, =K3.

cursion relations (2.16) out of the troublesome co-
existence-curve region until h(l) is of order unity.
At this point, any thermodynamic function can be
calculated by ordinary perturbation theory. Be-
cause renormalization theory relates therrpo-
dynamic functions calculated with an effective Ham-
iltonian X(l) to those calculated with the initial
Hamiltonian (see below), we can use such calcula-
tions to produce quantities of interest close to the
coexistence curve.

The limitations of such an approach in 2+ & di-
mensions can be seen by solving the system (2.16).
This is readily done using techniques described in
Ref. 6(b). To solve (2.16a), we can neglect h(l)
entirely and obtain immediately,

V. THERMODYNAMIC FUNCTIONS NEAR

TWO DIMENSIONS

?(()=7' " () ( " ()] (5.2)

Momentum-shell recursion relations, such as
those derived in Sec. II, lead straightforwardly to
the susceptibility, free energy, and magnetization
of fixed-length spin systems in 2+ a dimensions.
We shall use a trajectory integral "matching"
formalism, '7 which has been rather useful in cal-
culations near d= 4.

Hamiltonian flows in temperature and magnetic
field generated by Eqs. (2.16) are shown in Fig.
6 ~ Direct calculations of quantities such as the
magnetization, susceptibility, etc. , are not dif-
ficult at low temperatures provided the magnetic
field is sufficiently large. The propagator enter-
ing a graphical perturbation series in 7 is

G, (h, T, q) = T/(q'+ h) . (5.1)

The magnetic field. h is a "mass" which provides an
infrared cutoff for the Feynman graphs.

Of course, infrared logarithms in h spoil such a
direct expansion in the interesting region near the
coexistence curve in Fig. 6. We shall circumvent
these small h difficulties by intergrating the re-

h(i~) = 1. (5.4)

However, in order that a perturbation theory in
temperature be possible at this point, we require
that T(l*) remain of order e. Requiring for
concreteness that T(l*) be less than twice T,
[T(l")& 4ve/(n —2)], we discover a forbidden re-
gion in Fig. 6 where we cannot do calculations.
In particular, the zero-field high- temperature
phase is entirely inaccessible.

Consider first the transverse susceptibility,

The solution of (2.16b) is only slightly more com-
plicated, and is given in implicit form by

he"
(1+ [(n —2)T/2))g] (e-~) —1)}
—(1/8w)(n —3)T(l)h(l) ln[l+h(l)] . (5.3)

The solutions (5.2) and (5.3) are correct to leading
order in T(l) and e, provided T(l) =0(&), and h(l)
~ O(1). Our plan is to integrate (5.3) until l = l*
such that

x, = (5.5}

I.O

ORBID DEN
GION

where the average is evaluated in the ensemble
specified by (2.10). The transverse susceptibility
after one iteration of the momentum-shell re-
normalization group of Sec. II is easily shown to
be

2bff (5.6)
2' 6 T
0 2

FIG. 6. Renormalization-group flows induced by
(2.16). The coexistence curve is the flow line connect-
ing the nontrivial fixed point h = 0, T = 27r e /{n —2) and
the zero-temperature fixed point. The bold trajectory
terminated at h(l) =1 marks the border of a forbidden
region which is not accessible to explicit calculation.

1 ' T(l')dl'
x, = exp dl ——(n —1, x„ l2w, 1+h l' (5.7)

By repeatedly iterating the differential version of
this transformation, we determine x, in terms of
the susceptibility y, (l) associated with the
"dressed" Hamiltonian H(f),
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The graphs entering a direct calculation of ](, (l)
are just those of Fig. 2(d). Evaluating these
graphs, we obtain

](,(l) = + —(n —1)h(l) in[1+ h(l)]
h(l) 1

T(l) 8w

(n —l)h(l) lnh(l) .
Sm

(5.8)

The exponential prefactor in (5.7) is readily de-
termined using the methods of Ref. 6. In parti-
cular,

1 ' T(l') dl'
2w „1+h(l'}

-1 (n —2)T
( „))

P2 —2 2F&

+ (I/8w)(n —1)T(l) in[1+ h(l)] . (5.9)

On combining (5.9), (5.8), and (5.7) (with l =l*) and
using the recursion-relation solutions (5.2) and (5.3)
(5.3). we obtain, to leading order in e and T(l d),

( —2)T .,~
1))

n
x = —&+1

The "matching" relation analogous to (5.7), which
relates the free energy of interest to one evaluated
at l =l* is"'

(5.12)

The kernel G,(l} of the trajectory integral term in
(5.12) arises from the differential contribution to
the free energy generated by our momentum-shell
renormalization group. For fixed- length spins in
2+ & dimensions this is

G (I) = —( —1) ()n[lnh(l)] —1

+ —(n —1)
1 T(l)

4w 1+h(l)
—lnT(l))

(5.13)

to lowest order in T(l) and e. In deriving (5.13),
we have been careful to take into account the spin
rescaling factor (2.13).

The free energy entering the right-hand side of
(5.12) is, to lowest order,

x [1 (1j8w)(n —1)T(l") lnh(ld')] .
After setting l* = —& lnh, this becomes

(5.10)
1

F(l 2) = —(n —1) q dq{ ln [q'+ h(l*) ] —lnT(l*)j .
4m'

(5.14)

1 ~ (2' ' —1)) (5.11)
h 2m&

g is more conventional to absorb the overall fac-
tor of T in (5.11}into the definition of )[, .

The evaluation of the free energy is very similar.

After some fairly tedious manipulations on the
trajectory integral part of (5.12) [similar to those
in Appendix A of Ref. 6(b)], we determine a con-
tribution to the free energy which apparently de-
pends on l*, namely

1 m3)/2 (~2)

4m
(n —1) he "dl 1+ T(e "

1)2')t'f
——(n —l)e "*h(l+) lnh(l +) .

Sm
(5.15)

It is easy to check that (5.15) is, in fact, indepen
dent of the precise choice of l* to lowest order,
as we would expect. On setting h(l*}=- 1, evalua-
ting the integral in (5.15), and surpressing various
regular parts of the free energy, we obtain our
final result for the singular part:

(n-j. )/2 (n g)
P. (T, 5) = ——(1~ (5"'—1)

2Fg

(5.16)

A more conventional definition of the free energy
would absorb the overall factor -T into F,.

The magnetization follows immediatey by dif-
ferentiating (5.26). Keeping only the leading term,
we obtain

M(T, h) = ——[TF(T,h)]
d

(n 2)T (12-21/2 (12-2)

1+ (h' ~' 1)
27Tf

(5.17)

](„=—(n- 1)h "'+
Sm

x 1+ (h' ' 1) (5.18)
2w&

which agrees with results by Brezin and Zinn-
Justin. ' Of course, Eq. (5.17} could have been
deduced immediately from (5.11) by using the gen-
eral Ward identity" )(, = TMlh. Another differentia-
tion with respect to h gives us the longitudinal sus-
ceptibility,
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It is instructive to evaluate our basic results
(5.11), (5.16), (5.1V), and (5.16) in various limits.
For example, in the limit q - 0, n - 2, (5.16) be-
comes

time-dependent Ginzburg-Landau models, and

J. Sak [Phys. Rev. B 15, 4344 (19VV)], who studies
long-range interactions with a momentum-shell
technique similar to ours.

pl.+T)8r (5.19) ACKNOWLEDGMENTS

in agreement with the results of Berezinskii" for
the two- dimensiona. l XY model.

Note added in proof. Readers may be interested
in other work on critical phenomena in 2+ e di-
mensions. Two recent references are C. De
Dominicis, S.-K. Ma, and L. Peliti [Phys. Rev.
B 15, 4313 (19VV)], who treat the dynamics of
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