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The hydrodynamic theory of spin waves is extended to a magnetic system such as a spin glass or a crystal
with helical spin order, in which there are equilibrium magnetizations on different sites, with spin directions
that are not collinear. If the total magnetization is zero and if the interactions are assumed to be isotropic in

spin space, one predicts well-defined spin waves at small wave vectors k, with a linear dispersion relation,
and three polarizations for each value of k. The hydrodynamic assumption of a finite spin-stiffness constant
may be questionable, however, for the spin glass. Nonzero magnetization is discussed briefly.

I. INTRODUCTION

A number of years ago, Halperin and Hohenberg
developed a hydrodynamic theory of spin waves
for certain simple examples of magnetically or-
dered systems. ' The hydrodynamic spectrum was
found to agree in form with the spectrum obtained
from microscopic theories in the long-wavelength
limit. In the Heisenberg ferromagnet, where the
order parameter (the magnetization) is itself a
constant of the motion, it was found that there is a
single propagating spin-wave mode with quadratic
dispersion. In the Heisenberg antiferromagnet,
where the order parameter (staggered magnetiza-
tion) is not a constant of the motion, it was found
that there are two polarizations of propagating spin
waves with linear dispersion. In addition to the
results for the spin-wave frequencies, it was pre-
dicted that the spin-wave damping is proportional
to the square of the frequency in the hydrodynamic
regime. ' Hohenberg and Swift have applied similar
reasoning in the case of the single-triplet model. '

In the present work, we shall extend the analysis
of Ref. 1 to more-complex systems in which the
equilibrium orientations of the spins on various
sites are noncollinear. Well known examples of
this situation are helical spin arrangements, such
as the structures observed in the rare-earth
metals Tb, Dy, and Ho (Refs. 4 and 5) (See Sec.
VI). An example of considerable current interest
is the proposed "spin-glass state" for a dilute
system of magnetic impurities in a nonmagnetic
metallic hose such as Mn in Cu. ' We shall limit
our considerations here to models in which the
Hamiltonian is assumed to be isolroPic in spin
sPace (i.e. , invariant under the simultaneous rota-
tion of all spins), and in which the equilibrium

state has zero net magnetization. (Systems with
nonhero magnetization will be discussed briefly in
Sec. VII.)

As our principal result, we find three polariza-
tions of spin waves, each with a linear spectrum.
The spin-wave velocities are inversely proportion-
al to the square root of the magnetic susceptibility,
and directly proportional to the square root of the
ratio of a spin-stiffness constant p~ which we have
assumed to be nonzero. The damping predicted by
the hydrodynamic theory is proportional to k'. It
must be emphasized, however, that the hydrody-
namic theory has some major limitations, as will
be discussed in Sec. III.

The prediction of a linear spectrum for the spin
glass has also been made by Edwards and Ander-
son. ' In their paper, however, they consider a
model in which the spins are confined to the x-y
plane, which gives them a single polarization of
spin wave, analogous to the planar ferromagnet
considered in Ref. 1. Also, in the Edwards-An-
derson paper, the microscopic "spins" are more
like electric dipoles, having a finite moment of in-
ertia, but no intrinsic angular momentum. The
excitations are more properly described as "pho-
nons" in that case.

Huber and Ching' have obtained a linear spin-
wave spectrum at T =0 for a Heisenberg spin
glass, by using an approximate decoupling proce-
dure in the equation of motion. Their approxima-
tion also permits them to estimate the spin-wave
velocity for several models. However, their cal-
culations lead them to predict an overdamped, dif-
fusive behavior at long wavelengths for T 40, in
contrast to the linear propagating mode predicted
by our hydrodynamic analysis.

Hydrodynamic analyses have been used, of
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course, to discuss the mode structure of many

other systems with broken symmetry, including
superfluid He, liquid crystals, and the various
superfluid phases of 'He. '"" The three spin-wave
modes found in the present paper are related par-
ticularly closely to the spin-wave modes of 'He-B,
when the dipolar interaction is neglected. "

In Sec. II we present a brief overview of the sys-
tems of interest, and a heuristic derivation of the
three spin-wave modes. A more-detailed discus-
sion of our assumptions for the equilibrium state
of the spin-glass system, and a more detailed hy-
drodynamic derivation are given in Secs. IV and V.
Application to helical spin structures is discussed
in Sec. VI, and results for the case of nonzero
magnetization are given in Sec. VIII. In the Appen-
dix, we present a derivation of the Larmor pre-
cession theorem, in the form needed in the text.

II. OVERVIEW AND HEURISTIC DERIVATION

In an ordinary Heisenberg antiferromagnet,
where the spins in an equilibrium state G are
aligned parallel or antiparallel to a single direc-
tion x, the equilibrium state is invariant under the

group O(l) of rotations about the x axis. Since the
Heisenberg Hamiltonian is invariant under the
larger group O(3) of uniform spin rotations, rota-
tion of G by a small angle (8„8,) about any axis in
the y-~ plane, produces a new state G', distin-
guishible from G, but degenerate in energy. The
two polarizations of antiferromagnetic spin waves
derived in Ref. 1 were obtained by considering the
time evolution of a state in which a rotation angle
8,(r) or 8,(r), varying slowly from point to point,
is coupled dynamically to a slowly varying mag-
netization density m„(r ) or m, (r ).

In the present paper we consider systems where
the symmetry group O(3) is comPletely broken in
the equilibrium state G, and rotation about any
axis leads to a new state G'. In the nonequilibrium
hydrodynamic states we shall keep track of three
rotation angles 8 (r ), a = 1, 2, 3, which will be
coupled dynamically to the three components of the
magnetization density m (r), to yield three polari-
zations of spin waves. For a nonequilibrium state
in which there is a small magnetization density
m(r ), as well as a slowly varying rotation angle
F(r), we expect an excess free energy of the form

3

oz(, &) = l Z f ( d)( plved') . *. (2'. ))
CX= 1

Here we have assumed that the equilibrium state is
macroscopically isotropic, so that X, and p, may be
treated as scalar constants; in the most general
case, g and p, are tensors in spin space, and p,
may be a tensor in real space as well. We shall

derive below equations of motion for m and 8
which, in the long-wavelngth limit, have the form

=rm (r)x ' ='r (2.2)

sm„(r), 6(nF)
=rt).&'8(r) =-r

@(-), (2.3)

where r=gp s/his the gyromagnetic ratio. At a
given wave vector k, these coupled equations have
solutions at frequencies

(g] = +ck,

c = r(PJX)",
(2.4)

(2 6)

corresponding to the positive and negative frequen-
cy parts of a spin wave with polarization a. (In
the more-general case where g and p, are tensors,
spin waves of different polarization may have dif-
ferent velocities, which may also depend on the
direction of propagation. ) Additional terms in the
equations of motion lead to a spin-wave damping
crjP.

Equations (2.2) and (2.3) may be derived heuris-
tically, in analogy to Anderson's discussion of the
dynamics of superfluid helium, '2 by noting that
m (r) and 8„(r) are canonically conjugate, in the
sense

[8 (r ), m8(r')] = fr+6„86(r r')— (2.6)

[ see Eq. (4.11)]. Equation (2.6), in turn, is a con-
sequence of the transformation properties of 6)~

under rotations, and the fact that the total spin
operator is the infinitesimal generator of rotations
in the system.

III. LIMITATIONS OF THE HYDRODYNAMIC THEORY

It is the fundamental assumption of the hydrody-
namic theory that the state of a system with small
long-wavelength deviations from equilibrium is
essentially determined by the long-wavelength var-
iation of the various conserved densities, together
with any additional variables necessary to describe
the degrees of freedom associated with any contin-
uous broken symmetry of the Hamiltonian. In the
present situation the conserved densities are the
magentization density m(r ) and the energy density
e(r), while the variables associated with the bro-
ken symmetry are 8 (r). The hydrodynamic as-
sumption is valid, in particular, if the frequency
of the long-wavelength mode is small compared to
the relaxation rates of all microscopic degrees of
freedom of the system. In practice, the situation
is rarely unambiguous; there is usually a continu-
um of internal relaxation rates, extending down to
very low frequencies, and the important question
is the extent of the coupling between the hydrody-
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namic mode and any short-wavelength degrees of
freedom with comparable relaxation times.

In a periodic magnetic insulator, at low tempera-
tures, a long characteristic time is the collision
time 7, for thermal magnons. The hydrodynamic
formula for the damping of spin waves is certainly
not valid unless ~r, && 1. The hydrodynamic for-
mula for the real part of the spin-wave frequency
remains valid for ew, »1, however, because as
T-O, the number of excitations goes to zero, and

it makes little difference to the spin-wave frequen-
cy whether the thermal magnons follow the long-
wavelength motion or not.

The situation in the spin glass is not clear. The
large linear specific heat observed experimentally
in spin glasses, raises the possibility of a large
density of low-energy excitation, that could couple
strongly enough to change the frequency of the
spin-wave mode, or even to overdamp the mode
entirely. Another threat to the validity of hydrody-
namics is the possibility that the spin stiffness
constant p, is zero in the spin-glass state. Indeed,
these possibilities are suggested in a recent com-
puter simulation, by Walker and Walstedt, "of
randomly distributed spins, interacting via a Rud-
erman-Kittel-Kasuya- Yosida (RKKY) interaction,
with parameters appropriate to Mn in Cu. Quali-
tatively, Walker and Walstedt have observed that
rather large variations of the relative orientations
of various groups of spins can occur with very
little cost of energy, which suggests that the spin-
wave stiffness may indeed be very small or vanish-
ing in the spin glass. Furthermore, upon solving
the linearized equations of motion for small devia-
tions from the equilibrium spin orientations,
Walker and Walstedt found a large density of low-
lying modes, delocalized in space, and no evidence
for a density of modes vanishing as H, which
would be expected if the excitations were well-de-
fined spin waves with a linear spectrum. In fact
the density of excitations was such that it would
account quantitatively for the large linear specific
heat observed experimentally in these systems, if
the excitations were treated simply as noninterac-
ting bosons. It is interesting to note that in ordin-
ary glasses, the phonon mean free path l is gen-
erally found to be linear in the wavelength X of the
phonon (with l/&& 10'), for frequencies of the or-
der of JhsT/h, and T& 1 K." These anomalously
short mean free paths have been attributed to re-
sonant scattering from localized excitations,
which are present in sufficient numbers to give a
specific heat large compared to that of the phonons
at low temperatures. Despite this anomalous
damping, the phonon mean free paths in the glass
are still large compared to the wavelength, and
the phonon frequencies remain very close to those

expected from the macroscopic properties of the
glass.

An additional limitation of the hydrodynamic the-
ory arises because spin-anisotropy terms must
occur in the Hamiltonian of any real system, and

spin anisotropy always destroys the validity of the
hydrodynamic predictions at sufficiently long wave-
lengths. The assumption of isotropy tends to be
best for the case of S-state ions, in a relatively
symmetric crystal environment, and tends to be
rather poor in the rare-earth metals, where the
helical structures are found.

IV. PROPERTIES OF THE SPIN-GLASS STATE

The models we shall consider are described by a
Hamiltonian of the Heisenberg form

x:,=-—gz, 5, (4.1)
2

where the S; are spins on a lattice, which is not
necessarily periodic, and the J&~ are the coupling
constants between the sites. Note that X, is invar-
iant under simultaneous rotation of spins, about
any axis.

For the spin-glass case, the magnetic sites are
assumed to be randomly substituted on the non-
magnetic host lattice, and the J~~ are given by the
RKKY interaction. Because the sign of J&~ is a
rapidly oscillating function of the separation be-
tween the sites i and j, the coupling J&~ is often
treated as a random variable, with zero mean.
The long-range 1/r' behavior of the RKKY inter-
action is not believed to play an essential role in
the spin-glass state, and the considerations of the
present paper should apply equally well to a near-
est-neighbor Heisenberg model with couplings of
random sign, as to the original RKKY modelwith
random site positions.

As a consequence of the competing nature of the
coupling constants between different sites, it is
impossible to minimize all the bond energies si-
multaneously. It appears that the best compromise
is not any simple ferromagnetic or antiferromag-
netic configuration, but a more complicated ar-
rangement in which the spins on various sites
point in various directions of the unit sphere.

For the purposes of the present paper we shall
assume a number of properties for the spin-glass
state. If the system is cooled to a temperature T
below the transition temperature T„ the system
mill be found in one of a large number of possible
thermodynamic "equilibrium states" which all
have similar macroscopic properties, but which
would be distinguishable in principle, if one could
measure the time-averaged orientation of the spins
on individual impurity sites. Let us pick out one
of the many possible equilibrium states, and de-



H YDROD YNANIIC THEOR Y OF SPIN %A YES IN SPIN. . . 2157

note it by G. The state G is represented by a den-
sity matrix p& that is constant in time. The expec-
tation value &S;)o of any given spin inthe state Gis
nonzero; however, the net magnetization

(4.2)

is assumed to have zero expectation value in G.
More exactly, let m(r ) be the magnetization den-

sity in a region R, of volume &, containing many

spins, centered at point r:

where e 8& is the antisymmetric unit tensor.
We shall also wish to consider nonequilibrium

states in which (t B(r)) varies slowly as a function
of r. We define an operator 8(r) for the spin
glass, which measures the local rotation angle, as

8y(r) =(I/2q)e By[t„B(r)—q6~B]. (4.9)

[This definition is sensible only when the differ-
ence [(t B(r)) —q6 B] is small. )

Using the basic commutation relation [S„S~]
i~f f e z &S,-, one may readily verify the following

general relation:
m(r) = v-'ptas Pg& .

f6R
(4.3) [ I ), BB(r)]= gt Bv '&»t,-y(r). (4.1O)

Then the expectation value (m(r })o is assumed to be
small, of order n ' ', where n is the number of
spins in the volume &. The distribution of expecta-
tion values &5&)s is assumed to have the additional
property

n 'g&S") &SB) =q6.B+o(n '"), (4.4}

where 8 are t"- numbers.
We may then define a rotated ground state G',

whose density matrix is given by

po =U(&) 'poU(&). (4.6)

It is clear that the free energy of the state G' is
identical to that of G.

Let us define a (one-body) operator

where a, P denote Cartesian components of the
vector S;, and g is a positive constant.

The parameter g, which is taken to be the "order
parameter" of the spin-glass by Edwards and An-
derson, ' is generally believed to go to zero contin-
uously, as T approaches the spin-glass transition
temperature from below. In the present paper, we
do not make any particular assumptions with re-
gard to the temperature dependence of q, nor do
we utilize the concept of an "order parameter. "

We shall next consider the action of uniform ro-
tations on G. Let U(f) be the operator

U(8) —= exp(t8 ~ f), (4.5a)

M
(4.5b)

From this it follows, for the spin glass, that

[m ( )r, 8B( )r]=2tgpBv''q '

x [t,(r) —6.Btygr)]. (4.11}

F=F~+-,p, d'r V8' (4.12)

For small deviations from equilibrium, we may
replace the right-hand side of (4.11) by
-igp~v '4 8, its expectation value in the state G.
[This constitutes a derivation of Eq. (2.6), quoted
above. ]

It should be emphasized that there may be many
other equilibrium states G", having the same free
energy as G, but which cannot be derived from G
by a rotation, and for which 8(r ) cannot be rea-
sonably defined. A simple example is the time re-
verse of G or of any rotated state G', for which
(t B(r))o =-qI' B. There may be many other equi-
librium states in which (t B(r ))~ ~ =O(n ' '). By
hypothesis, however, each of these states is sep-
arated from G by a large enough free energy bar-
rier or a large enough distance in phase space,
so that a state initially in G will have negligible
probability of making a transition to these other
states.

Having defined the variable 8(r ), we now turn
to the dependence of the free energy on 8. If 8(r)
varies in space, the free energy is expected to be
higher than in the equilibrium state. If one consid-
ers the state of lowest possible free energy, con-
sistent with a given long-wavelength variation in
6j, it is natural to suppose that the free energy will
be raised by an amount proportional to (V8)', or

t.B(r) =n-~g &Sq,S,.B,
fGR

(4.7)
where p, is a finite stiffness constant and

(t„B(r})o =q[6crB+eaBy8y+O(8')], (4.6)

where A, as before, is a region containing a large
number n spins, centered about point r. For gen-
eral rotation angles 8, (t B(r))~ equals qF B(8),
where F z is the rotation matrix corresponding to
8. If the rotation angle l in (4.6) is small, we will
have

]V8]'=g]V8 P. (4.13)

As a guess, one might expect p, to be roughly pro-
portional to g, disappearing at high temperatures
when the magnetic order disappears.

It is easy to establish an upper bound to the free
energy rise, of form (4.12). Consider a state K,
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defined by

(4.14}
(4.21)

f
U=-exp] iQ 8(r,) (4.15)

8 (r ) —= 80 cosk r, (4.16)

where 8, and k are small. The orientation of each
spin SJ in K is rotated by the angle 8(F) relative to
its orientation in G. The entropy of K is the same
as that of G, so that the increase in free energy is
given by the difference in energies, (Xgr -(+)e.
This difference is readily computed to give

~=-'Vpo]8 ]2k', (4.17}

(4.18)

where v; may vary rapidly from one site to the
next, subject only to the constraints that 7~ be
small on every site, and that

gr, ( S) caosk r~ =0 (4.20}

for all a, P. [Equation (4.20) may be thought of as
a constraint that some suitable weighted averages
of v& vanish for the system, which is obviously
much weaker than the constraint that v ~ vanish on
every site. ] One must choose the deviations v~ in such
a manner asto minimizethe free energy, subject to
the above constraints on v;.. Ingeneral, r~willbeof
order k80, in the limit 4'-0. Nevertheless, the
stiffness constant p, may be reduced considerably
below the upper bound p,'. The deviations 7; per-
mit the gradient of the rotation angle 8(r ) to be
redistributed so that the gradient between strongly
coupled spin pairs is reduced while the gradient
between weakly coupled pairs is increased. In-
deed, we cannot rule out the possibility that p, =0,
for the spin-glass state, although we shall assume
p, 0 below.

Next we consider states where the net magneti-
zation density m(r) varies from one region to an-
other.

For small amplitude disturbances, dE[m] is
quadratic in m and given by

where Vis the total volume of the system. " Equa-
tion (4.18) gives an upper bound to the stiffness
constant p~ provided that the sum on the right-hand
side converges, for large separations ] r; —r~~.

In order to compute the true stiffness constant

g, one must remove the restriction that each spin
be rotated by the precise amount 80cosk ~ r;. In-
stead, we should require that

(S) —(@o= 8, x (5)o cosk r~+ 7;+O(8'), (4.19)

where X is the macroscopic magnetic susceptibili-
ty. (As a practical matter, we are concerned here
with the "reversible susceptibility, "measured
with a weak magnetic field, at a frequency suffi-
ciently low that anisotropic perturbations will
cause the magnetization to follow the field. This
is not necessarily the same as the thermodynamic
susceptibility one would obtain by including all
states, accessible or not, in the partition func-
tion. ) When both m and V'8 are present, the free
energy increase, to quadratic order, is given by
the sum of the contributions

V. HYDRODYNAMIC DERIVATION

The remainder of the hydrodynamic derivation
is similar in spirit, but different in detail, from
that in Ref. 1. We begin with the relation between
the differentials of the entropy density s, of the
rotation gradient V8, and of the conserved quanti-
ties e (energy) and m„, which we write in the form

de=Tds+p„dm +P ~ d(V8). (5.1)

Here T is the local temperature, and (5.1) may be
taken as the defining equation for p and Q . If
we assume T constant, and consider only slow
spatial variations in 8, comparison to (4.22) gives

(5.2)

4'a = p.V8a. (5.3)

We assume, as before, that there is no applied
magnetic field.

The conservation laws may be written in the
form

—+V ~ ] =0 (5.4)

(5.5)

where j' is the energy current and j is the current
of m„. (Both j' and } must be determined. ) We

&F[m, 8] = —
Jl []m('X '+ p, ]V8]']d'r, (4.22}

which was the result used in Sec. II. Terms pro-
portional to m~V8~ are absent in the above, be-
cause they would require a preferred direction in
real space, contrary to our assumptions about the
macroscopic properties of the spin glass. A term
proportional to m ~ 8 is also impossible; such a
term would cause the equilibrium free energy
(after minimization with respect to M) to depend
on 8, which would violate the rotational invariance
of Xo.
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also write the I armor precession theorem (see
Appendix) in the form

a8„=r(u. +k.'), (5.6)

where r=gps/I is the gyromagnetic ratio, and
h' which must be determined, vanishes in the
uniform state.

Since the total entropy is a nondecreasing func-
tion of time, we may define an entropy current j'
such that the entropy production

agR=- —+v j'«0
at (5. I)

at all points. Combining Eqs. (5.1)-(5.4) gives

TR = -V ~ (j' —2 I'- p~l" +rk~g~)

-I' vT () -+re) ~ vu +rk'v" p. . (5.8)

The quantities ]', ]', ~, and k~are unknown,
and must be determined. The quantities T, p, ,
and V ~ ~Q will be considered to be the independent
variables, which may be arbitrarily specified.

Considerations of symmetry under space and
time inversion for the reactive parts of j', ], and
h', and the requirement that the total dissipation
be «0, give

will be recognized as the terms quoted in (2.2) and

(2.3) above, which lead to a real spin-wave fre-
quency, proportional to k. The second terms on
the right-hand sides of (5.16) yield an imaginary
contribution to the spin-wave frequency, of order
k', so that

~, =~ck- zsak

c = r(a/x)",
D =&1 +ypg

(5.1"/)

(5.18)

(5.19}

as for the ordinary Heisenberg antiferromagnet. '
For completeness, we note that the energy den-

sity c does not couple linearly to m or 8, so that
its behavior is described by

a~ = gv'T =vC 'v'e,
at (5.20)

where ~ is the thermal conductivity and C is the
specific heat per unit volume. Hence energy dif-
fuses, just as for a nonmagnetic material.

Since the structure of these equations is the
same as for the usual Heisenberg antiferromagnet,
we may immediately write down the hydrodynamic
contribution to the correlation functions by analogy
to that system'

~js(R) p

(R)

hr(R) p

(5.9)

(5.10}

(5.11) C«(k &) =2CkaT Drk2/[ &+(Dr!P)2]
(5.21)
(5.22)

2XksT[c'Dk'+X 'gk (Q —c'k')]
[(&u- ck)'+( —'Dk )'][(&o+ck)'+( 'Dk )'] '—

j =-T 'KVT

M(D) ~v
h'+) =gV ~ y .

(5.12)

(5.13)

(5.14)

Similar considerations for the dissipative terms
(which must be proportional to the thermodynamic
forces VT, Vp„, and V Q ) give, when isotropy in
spin space and cubic symmetry in real space are
taken into account,

where D& = ~& '. Inelastic neutron scattering ex-
periments have cross sections which are propor-
tional to C „„„(k,&u). In the spin glass, there will
be additional elastic scattering at all wave vectors,
due to the frozen-in magnetic and nonmagnetic dis-
order.

Huber and Ching' have estimated the spin-wave
velocity in a spin glass by using a sum rule for
the frequency-dependent magnetic susceptibility":

j = j+ a3 (5.15)

Here It,', K, and f must be «0, so that the total dis-
sipation is non-negative. Furthermore, the re-
quirement that R «0 at each point imposes

(~l&-=J x"(a, &d

y'p', k'

X

a 'x"(k, m) du

(5.23)

a8
=ym~g '+yap, v'g, (5.16a)

=yp, V'8 +Kg 'V'm (5.16b)

The first terms on the right-hand sides of (5.16)

where the last equality is correct to first order in
the deviations from equilibrium.

The coupled equations for m and 8 can now be
written

where p,
' is the bare stiffness constant, given by

(4.18). In view of the discussion in Sec. IV, we
see that (5.23} is an overestimate of c'k', even
when the spin-wave spectrum is sharply peaked at
~ = ck, in the limit of long wavelengths. The rea-
son is that the high-frequency tails of the spin-
wave spectrum, which give a negligible contribu-
tion to the integral in the denominator of (5.23) in
the limit k-p, can nevertheless give a contribu-
tion to the numerator comparable to that of the
spin-wave peaks.
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VI. HELICAL SPIN ORDERING

(t„s(r))~ =q(6 s —6,6s,), (6.1)

where we have chosen the three axis as the hexa-
gonal axis. In the rotated system we have

The classic cases of helical spin ordering occur
in the rare-earth metals Tb, Dy, and Ho." In the
helical phases, the spins are aligned ferromag-
netically within each hexagonal plane, but the
orientation changes from one plant to the next.
Anisotropic terms in the Hamiltonian cause the
spins to lie perpendicular to the hexagonal axis.
If we treat the anistropy energy as very small,
then the system may be subjected to a hydrodynam-
ic analysis, very similar to that outlined above for
the spin glass. The principal change is that the
spin orientations are now hightly anisotropic. We
now have, in the ground state G,

spin coordinates are transformed back to the labora-
tory frame, the spin wave at q is found to have a com-
ponent of the magnetization at k =q + Q, as well as
at k =q. Thus the spin waves near q =0, q =Q, and

q =-Q may be interpreted as three polarizations
of spin waves with wave vector near k =0.

In the rare-earth systems, the anisotropy align-
ing the spins in the x-y plane is generally much

stronger than the anisotropy within the plane. If
one takes into account only the larger anisotropy,
the microscopic theory predicts a gap in the spin-
wave spectra for two of the three polarizations,
while the third has a frequency that varies as k,
for k-0. A single spin-wave mode, at a=+ck, is
indeed what one obtains from the hydrodynamic
theory in this case; the system now has the char-
acteristics of the "planar ferromagnet" discussed
in Ref. 1.

t s(r) =(f„&(r))e[6„s+e&s&8s(r )], (6.2) VII. SYSTEMS WITH FINITE MAGNETIZATION

X s =X(&)6 s,
&sas=A(f~ o')6asdv~

with

(6.4)

(6.5)

X(1) = X(2) «X(&),

4& 1) =4&, 2) «4&, 2),

~.(1, n) = ~.(2, o) «p&2, n) .

(6.6)

For any given direction in k space, the three po-
larizations of spin waves have frequencies

u = +c~k, (6.7)

8&(r) =(1/2q)(2e s —6,e~s)t s(r). (6.3)

Note that three components of 8& may still be de-
fined. The susceptibility X and the stiffness con-
stant p, are now tensors:

For suitable choices of the coupling constants
J;,, the Heisenberg Hamiltonian (4.1) can have a
ground state which has a noncollinear spin align-
ment, coexisting with a nonzero average magneti-
zation M, ."

Applying the hydrodynamic theory in a straight-
forward manner to the components of l(r) and m(r)
parallel to Mo, one finds a linear spin-wave mode
identical in form to the case of zero magnetization

& = (Pgs /X q)

Here p, ]] is the spin-stiffness constant for rotations
about the M, axis, and p~] is the susceptibility par-
allel to M, . The spin-wave modes involving the
components of m perpendicular to M, will then
have a behavior similar to the spin waves in a con-
ventional ferrimagnet" or the singlet-triplet mod-
el considered in Ref. 3; one branch of the spin-
wave spectrum has a frequency given by

(6 6) = ps~}t /Mo (1 2)

~, -[[8(4)—-'&(q +4) —-'&(q -4)]
x [&(Q) —&(q)])", (6.9)

J(k) =gJ(R,) exp(zan% ~ R,), (6.10)

where J(R;) is the exchange constant for two sites
separated by R;, k =+/ defines the maximum value
of 8(k), and q is the wave vector of the spin wave,
in a spiral coordinate system. Note that &o, - ]q]
as ]q]-0, andre, -]q+Q]as ]q +Q]-0. Whenthe

Note that c, = c, wc, .
It is interesting to compare these results with

the microscopic spin-wave spectrum of the helical
system, as calculated by Cooper et al. ' Their re-
sults may be written in the form

for small k, while the second branch has a finite
frequency &at k=0, with 4-MoXs'. " [Although
the finite frequency mode is technically not a hy-
drodynamic mode, it may be described by a con-
tinuum equation of motion in the limit where Mo is
small. The quadratic mode is a true hydrodynamic
mode, and ('l. 2) coincides with the spin-wave for-
mula for the Heisenberg ferromagnet. ]

It must be noted, however, that there is a seri-
ous difficulty with formula ( t. l) at finite tempera-
tures. It is expected that y], is divergent at finite
temperatures in three dimensions, for a Heisen-
berg system with Mo &0, due to the effects of ther-
mally excited long-wavelength spin waves. " Be-
cause of this singularity, one cannot expand the
free energy in powers of m, f, and their gradi-
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ents, and the hydrodynamic assumptions break
down. At T =0, we expect that g]] is finite, how-

ever, and (7.1) should describe one branch of the
excitation spectrum in this case.

In principle, (7.1) should apply at finite temper-
atures for spatial dimensionality greater than 4,
since the susceptibility p(~ will be finite in that
case.
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APPENDIX: LARMOR PRECESSION THEOREM

D=A d rt~~ r (A3)

where t 8 is defined by (4.7), and X-0 as the size
of the system becomes large. If G is only a metas-

Let the Hamiltonian be given by

X=X,—h, M„ (A1)
where X is invariant under rotations, and h, is a
magnetic field in the z direction. Assume that at
t=0, the density matrix for the system may be
written

p=Z 'e, Z=Tre e, W—= Xo —p,,M, —D, (A2)

where LL(,, plays the role of a chemical potential,
and D is an infinitesimal symmetry-breaking field,
introduced in order to pick out a particular one of
the many degenerate equilibrium states, in the
broken symmetry situation. A possible choice,
designed to pick out state G, is

(A4}

The first term on the right-hand side of (A4) van-
ishes identically, the second term vanishes be-
cause D is infinitesimal, and we are left with the
third term. By choosing A as the various com-
ponents of S;, we see that the expectation value of
any spin must precess about the z axis at the rate
y(p, —h,). Similarly, using (4.11) we see that, for
small 8,

dog
dt

'r( l4 —h,}. (A5)

As expected, de, /dt=0 when p, =h, .

Note added in Proof. Professor I.E.
Dzyaloshinskii has called our attention to a paper
by Andreev and Marchenko which discusses the
low-frequency spin-wave spectrum of general
crystalline magnetic structures, including non-
collinear ferrimagnets and antiferromagnets,
and which seems to predict additional "anomalous
spin-wave modes" under certain circumstances.
The derivation of these modes and their relation-
ship to the modes discussed in the present paper
are not completely clear to us.

table state, so that there exists a state of lower
free energy at the given temperature P ', then D
must include an artificial potential barrier to elim-
inate the unwanted states. (The argument below
may still be used in this case, because if G is me-
tastable, the system will not enter the forbidden
region of phase space in a finite length of time. }

Let A be any operator. Then by expressing X
in terms of O', D, and M„we find, at t=O,

(A& =([A, W]&+([A, D])
d
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