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Mean field and e-expansion study of spin glasses*
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A Landau-Ginzburg phenomenological free energy for the Edwards and Anderson spin-glass model when

there is competition between spin-glass and ferromagnetic ordering is developed. This free energy obtained

with the use of the n —i0 replication procedure is analyzed using mean-field theory and the e expansion.

Critical exponents for the ferromagnetic-spin-glass multicritical point are calculated in 6 —e dimensions. For
Ising systems, v = 1/2+ (2/3)e and $ = 1+ (1/2)c. For XY and Heisenberg systems, these exponents are

complex. This result is not fully understood. The Harris-Plischke-Zuckermann model for amorphous

magnetism is shown to have an Ising-like spin-glass fixed point in high enough dimension.

I. INTRODUCTION

Quenched spin systems with random exchange
interactions, J, taking on both positive and nega-
tive values are believed to exhibit a low-tempera-
ture ordered phase called a spin-glass phase.
This phase is characterized' by a vanishing aver-
age moment, [(S)],„=0but a non-vanishing mo-
ment squared, [(S)~ (S)],„. Here (5) refers to the
thermodynamicaverage and[ ],„referstoanaver-
age over the ensemble of random exchanges. Most
experimentally investigated spin glasses are dilute
substitutional magnetic alloys such as CuMn or
AuFe." Here the positive and negative values of
the exchange interactions are produced by the
sinusoidal oscillations of the Rudderman-Kittel-
Kasuya- Yoshida interaction. A long-range oscil-
lating interaction is difficult to treat theoretically.
Therefore, arguing that it is the random sign and
not the long-range nature of the exchange inter-
action that is essential to produce a spin-glass
state, Edwards and Anderson' introduced a model
for a spin glass with short-range random ex-
change. They analyzed this model by a clever
generalization of the replication procedure' in
which the spin-glass order parameter [(5)~ (5)],„
appeared as the average of the product of the spins
in two different replicas. As usual, 4 to reproduce
the quenched random averages, the number, n, of
replicas is allowed to go to zero. Sherrington and
Kirkpatrick' following previous work' analyzed a
generalization of this model and produced an
"exact solution" within the context of the replica-
tion procedure. This calculation produced a com-
plete phase diagram with ferromagnetic, spin-
glass, and paramagnetic phases. Following this,
the authors and A. B. Harris' introduced a Landau-
Ginzburg continuum formulation of the Edwards-
Anderson model for the special case when the
average exchange [g] is zero. This permitted a
calculation of critical exponents in 6 -& dimen-

sions. This paper is an extension of the work of
Ref. 7 to include [J],„e0. This generalization
produces a mean-field phase diagram similar to
that found by Sherrington and Kirkpatrick' and
permits a (6-e)-dimensional calculation of the
critical exponents for the multicritical point where
there is simultaneous spin-glass and ferromag-
netic ordering.

It is now clear that the n =0 replica procedure
leads to many puzzling problems. First the solu-
tion which produces the ordered spin-glass state
maximizes rather than minimizes the free energy
in the n =0 limit. Second the "exact'* solution of
Sherrington and Kirkpatrick' yields a clearly un-
physical negative entropy at zero temperature.
These problems are presumably associated with
the interchange of the n-0 and the thermodynamic
(number of sites N-~) limits. For any finite N,
the n- 0 limit reproduces exactly [lnZ],„as can be
seen, for example, term by term in a high-tem-
perature series. Thus, if n is allowed to go to
zero before N goes to infinity, the correct answer
will be obtained. If jV-~ first, then n 0, prob-
lems may arise which could presumably change
the equilibrium state from a free-energy minimum
to a free-energy maximum for example. Recent
work on mean-field theories for the spin-glass
transition which do not rely on the replication pro-
cedure' " indicate that that procedure is satis-
factory in the disordered phase and in the critical
regime but that it breaks down at zero tempera-
ture. There is, thus, some hope that the n =0, c
expansion will give the correct critical behavior.
For the Ising spin glass, we find no reason to
doubt this. On the other hand, for two- and three-
component (ÃY and Heisenberg) spin systems, we
find the disquieting result that the thermal critical
exponent at the ferromagnetic-spin-glass multi-
critical point is complex. Whether this result is
due to a mistreatment of systems with more than
one spin component or whether it is a result of the
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inadequacies of the replication procedure is un-
clear. Recently another model for a spin-glass
transition has surfaced. " " In this model, site
randomness is described by a variable e(%} at each
site x that can take on values + 1. The "spin-glass"
order parameter is then [(e(%) S(x})],„. An unam-
biguous mean-field theory for this model can be
developed, "and critical exponents become non-
classical below four dimensions. " It is our belief
that site randomness of the above type is funda-
mentally different from the bond randomness dis-
cussed here. " We believe that the spin-glass
order parameter introduced by Edwards and An-
derson and used here is the correct one for the
bond problem. When both bound and site random-
ness is present, there will be competition
among ordering of (S(x)), [(e(x)S(%))],„, and

[(S(x))~ (S(%))],„. A more complete treatment of this
question is in preparation. '4

The bond spin-glass problem has recently been
treated using discrete versions of the renormal-
ization group" for random systems. " Grinstein
et al."have treated the random one-dimensional
Ising model and have found a spin-glass fixed prob-
ability distribution (i.e., a probability distribution
which does not change under the renormalization
group at zero temperature). Similar results have
been found by Young and Stinchcombe" who also
carry out a decimation"+' renormalization calcula-
tion on a two-dimensional square lattice. They
find no spin-glass fixed distribution in low dimen-
sions but argue that the higher connectivity of the
three-dimensional lattice would probably produce
a spin-glass transition. Monte Carlo calculations"
in two and three dimensions also provide strong
indications that there is a spin-glass transition.
The above, plus evidence from the nonreplication
mean-field calculation, ' ' indicate that the bond
random system can have a spin-glass transition.
It seems probable to us that the n =0 calculations
presented here give a correct description of the
critical properties of the ferromagnetic and spin-
glass transitions for the Ising model, at least.

This paper is divided into five sections. Section
II introduces the model. Section III treats Landau
mean-field theory for the model introduced in Sec.
II. Section IV calculates the exponents for the
spin-glass-ferromagnetic multicritical point in
6 -& dimensions. Section V shows that the Harris-
Plishke-Zuckerman model" for an amorphous
ferromagnet has an Ising-like spin-glass fixed
point in 6 -a dimensions.

II. DEVELOPMENT OF THE MODEL

Consider a 4-dimensional lattice with lattice
sites x consisting of two sublattices a and b. At

each site x, there is an m-component classical
spin S(%). Sublattice spine S,x and g(%) are de-
fined as follows:

S(x) if x belongs to sublattice a,x
0 otherwise;

S(x) if x belongs to sublattice h,
S), x =

0 otherwise.

(2.1)

Then S(%) =g(%) +g(%). The spin Hamiltonian for
short-range exchange can now be expressed in
terms of the sublattice spins

X=-Z J(x, %+5) S,(%) ~ S),(%+5) .
Xg

(2.2)

x runs over all sites in the a sublattice and 5 is a
nearest-neighbor vector (positive or negative)
connecting the two sublattices. Thus the pair
(x, x+5) uniquely defines a bond and only appears
once in the sum. J'(x, x+5) is the exchange integral
associated with that bond. The bonds are random
variables with a probability distribution P((J}).

The free energy of a quenched random system is
calculated by averaging the free energy over the
random bond variables"

(2.3)

where

(2.4)

3C' = —g g J(x,x+5) C(x) ~ C(%+5) . (2.6)
~=~xg

The free energy is then given by

PF = -lim —([Z" ((J})],„—1)
1

n~o 5

Assuming that each bond is statistically indepen-
dent, the average over (J}in Eq. (2.7) can be car-
ried out formally. The result is

[Z"],„=Tr, e

where

(2 8)

(2.9)

where C~ is the pth cumulant of the independent
bond probability distribution

where p =1j~ and Z((J}) is the partition function
for a particular distribution of J's. To calculate
E((J}), we evaluate the partition function of the
system replicated n times'

Z"((j})= Tr, e

where



2108 JING-HUEI CHEN AND T. C. LUBENSKY 16

C, = [Jj,„, C, =
g ([J'] —[J],'„) . (2.10)

The case with C, =0 yields a spin-glass transi-
tion and has already been studied. ' In this paper,
we will consider the general case in which C, w 0.
When C, =0, there is a ferromagnetic phase transi-
tion when Cl + 0 with T, - C, and an antiferromag-
netic transition when C, &0 with T„(C,-~. When

0 the re is a spin-glass transition with T&

-))C2. When both C, and C, are present, all three
phases can occur, depending on the relative values
of C l and C, ~ We therefore wish to express our
free energy in terms of the ferromagnetic, anti-
ferromagnetic, and spin-glass order parameters

S (x) =S,"(x) +S,"(x), (2.11)

n (x) = S. (x) —S,"(x), (2.12)

q; 8(x) = [S„(x)S,B (x) +S)„(x)S), (x)](1 —8 s) . (2.13)

pp„= — r r„M r ~ M r

+ VM r VM r

+2u, +M (r) ~ M (r)

+2v,+[M (r) M (r)]',
a

p0„= — d r r~+N (r) ~ N (r)

+g VN (r) VN" (r)

+2u, PN (r) ~ N (r

(2.19a)

In terms of these variables, the Hamiltonian be-
comes

Pfd"&=- —Z C, Z[S (x) S (x+6)
x,6 a

-n (x) ~ n (x+6)]

+2v, g [N (r) ~ N (r)]'
a

PFz = — r rz Trg' r

(2.19b)

-p'Z C, Z q, q~(x)q;q~(x) + ~ ~ ~ .
x, () awg

(2.14) + TrVQ+r ~ VQ(r)+ 4wTrQ'(r)]

In order to develop a continuum theory, we express
the partition function in terms of order-parameter
densities"

+ d r)ruo[Trq'(r)]'+vo, Trq'(r)

+ Q vo;f, (q(r)) (2.19c)

Z = d(M}d]N}dfq}e-"I""'I,
where

P [6,MN, Q] = -S [M, N, Q] +PfC~"l

and

(2.15)

(2.16)

p6:„o ——u, d r Q,&~(r)M& (r) M& (r)

PS~ =~, d t'Q~~ r N, r N& r

(2.19d)

(2.19e)

e""""=7. )) M ) )-Qs ) )))C --)}
X

=&~+~+&q +&~ +&sq +&z (2.18)

XP((S (x)}) (2.17)

where r is a continuous space variable and
P(g (x)}) is the statistical weighting factor for the
original spins. We now proceed in the usual way. "
We eliminate momentum components outside a
sphere of radius A in reciprocal space and rescale
variables to obtain a phenomenological free energy
which can be expressed as follows:

where the summation convention on repeated in-
dices is understood,

VM" VM" = Q Q VgM( V)M(
9=if=1

and Trg' = Q™&Q&& and where f, (Q(r)) for i
~ 2 represents other fourth-order invariants that
can be formed from Q(r). The sign of w is chosen
to be positive to ensure a second rather than a
first-order spin-glass transition. 5„ includes all
higher-order terms not explicitly included in Eqs.
(2.19). In particular, it includes N'M' couplings.
For simplicity, we will ignore 5„ in our model.
This is consistent with the renormalization group
because N'M' terms will be irrelevant since it is
impossible for both N and I to be critical at the
same time. " r~, r~, and r change signs as a
function of temperature

where r„=a„(T—T„) (2.20a)
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r» =q»(T +T»}

rq =aq(T Ti—)

(2.20b)

(2.20c)

T~ stands for the magnetic transition temperature
and T& for the spin-glass freezing temperature.
It is obvious from Eq. (2.15) that T„ is proportion-
al to C, and T& is proportional to vC, . C, can, of
course, be positive or negative. In general, the
coefficients w, and ao, are positive. For a simple
cubic lattice, a„=a„, I ~2& uy u2& and vy v2.

0 —--SG ——-----P ——T
Tf

III. MEAN-FIELD THEORY

In this section, we will analyze the mean-field
theory for the free energy of Eqs. (2.18) and (2.19)
in some detail, indicating wherever possible am-
biguities inherent in the n =0 treatment presented
here. Some general properties of the phase dia-
gram which we represent in the (T„,T} plane in
Fig. 1 are immediately evident. It is clear that
the free energy in the two colorable lattices we
are considering here is invariant under the trans-
formation C,- -C, (T„- T») and-M N This.
says that the phase diagram is symmetric about
the line C, =0 (T„=O) with a ferromagnetic phase
for sufficiently large C, and a corresponding anti-
ferromagnetic phase for sufficiently large and
negative C,. If we neglect M'N' couplings, we can
obtain the phase diagram for C, &0 by considering
5„+FQ +5'~Q only. The phase diagram for 7„&0
is obtained by the interchange M ¹ If M'&'
terms are included, no qualitative changes in the
results presented here will occur.

In order to study transitions with both ferro-
magnetic and spin-glass order parameters, we
have to allow for the fact that a nonzero mag-
netization leads to a nonzero Q&& . In an ordered
magnetic state, the magnetization in each replica
should be identical. We, therefore, write

FIG. 1. Phase diagram showing paramagnetic (P),
spin-glass {SG), ferromagnetic (E), and antiferromag-
netic (A) phases. For m —2, the ferromagnetic and
antiferromagnetic phases are further subdivided into
regions a and b. In region F, , m ~ 0 and Q~ = 0; in
region E&, both Mand Q~ are nonzero. Similar state-
ments apply to regions A, andAq.

a ps = (r„+4v, M' +2ai,Qii}M = H,
BM nQ

(3.4a)

vQ, =0 for i» 2. Note that u, and uQ play no role in
stabilizing the system when n =0 and will be omit-
ted from future calculations. The coefficient of
vQ y is positive when n = 0, ensuring that the te rms
in the curly brackets reach a minimum in the pure
spin-glass phase (M =0). Since we will be inter-
ested only in the minimum with Q &0 which is in-
dependent of the value of vQ, for small values of
the order parameter, '"we will also ignore vQ,
in what follows.

The extrema of Eq. (3.3) in the n =0 limit are de-
termined by

M] =Me) (3.1)
' +6teg][ —zv, APP =0,

aq]} nn (3.4b)

where e& is an m-component unit vector and

@0 ['Q (Gii iei&i) + @lle&ei](1 —5 ) (3 2)

&Q~~=-(m —1) ~ +Gw@~ =0 . (3.4c)

In terms of these variables, the free energy be-
comes

P&lnQ = ~r»M +(nu, v,)M+' HM+(n- I-}

x (4rq [(m —1)Q~ +Qii]

—w(n —2) [(m —1)Q~ + pi~i]

QiiM +uqn(n 1}[(m l)4il~~+i~i]'

+ vq, (n' —3n 3) [+(m —1}@4~+ Q~, ])
(3 3)

where we have added an external magnetic field H,
where Q is the volume, and where we have set

These equations with H =0 produce the phase dia-
gram shown in Fig. 1, with regions p, SG, F, and
A defined as follows.

A. P: paramagnetic phase

M; Q~nr and Q~ are all zero. This region is de-
fined by &„and &Q +0 The point C where r„=rQ
=0; i.e., where T„=Tz, is a special multicritical
point where both Q and M have divergent critical
fluctuations. Throughout this regime, the spin-
glass susceptibility XQ and the magnetic suscepti-
bility p„satisfy
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Xg = p&q,
1

x
-1

(3.5a)

(3.5b)

Thus y„=y =1. The free energy and specific heat
are zero in the mean-field theory and the correla-
tion length exponents are vQ ~g

B. SG: spin-glass phase

We first consider the case with H =0. In this
phase, M=O, r~(0, and

Q {{
= Q = rq/6 -w (3.6)

as reported previously. This says that P~ =i. The
susceptibilities are

This function is plotted in Fig. 2 for three values
of H. Note the rounding and shift of the maximum
for H0. These results are in accord with ex-
periment" and previous theories. "'

C. F: ferromagnetic phase

In this phase, both M and Q„are nonzero. If m
~ 2, Q, completely decouples from Q„and M and
this region divides into subregions F, and F, in
which Q, =O and Q, 40, respectively. The behavior
of Q, as the F, -F~ boundary is crossed is identi-
cal to its behavior as the boundary P-SG is
crossed and will not be discussed further. In re-
gionF, M and QI satisfy

XQ 2+Q

yjv =r„—IS{,/6w)rq .
(3.7a}

(3.7b)

M = (1/w, )(grqQ{{+6wQ{{}, (3.12)

Q„= (w, /24v, w) (-A+ [A' —(24',w/w, )r„P },
Thus, yz =1. The magnetic susceptibility diverges
when &„=(w,/6w)rq Thi.s defines the boundary
between the spin-glass and ferromagnetic phase
(regions SG and F in Fig. 1). This boundary is a
straight line passing through C and satisfying

b,T„= [1 —(w, /6w)(aq/a„)]n, T, (3.8)

where AT„=T„-Tf and h, T =T —T&. The exponent
describing the divergence of g„as the SG-E bound-
ary is crossed is unity. W'e will not bother to in-
troduce a symbol for this exponent. Note that Zz
is finite along this boundary except at the point C.

The entropy and specific heat suffer from the
same ambiguity as the free energy itself. If the
sign of the (n —1) factor is changed to produce a
free-energy minimum rather than a free-energy
maximum in the spin-glass phase, the entropy s
and specific heat C„per spin component are pos-
itive at least for small &~:

4 (12w} q q' ' 2(12w)

This corresponds to a specific-heat exponent 0.
=-1.

It is evident from E{ls. (3.5b) and (3.7b) that the
magnetic susceptibility has a cusp at the spin-glass
paramagnetic boundary when H =0:

(3.13)

where A= w, + (v/w, )rq. First note that Q„and thus
M is trivially zero when x„=O. This says that
there is a continuous transition from the paramag-
netic to ferromagnetic phase as expected. Next
note that ~rq+6wQ„=O when rv=(w, /6w)rq. Thus
M' goes to zero from the ferromagnetic side along
the same line that g„diverges on the spin-glass

0.8

0.7

0.6

0.5

0.4—

0.3—

0.2—

0.1—

" (T =Tq) = a„'(T„—Tt) '-, (3.10a)

""{F Tl)=- „'(„—'
~ {T„—={;)' {8.{ob{.

An external magnetic field will smear out this cusp
as can be seen by solving Eqs. (3.4) for g„when
H40:

r„- ( /w1 )2rw+q(w, /12w)(rq'+ 96ww, H2/re) 'n
[r„—(w, /12fv)rq+ (w, /12w)(rq+ 96ww, H /yg)v ]~ '

(3.11)

0 I I I I I I I I

-0.5 -03 -0.1 0 01 0.3 05 0.7 0.9
T-T)

T~-TM

FIG. 2. Magnetic susceptibility p in an external mag-
netic field when the P-SG boundary is crossed. p~/
121eag is chosen to be 1. g is in units of 1/az(~f TQ).
(a) Free field magnetic susceptibility; it shows a cusp
at T= Tf . (b)-(d) are magnetic susceptibilities for
three different values of 6 = 96wte&H /a+a&(T~- T~),
&2=0.001, 0.01, 0.1, respectively. Cusp in (a) is round-
ed and there is a shift of the maximum.
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Q„= —,'(r„/w, ) —2(v/w—,)M',
M' = --,'(r„/w, ') [rq —6(w/w, )r„] .

(3.15a)

(3.15b)

side. Later, we will see that g„on the ferromag-
netic side diverges along the same line and there
is no discontinuity in the entropy as this line is
crossed. Thus, the ferromagnetic- spin-glass
transition is second order.

Let us first investigate the magnetic transition
far from the point C, i.e., when rz is not near
zero. In this case, if r„«w, A'/24v, w, we have

Q„=-2(rs/A),

Mg 1 erg rg 1 + 1
4M, A 4v, , + (v/w, }rz)

'

(3.14)

Thus, the fluctuations of Q„merely renormalize
the fourth-order coupling constant v, . This tran-
sition is the familiar ferromagnetic transition in
a disordered system, ' '"'" and we will not con-
sider it further here.

The point C is a type of multicritical point which
we will now investigate in more detail. In the vi-
cinity of C, both r~ and r„are near zero, and a
simultaneous expansion in these two variables is
necessary. First, we have

depend on the sign af (n —1}in front af 6'q. (6'„q
+ F„-=0 to the order we are considering in the vi-
cinity of C.) If we again choose (n —1) to be+1,
we obtain

T r„1 av 1 1
s = ——a~ —r ——r + —r„—a+ ——a„2 ~R 4 Q ~ N 2 4

(3.1V a)

C„= 2 T 1 ———+ Lh, T~- 1-——'~ AT ~
a~ 2 ~ca 1m, a

(3.17b}

It is easy to see that s reduces to —,'[T/(12w)']aqr2q
along the line r„=(w, /6w)rq indicating a second-
order spin-glass to ferromagnetic transition.

At this point, it is worth considering whether
there are any constraints that the above analysis
places on the values of the potential in the prob-
lem. M2 must be positive throughout region F.
This is only possible if the line rq 6(w/—-w, )r„ lies
below the line r„=0 for T& T&. This implies -~
&1 —(w, /6w)(aq/a„) &1 which is satisfied as long
as all of the potentials are positive. In particular,
this implies so, &0 since we have chosen zo&0 in
order to have a second-order spin-glass transi-
tion. If we require C„[Eq. (3.1V)] to be positive,
there is a further constraint that

From this, we can immediately see that M'
-(r}T) and Q„- r}T if r}T„=-O, and M'-(r}.T„)2
and Q„-AT„ if A, T =0. If we define ordering ex-
ponents P„, and P~, and crossover exponents f»
and ft), via

or

O & (w, /6w)(aq/a„) & —,
'

-,' &1 —(w, /6w)(aq/a„) &1.

M=idT}~ f(} }q ),
we find that Pgy P» and (t) Qgg Qgg 1 in
mean-field theory:

The susceptibilities in the vicinity of C are

The phase diagram shown in Fig. 1 satisfies this
constraint.

We close this section with the observation that
both P&, and P» are one near C. Thus the critical
dimensionality below which mean-field theory is
expected to no longer be valid satisfies the Joseph-
son-Rushbrook relation d, v=2P+y=3, or d, = 6.
In Sec. IV, we will calculate critical exponents for
this transition in 6 —e dimensions.

yq = [rrq 6(w/w, )rN+ ~2— ~2/v, ] ~

1 rq —12(w/w, )r„
X" 2 4~M

(3.16a)

(3.16b)

IV. e EXPANSION

In this section we analyze the Hamiltonian [Eq.
(3.1)] using renormalization-group theory. Again
we restrict ourselves to the case C, &0 and neglect
the antiferromagnetic order parameter N(r). We
first Fourier transform the variables M(r),
QUv(r), and introduce a spherical Brillouin zone
of radius A. The Fisher-Wilson recursion rela-
tions" are obtained by integrating over Quctua-
tions with wave vectors between A/b and A. (b
&I), rescaling all lengths by the factor b ', and
M+r, Q, by factors b' +'~~'a, 8~" "2' ', respec-
tively. We get the following recursion relations:

Thus, y»=1. Note that g„diverges along all of
the boundaries of F. gz on the other hand does not
diverge anywhere. Along the P-F boundary it
equals [+ —', rq+ —', (w', /v, )] ', and along the SGE-
boundary, it equals [=,'rq+ —,'(w,'/v, )] '. Thus gq'
has a discontinuity of —,'(w, /v) across all bound-
aries into region F. There are also mixed M-Q
susceptibilities in region F which we do not quote
here.

The sign of the entropy and specific heat again
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r„' = b'~&(r„—4(n 1-)mwf[A(0} K—~(re+ ro}lnb]},

(4.1)

ro ——b' 2(ro —36(n —2)m w'[A(0) —K,2ro lnb]

—4w,'[A(0) —2K'„ in'}, (4.2)

O' Sa-s& t2(w+ {36[(n—3)m+ 1]w'

+ ~~ wi)K~ lnb), (4.3)

w'=b' ' 2 '~ifyv +4[w, +3(n —2}mwuP]K~inb),

(4.4}

q, = ~~ (n —1)mw2K~,

ri, = —,
'

[3b(n —2)mw'+ 4w', ]K~

where

d'q 1 1
(2w}' q' ' 4 (2s)' 0,

(4.5)

(4.6}

2V=2 +36

1+2 &

(4.7a)

(4.7b)

(4.7c)

where Q~ is the solid angle in d dimension and e
=6 -d. Equations (4.1)-(4.6) are then solved to
find the fixed points. In the limit n-0, we find:
(i) a Gaussian fixed point with w *=w,*=0; (ii) a
spin-glass fixed point with (w*)'=e [36K,(4m
-2)] ', w ~=0, and (iii) a new fixed w*= w„*,
w, = w~ and its complement with w*=-w„*, w,*

The spin-glass fixed point was studied in
Ref. 7 and has critical exponents v = 2 +5m&/
12(2m —1) and q = -me/3(2m —1). The new fixed
point corresponds to the point C in the mean-field
phase diagram. Values for w„* and w„*,for m
=1, 2, and 3 are listed in Table I. Equations
(4.1) and (4.2) yield two exponents A„and X„
(&X„) which are related to the correlation length
and crossover exponents via v '=A.„and p = vA,„.
Equations (4.3) and (4.4) yield the stability expon-
ents A, , and X2. For m =1, the fixed point C is sta-
ble with respect to changes in w and w„and all
exponents are real with the following values:

TABLE I. Fixed point values for w and w, at the
non-Gaussian fixed point for m = 1,2, 3.

1

6
0.0839 0.0614

1

2
0.3032 0.2373

V. TOPOLOGICAL DISORDER

The spin-glass state can also be induced by topo-
logical disorder. %e begin with a model intro-
duced by Harris, Plischke, and Zuckermann" to
describe transitions in amorphous TbFe, and
YFe2. In this model, each magnetic ion is sub-
jected to a local anisotropy field of random orien-
tation. It is clear how this model might produce
a spin-glass state. For sufficiently strong anisot-
ropy, the spins follow the local anisotropy axis.
Since this axis has a random orientation, [(S(x)}],„
=0. At low enough temperature, however,
[(S(x)}~ (S(x)}],„ is nonzero. The Harris- Plischke-
Zuckermann Hamiltonian assuming constant ex-
change is

H = —Z JS(x) ~ S(x+6) -D,g [S(x) ~ e(x)]',

may cast further doubt on the applicability of the
Edwards and Anderson replica procedure to the
spin-glass transition, especially in XY and Heisen-
berg systems. Complex exponents have been found
previously in random dipolar systems, "but to our
knowledge, this is the first system for which the
thermal eigenvalues are complex. Wallace and
Zia" have pointed out that there will be real eigen-
values whenever the recursion relations in differ-
ential form can be expressed in terms of a Rie-
manian metric times a gradient of a potential. It
is easy to verify that it is impossible to find a
metric for m =2 and 3 for the r equations with only
positive eigenvalues in agreement with Wallace and
Zia."

1 & 2 3 (4.7d)

For m =2 and 3, ~„and A.i2 are complex and are
listed along with Xy A2 Qy and g2 in Table II.
This result is puzzling, difficult to interpret, and

(5 1)

where D, represents the strength of uniaxial an-
isotropy and e (x) is a unit vector pointing in the

TABLE II. Exponents for the m =2 and m =3 non-Gaussian fixed points.

—(1.1501+ 0.3247i)&

—(0.9407 + 0.2539i)c
-i.079&
-0.8686'

-0.245 ' c
-0.2253&

-0.2149m
-0.f960&
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direction of local (random) unaxial axis. Using
the standard procedure of replicating the
Hamiltonian [Eq. (5.1)] n times, Aharonym has
shown that Eq. (5.1) leads to an effective average
Ham iltonian

PX.„= Pg-Z S (x) S (x +5)
x,g, a

There are two different symmetry fourth-order
forms in Eq. (5.2) which break the degeneracy be-
tween the isotropic and anisotropic parts of the
spin-glass order parameter q;, in Eq. (2.13).
Therefore, we decompose q„ into two parts

(5.3)

-Pm 'D, Z S (x} S (x}
x ~ a

where

(5.4a)

D2+p', ' g s, (x) ss(x) s", (x) s (x)
m (m+2 ~ sx
2D 2

S, (x) S&8 (x) S&"(x) S&~(x)
m m+2

(5.2)

(5.4b)

where q„& is symmetric and traceless in i and j.
Substituting Eqs. (5.3) and (5.4) into Eq. (5.2), we

obtain

pX = -pJ Z S (x) S (x+5) pm '-D Z S (x) ~ S (x) —p D 1 ——Q q &&(x)q,&~&(x}

x e6ea x,a X

2 2

(5.5)

There are now three fields in the problem:
S (x), q"„&P), and q",&~&(x). It is clear that the lo-
cal interaction between q~&s&(x) is repulsive. Thus,

q,&&
does not order and is noncritical or irrelevant.

If we assume that the spin-glass state is more
stable than the ferromagnetic state, both 8 and

q, &&
can be removed. %e then introduce an order-

parameter density Q"„8&(r}, as in Sec. II and remove
high momentum degrees of freedom to obtain an
effective free-energy density

PF= —,'r Tr@y+Tr gQ&
' +m Try y

5.6

This free energy is identical to that considered in

Ref. 7 for a system with Ising symmetry. Thus,
the Harris-Plischke-Zuckermann model can have
an Ising spin-glass transition if Do is sufficiently
large. Aharony" failed to find a stable ferromag-
netic fixed point for this system in 4-e dimen-
sions. It is possible that the flow away from the
ferromagnetic fixed points is to the above spin-
glass fixed point. It is interesting to note that the
magnetic susceptibility of the amorphous magnet
shows the same cusp as a spin glass. "
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