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The elementary excitation spectrum of liquid He- He mixture is calculated from first principles.

The boson quasiparticles are treated by a density-variable formalism, and their interaction with the
3He excitations is explicitly derived. Using the liquid-structure factor for pure 4He, we calculate

the 3He excitation dispersion over a wide momentum range; renormalization of the phonon-roton

(boson) spectrum due to the presence of 3He; lifetime of the roton excitations as a function of
momentum and 3He concentration; and we estimate the possibility of resonances formed by ro-
tons and 3He quasiparticles. The results are in contrast to previous speculations regarding the ex-
istence of a 3He roton excitation. However, our calculations provide good agreement with avail-

able experimental data. The sensitivity of the roton linewidth to the He quasiparticle interactions
indicates that future light and neutron scattering experiments may provide insight into the micros-
copic nature of the interatomic helium potential.

I. INTRODUCTION

The excitation spectrum of dilute 3He-4He mixture
poses an interesting challenge from the theoretical
point of view. First of all, the original microscopic
analysis of the Bose gas is limited to weakly interact-
ing models ~hose validity is suspect at liquid-helium
densities. ' Thus various alternate approaches, relying
in part on semiphenomenological application of physi-
cal insight, have been developed2 to analyze excita-
tions in these quantum liquids. Secondly, 'He impuri&
ties in superfluid 'He provide a system ~herein fer-
mion quasiparticles with variable density interact
strongly with a Bose field, in analogy to the well-
known polaron problem in condensed matter.

On the basis of the low-temperature thermodynamic
properties of He- He mixtures, Landau and Pomeran-
chuk3 originally proposed an excitation spectrum of
the form shown in Fig. 1: the Boson branch of pure
'He exhibits photon excitations E - ck at low momen-
ts, rotons with energy E = 64+ (k —ko)t/2p4 at inter-
mediate momenta, and free-particle modes at large
momenta. The proposed fermion branch at low mo-
menta, a = k'/2m', has been extensively verified by
various measurements which give ar estimated
m ——2.4m 3.'

Recently considerable attention has been focused oh
the excitation spectrum at intermediate momenta,

0
k = 1 A ', where strong interactions of the boson and
'He quasiparticles may be expected as a result of their
possible degeneracy in energy and momentum. A
number of speculations have been advanced regarding
the excitations in the above region: (i) Existence of
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FIG. 1. Excitation spectrum co(q) vs momentum q. The
dispersion of the region near the "roton minium" is described
by ~(q) = 44+(q —qo) /2p4, where b4 8.65 K, q0-1.91
0
A ', and p.4 0.16m4 (m4 is the mass of the He atom). The
lower-lying shaded curve shows the Landau-Pomeranchuk
(LP) approximation to the 3He spectrum.
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an energy minimum in the 'He quasiparticle spectrum
with a dispersion similar to the roton part of the bo-
son branch. ' (ii) Formation of a bound state of a 'He

quasiparticle with a roton. {iii) Substantial shift of
the roton energy b4 with 'He concentration. ' (iv)
Strong hybridization of the 'He and boson branches.
(v) Modified Landau-Pomeranchuk model using an
effective mass dispersion k = k'/2m" at intermediate
momentum in addition to an essentially unchanged
phonon-roton model for the Bose excitations.

Although a wealth of new experimental data on
'He-4He mixtures has become available, the varied
data reductions and subsequent interpretations yield
conflicting evidence regarding the excitation spectrum.
For a systematic analysis of the available experiments
on specific heat, ion mobility, normal fluid density,
neutron, and Raman scattering results we refer the
reader to Ref. 9, where it is demonstrated that the
modified Landau-Pomeranchuk model (v) yields quite
good fits to the available raw data, in contrast to other
models such as (i), (ii), and (iii) with parameters
quoted in the literature. Nevertheless, very interest-
ing details of the spectrum, for example the region
where the 'He quasiparticle branch intersects the
phonon-roton spectrum, are now being probed by
various experiments and pose a theoretical challenge.

The purpose of the present work is to develop a
first-principles theory which may be applied to calcu-
late the excitation spectrum of 3He-~He mixtures and
provide insight into the quasiparticle interactions in
these quantum liquids. Our approach is based on a
density fluctuation variable method originally dis-
cussed by Bogoliubov and Zubarev. ' By analogy with
recent theories of excitations in superfluid 4He, we ex-
press the excitation spectrum and the quasiparticle in-
teraction in terms of the liquid structure factor Sk,
thus eliminating any adjustable parameters. To lowest
order, this method reproduces the well-known
Feynman-Cohen" result for the He excitation energy
kk = k'l2m&Sk. In the boson case of pure 'He, self-
energy corrections to the energy have been calculated
using only Sk as input, and yield remarkable agree-
ment with the measured energy values. '2 " The
method also demonstrates the sensitivity of the
roton-roton coupling to the details of the structure
factor and in the latter case requires a self-consistent
treatment. " The new formalism for mixtures is dis-
cussed in Sec. II.

First we calculate the renormalized 3He quasiparticle
energy considering the interactions with the phonons
and rotons: %e emphasize the relative sensitivity of
the results to details of the liquid structure factor and
compare these to the work of Davison and Feenberg'~
in Sec. III.

A novel result of the present theory is a calculation
of the roton damping as a consequence of possible de-
cay into a 'He quasiparticle-hole pair in the degeneracy

region. This feature, together with the associated ro-
ton energy shift, has a direct bearing on neutron
scattering experiments and may elucidate details of the
structure factor in this sensitive region of momentum
as described in Sec. III.

In the case of pure He, the existence of bound
states of two rotons has been proposed" and verified
by highly accurate light scattering measurements. '

The binding is strongly favored by the vanishing
group velocity of a roton which yields a singular
behavior of the density of states and therefore a
bound state of two rotons for arbitrarily weak attrac-
tive coupling. " Pitaevskii has suggested that the
scattering of a roton with a He quasiparticle may also
result in a bound state. %'e examine this question in
Sec. IV with two goals in mind. First we calculate the
criterion for the binding and thus obtain. the required
strength of the 'He-roton coupling. Then we estimate
the interaction strength from the microscopic theory
and note its sensitivity to the structure factor and oth-
er variables.

Finally, in Sec. V we note the conclusions of our
study and propose some directions for future research.

II. FORMALISM

A system of 'He- He atoms may be represented by
the Hamiltonian

(2.1a)

k2
HB $ ak ak + X V44(q) ak'+, a,' ,a,ak-

k 2m4 kpq

(2.lb)

2

Hp = $ Cp Cp+ QV33(q)Ck+, C, „C,Ck,k (2.1c)
p 2m3 k~

H;„,= XV34(q) ak+q ak Cp q Cp
kpq

(2.1d)

where at (a) are Bose creation (destruction) operators
for He particles with mass m4 and C {C) operators
refer to the 'He particles with mass m3 and obey fer-
mion commutation relations (the spin indices have
been suppressed for convenience). To a good approx-
imation the interatomic potentials obey
V33 V44 V34 and these may be represented by a
single pseudopotential V, = V~ of pure liquid 4He.
Since the formalism will rely on the structure factor as
input, the V, represents an empirical pseudopotential
in the liquid state.

For the dilute 'He concentrations of interest, the
3He atoms may be regarded as fermion particles in-
teracting with the Bose excitations in a self-consistent
manner. A rigorous solution for the excitations of a
Bose gas at liquid-helium densities has not yet been
successful; in part because of the strong quasiparticle
interactions which are very sensitive to the interatomic
pseudopotential. For example, calculations using the
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correlated basis function (CBF) technique by Davison

and Feenberg' yield a substantial change of the 'He

quasiparticle effective mass m3'. In the limit of long
wavelengths they find m3' values ranging from 1.8m3

to 2.2m3, depending on their choice of interatomic
helium potentials. In view of the experimental evi-

dence for m3" =2.4m3, the agreement is good, but
the comparison cannot discern details of the potential.

We adopt the formalism using density fluctuation
variables pk which has been relatively successful in

the study of pure 'He. ""The boson excitations are
obtained by a Bogoliubov-Zubarev transformation'

pk $ak+qu, = &k (bk + b —k) (2.2)

which relates the density fluctuation operator p~ to the
excitation creation (destruction) operators bk (bk), and
is chosen to bring the original Boson Hamiltonian of
Eq. (2.1b) into the form

Hs gEs(k) b,tb (2.3)

where the residual phonon interaction terms have not
been displayed. In Sec. III we shall examine the im-
portance of these phonon and roton interaction terms
insofar as they relate to the excitations in the mix-
tures. Thus to lowest order, the energy of the
phonon-roton branch is

N4
Ep(k) = = k +4m4 Vk

2m4A. k 2m4 Q
. (2.4)

e, = g.,(p) c,tc, , (2.5)

where k3(p) = p'/2m3, at low concentrations.
Finally the effective interaction of the He quasipar-

ticle and the boson field follows from Eqs. (2.1d) and
(2.4) and becomes

Hjn[ $ ~k kk (bk + b k) Cp~k Cp
kp

(2.6)

it should be noted that the pseudopotential Vi, can be
expressed in terms of the structure factor A. I, using Eq.
(2.4).

At the dilute 'He concentrations under considera-
tion, it is reasonable to neglect He- He scattering

This result follows from the theory of Bogoliubov and
Zubarev' and enables us to replace the unknown pseu-
dopotential Vk by a function involving A.k, which ap-
proximates the liquid structure factor to lowest order.
This replacement then recovers the Feynman-Cohen
result Es(k) =—k' 2/m4$ kIn the present work we use
the relationship of Eq. (2.4) to generate an interaction
Hamiltonian for the 'He- He mixtures.

As we are primarily concerned with the fermion-
boson field interactions we consider an effective 'He
Hamiltonian

terms in the original Hamiltonian of Eq. (2).
Now the formalism enables us to calculate various

features of the quasiparticle interactions over a wide

range of momentum without the use of any adjustable
parameters.

III. EXCITATION SPECTRUM

The interaction of the fermion 'He impurity with

the boson field of He excitations may be treated by
perturbation theory in the low-momentum regime.
On physical grounds we expect the respective 'He and

phonon branches to be repelled in this region of non-
degenerate energies. The result is a strong renormali-
zation of the 'He effective mass' and a shift of the
sound velocity" in the mixtures.

We consider the interactions over a wide range of
momentum with particular attention on the roton re-

0
gion of k —2 A ' where the 'He branch may intersect
the phonon-roton excitation spectrum. First we focus
on the 'He quasiparticles and then proceed to a study
of the phonons.

A. He quasiparticles

The energy of a 'He impurity coupled to the pho-
non excitations in the mixtures may be obtained from
the interaction Hamiltonian Eq. (2.6) by applying the
standard rules of perturbation theory. The first
corrections to the 'He energy are shown in Fig. 2(a),
which yield a renormalized energy

V
e3 (p) = e3(p) + g "",(3.1)

tI &3(P ) &3 (p —q ) —E~ (q )

where ~3(p) =p /2m3 denotes the renormalized 'He
particle energy and E~(q) is the phonon-roton energy
curve. An alternate possibility in the spirit of
Brillouin-Wigner perturbation theory would involve
using renormalized 'He energies ~3' in the energy
denominator of Eq. (3.1), and solving the resulting in-

tegral equation. We shall examine this self-consistent
approach as well. Our method bears formal similarities
to the work of Miller, Pines, and Nozieres, ' although
it relies on the liquid structure factor as sole input.

The angular integration in Eq. (3.1) is trivial and
yields a one-dimensional integral over momentum
which must be done numerically, since the structure
factor A. k is obtained from experiment. ' To facilitate
the computation we introduce a functional form of Vi,

which yields a good fit to the structure factor using
Eq. (2.3) as shown in Fig. 3: Surprisingly this fit can
be achieved by a simple square well "potential" of
height Uand range a in real space which gives

Vk =4m. a U(ka) fsin(ka)/ka —cos(ka)] . (3.2)

Although this soft-core model gives a good description
of the structure factor Sk it does not necessarily
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k,EI (k)

/

q-k, 63y y

k+q, Ey

represent the true interatomic helium pseudopotential
in the liquid!

In the case of the self-energy correction of Eq. (3.1)
the deviations of Vk from a more realistic potential
cannot be resolved from other corrections such as
higher-order contributions to the structure factor and
the Boson energies. However, we note that the He
energy of Eq. (3.1) involves an integration over k
which renders the energy relatively insensitive to the
details of Vk. On the other hand, our analysis of the
phonon branch in Sec. III B will emphasize the struc-
ture of V~ and will develop its relation to neutron
scattering data.

FIG. 2. (a) Self-energy diagram for a 3He quasiparticle

moving in the ~He background. The solid lines represent the

He mode with energy «3 and wave vector q. The dashed

line represents tht: interacting 4He mode with energy E~ and

wave vector k. The y represents the interaction vertex which

is XI, VE, . (b) Polarization diagram corresponding to a renor-

malization of the He excitation spectrum. The symbols have

the same meaning as in (a).

The results of numerical calculations using Eq. (3.1)
and the representation of the structure factor by Eq.
(3.2) are shown in Fig. 4. There is an overall shift of
the 'He quasiparticle branch to lo~er energies as a

result of level repulsion from the phonons. In the
long-wavelength limit the computed results may be
approximated by e3(p) = p'/2m3' with m3' = 2.2m3.
By comparison the experimental mass value is

023 = 2.4m3. Of course, the calculated mass can be
brought into even closer alignment with experiment
by minor adjustments of Vk, however, this would not
be in the spirit of our self-consistent method. Thus
the small difference between our result and the exper-
imental value is attributed to corrections to the
Xk —S& approximation; higher-order corrections have
been attempted, but they require more accurate data
for the liquid structure factor than are presently avail-

able. "
Previous theoretical calculations of the 'He effective

mass in the mixtures have given m3" values ranging
from 1.8m3 to 2.2m3 using the CBF formalism with
various interatomic potentials. ' Thus a 20% deviation
from the experimental value is to be expected as a
result of uncertainties in the potential used in the CBF
techniques' and a similar limit may be inferred from
thc limited data on the liquid structure factor used in
our theory.

The level crossing of the 'He branch in the roton
region p =1.8 A ' yields a relatively weak energy
splitting as shown in Fig. 4. Here the effects of
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FIG. 3. Experimentally determined structure factor is

shown by the solid curve S(k) (Ref. 15); the dashed curve is
A, (k) obtained from Eqs. (2.3) and (3.2) with a soft-core
model of height V =40 K and range a -2.6 A.
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FIG. 4. Renormalized He quasiparticle spectrum found
by calculating the self-energy from Eq. (3.1). The dashed
curves correspond to the boundaries of the unrenormalized
He spectrum, cv(a) =q /2m3 ~ qkp/m3, at 0.01 mo1% solu-

tion of 3He in He. This corresponds to a Fermi wave
0

number of 0.07 A ' and a Fermi energy of 0.02 K. The re-
normalized spectrum is shown by the shaded continuum.
The curve in the low-momentum region exhibits m' = 2.2m3.
The calculations used the A, (k) of Fig. 3 which is a reasonable
fit to the liquid structure factor.
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short-range order dominate and the splitting is sensi-
tive to the details near the peak in the structure factor
in the roton region. From the interaction Hamiltonian
Eq. (2.6) and the relations of Eq. (3.1) and (2.4) it is

possible to show that the product VkA. ~
' changes sign

near the roton minimum, thus yielding a small branch
splitting in the case of the experimental structure fac-
tor results. Previously' it was demonstrated that
neglect of the k dependence in the quasiparticle in-

teraction gives a severe bending of the 3He branch to
lower energies. Preliminary neutron scattering data
on 'He-'He mixtures are consistent with the calculated
spectrum shown in Fig. 4: We make a detailed com-
parison with the data in Sec. III B, where the roton
linewidth as well as energy is considered as a function
of 'He concentration.

Additional tests of the theory were performed with
the Brillouin-Wigner scheme of using renormalized
modes E&(k) and ~3'(k) in the integration over k;
the resulting spectrum was shifted to lower energies
by approximately 15% with these variations which in-

dicates the quantitative limitations of the calculations.
It is interesting to note that these corrections tend to
increase the effective mass m3'. Also this would sug-
gest that higher-order diagrams may be neglected.
The vertex corrections turn out to be of order PF/ko
and may be neglected at low 'He concentrations. 9

B. Boson excitations

As a consequence of the level crossing shown in

Fig. 4 the phonon-roton spectrum is expected to exhi-
bit various interesting properties, such as Landau
damping in the degeneracy region. The appropriate
interaction process is the Boson decay into a 3He

particle-hole pair as seen in Fig. 2(b). The
corresponding phonon self-energy" m(q, co) yields an
energy shift due to the real part which is calculated us-
ing an averaged effective mass p, which yields a good
description of the He branch near the crossing region.
Thus

ReII(q, co) = —1+—P, kF

27r2 2x

2'2
2 2

2

Z+x Z —2x+x2 1 Z —x—1 ln +-
2x Z +2x +x2

Z 2x x—1 ln
Z+2x x

(3.3)

r 'I

PFP
1

Z —x
2&x 2x

(3.4b)

where Z = ~/aF and x = q/pF are dimensionless ener-
gy and momentum parameters normalized to Fermi
energy eF and momentum pF, respectively.

A new decay channel for the Bosons occurs in the
degeneracy region and is described by the imaginary
part of the self energy

ImII(q, cu) = for 0 ~Z ~2x —x2 (3.4a)
P,PFZ
4nx

roton energy. The sensitivity of the roton energy to
the model potential is shown in Fig. 5 along with pre-
1 iminary neutron data. Considering that the roton
energy is 5=8.65 'K the shift of 0.5% is indeed
small, in contrast to previous speculation. ' Despite

& 2.0—
0

4 1.5—
r

1.0—

=0 for Z «2X+x2 (3.4c)

z
& 0.5—
0
R 0

The renormalized phonon energy follows from Fig.
2(b) and Eqs. (2.6) and (3.3),

Es (k) -Es(k) + h.„VReIkI(k, Es) (3.5)

The calculated spectrum is shown in Fig. 4 again using
the liquid structure factor. In the present case howev-
er the results are extremely sensitive to the details of
h. k Vk' in the intermediate region k =1.9 A '. In fact
the apparent small shift of the roton region is related
to the minimum in Vk' at k = 2.0 A '. Similar results
are obtained at higher 'He concentrations as expected,
and support the conclusions of Bagchi and Ruvalds"
regarding the weak concentration dependence of the

t I t I t- 0.5
0 0.5 1.0 1.5 2.0

WAYE YECTOR q (A )

FIG. 5. He spectrum shift ('K) vs wave number q (A ')
at x =5'lo. The date points are those of Ref. 18. The solid
line corresponds to the shift calculated using the Xk of Fig. 3.
The dashed line corresponds to the shift calculated using the
experimentally determined values of Eg(k) (Fig. 1), and us-

ing S(k) in place of A. (k). Note the data and both the curves
0

are zero near q =1.7 A ', which is where the renormalized
3He continuum crosses the 4He spectrum (see Fig. 4). The
data of Rowe et al. were taken at 1.5 'K, and reAect some
effects of thermal broadening, whereas the calculations were
made at T-O.
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the scatter in the data points shown in Fig. 5, it ap-

pears that the possibility of a He "rotonlike" dip' in

the quasiparticle spectrum is ruled out by the neutron
scattering experiments. Furthermore, our analysis
suggests that an anomalous dip of the 'He branch to
very low energies (E —5' K as proposed in Ref. 5)
cannot be achieved, using a realistic form for the
liquid structure factor.

Landau damping of the phonon-roton spectrum is
also highly sensitive to the helium structure factor and
may provide insight into the helium pseudopotential.
The calculated roton linewidth is plotted as a function
of momentum in Fig. 6; it is in rough (order of mag-
nitude) correspondence to the neutron data. Clearly
more-refined data are required to draw explicit conclu-
sions regarding the helium pseudopotential ~ However
future experiments promise to elucidate the structure
shown in Fig. 6 and thereby lead to a detailed theoret-
ical study of the quasiparticle interactions in the roton
region. It should be noted that the relevant phonon
self-energy of Eqs. (3.4) does not involve an integra-
tion over momentum and thus displays specifically the
momentum dependence of the phonon-'He vertex
which can be extracted from the measured lifetime.

Finally we remark on the concentration dependence
of the roton lifetime I (k = ko). Our theory suggests a
sudden increase of 1'(k = kp) at a critical 'He concen-
tration x =3% due to the onset of Landau damping as
the 'He particle-hole continuum envelops the roton
branch. This process provides a simple physical expla-
nation of the nonlinear concentration dependence ob-
served in the Raman data, "even though the effect is
masked some~hat by thermal broadening.

Y
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r 20N
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K I i I r I i I

0.5 1,0 1 5 2.0
W4, VE VECTOR q(A )

25

FIG. 6. Roton linewidth I ('K) vs wave number q (A )
for x =5%. The neutron data are from Ref. 18. The solid

line corresponds to the calculation made utilizing the model

X„ofFig. 3. The dashed line corresponds to the calculation

made using the experimentally determined values of Ez(k),
and S(k) in lieu of P (k). Again the data reflect the effects
of thermal broadening, and experimental uncertainty.

quasiparticle with a roton by a geometric series which
gives"

F(k, cu) = F (k, cu)/[I —y4F '(k, ru)) (4.2a)

where F' '(k, ~) is the propagator for the roton-'He
pair:

F''(k )= 1 d k
(2~)' —Ek —&k-k

(4.2b)

Formation of a bound state is manifested by a pole in
the propagator for the interacting system F (k, 0 )
which yields the binding criterion

IV. He-ROTON SCATTERING 1 —y F"'(k, co) =0 (4.3)

0 = y4 X bk+u b„Cu „C~
kpq

(4.1)

where the coupling y4 is taken as momentum in-
dependent to simplify the formalism. This approxima-
tion enables us to express the scattering of a 'He

Following the suggestion of Pitaevskii, 6 we investi-
gate the possibility of forming a bound state of a roton
and a 'He quasiparticle. We calculate first the re-
quired coupling strength to form a bound state, and
then estimate its expected value from the above
theory. For convenience in estimating the binding cri-
terion we introduce a model interaction Hamiltonian
describing the coupling of a roton to a 'He quasiparti-
cle

It is natural to focus on the roton region of the Boson
spectrum since these excitations have vanishing group
velocity and therefore high density of final scattering
states. This is the physical reason why a bound pair of
rotons is split off below the continuum energy 264 by
arbitrarily weak attractive coupling. " In the case of
'He- He mixtures we have the roton energy
Ek = 54+ (k —kp)'/2@4 and the 'He branch
p~ „=(K —k)'/2m3 As a co.nsequence of the 'He
quasiparticle dispersion the binding criterion of Eq,
(4.3) will require a finite critical value of the coupling
y4 which we now obtain in the case of zero total
momentum. Thus we consider the vicinity of the con-
tinuum threshold energy for the pair
cur = h4+ kp'/2m3', for which

F(K=0, ) = m'ko

2%2

' —I '2
4kp g 1 + &/m' 2p/m' + (p/m' —1)kp/kp

1 —,+, ln
kp m' 1 —p/m' 2@/m' —(p/m' —1)kD/kp

(4.4)
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y4= Xk Vk' /[0 —p3(q)] (4.6)

which may yield an attractive component, of the order

yk ——h. k Vk' /(ps(qJ). This quantity is related to the
0 0

level splitting in the roton region of Fig. 4 which gives

kkp Vkp/ [ ~ &3(kp) 1
= 3 'K, corresponding to

y4 = —2 x10 erg cm'. Within our formalism another
important process is the phonon mediated roton-'He
scattering: this gives roughly yk = —g,g3/sq, where s is
the sound velocity, g~ = V, X,'~' from Eq. (2.6), and
the three-phonon vertex g3 can be estimated from
previous work. ""Using the experimental values for
the second velocity, we estimate y4= —2.8X10 '8

ergcm3, which is attractive and the same order as the
above "Compton" scattering contribution.

In the case of 'He-'He quasiparticle scattering in
'He- He mixtures, the attractive component of the
coupling due to phonon exchange is effectively can-
celled by a competing excluded volume mechanism.
Here we shall estimate the excluded volume contribu-
tion to 'He-roton scattering following the phenomeno-
logical approach of McMillan. '5 The results are simi-
lar in form to Eq. (2.6) with the replacement
Vl, ~l,

' g~+g„,where

and

g~=amks'(S, /N)' '(1 —S,)

g„=(it q) (1 —S,)/2m3(NS, ) ' '

(4.7)

(4.8)

The excluded volume constant" a = 0.28 is obtained
from experiment. With this modification, the estimate
of the 'He-roton coupling is reduced to

where kD is a cut-off momentum for the roton. Typi-

cal values are ko/kp =0.2 and rk/m' =0.1; the
corresponding value of the critical coupling strength is

yk = —4/m'kp (4.S)

which is roughly y4 = —0.2 x 10 erg cm . By com-
parison estimates of y4=2.4&10 ' ergcm have been
obtained from cross-section calculations which would

at first glance strongly favor a strongly bound state.
However, such a comparison is highly misleading

since the scattering cross section which enters into col-

lision broadening includes contributions over several
angular momentum channels whereas bound states
would be found in specific channels. A similar situa-

tion exists in pure 4He, where the estimates of the ro-

ton lifetime give a coupling more than an order of
magnitude larger than the coupling in the I =2 state
which is observed experimentally. "

A crude theoretical estimate of this coupling can be
obtained from the microscopic theory, using the in-

teraction of Eq. (2.6), to generate the lowest-order
scattering process of a roton with a 'He excitation (via
the exchange of a 'He excitation). Thus we obtain an
effective interaction

y4 ——1.5&10 ' ergcm', addition of the altered pho-

non exchange term gives a total value

y4 ——2x10 ' ergcm'.
It is interesting to note that all of the above

processes yield an attractive coupling, even though re-
duced by the excluded volume, which is an order-of-
magnitude stronger than the critical value required to
form a bound state. This situation is reminiscent of
the microscopic theory of roton interactions"' in

pure 'He whose bare (or lowest-order) strength was

found to be similar to the above estimates, but renor-
malization of the coupling by higher-order scattering
processes reduces the coupling by more than an order
of magnitude. ' It is reasonable to anticipate that
higher-order terms may dominate the 'He-roton cou-
pling, as well, although an explicit calculation of these
terms is beyond the scope of the present work.

V. CONCLUSIONS

The calculated 'He quasiparticle spectrum resembles
closely the original Landau-Pomeranchuk model and
intersects the boson branch near the roton minimum.
This general behavior is relatively insensitive to details
of the structure factor, and it accounts for several
anomalous features observed in neutron and light
scattering experiments. For example, with increasing
'He concentrations the fermion 'He quasiparticle con-
tinuum should broaden and envelop the roton
minimum at concentrations exceeding 3%. The new
channel for decay of rotons into 3He-quasiparticle-hole
pairs should yield an extra broadening with a non-
linear concentration dependence as observed in the
Raman data. "

On the basis of our results it is dificult to under-
stand how a 'He "rotonlike" excitation may occur. In
the Bose liquid the acoustic phonons at low momenta
should evolve to free-particle-like modes at large mo-
menta, which naturally yields an intermediate roton
region. On the other hand the Fermion 3He quasipar-
ticles obey the well-known limiting dispersion at low p,
p3 =p'/2m', and presumably tend to the free-particle
mode at high momenta: Since m' = 2m3, the forma-
tion of a 3He roton minimum at intermediate momen-
ta would require an extraordinary level repulsion from
the Boson branch, which is not at all evident in our
theory.

Our analysis may be extended to further calculations
of quasiparticle interactions providing that the details
of the liquid structure may be deduced to greater ac-
curacy, especially in the roton region. Future meas-
urements of the roton energy and damping provide an
ideal means for this purpose as shown in Sec. III.

It would be particularly interesting to extend the
present analysis to calculate the scattering amplitude
of two 'He quasiparticles, with a view toward possible
pairing and formation of an associated superAuid
phase in the mixtures.
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