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High-frequency conductivity of electrons on a helium surface
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We have calculated, within the mean-field theory, the density and frequency dependence of the electron-

ripplon conductivity for electrons on helium. The numerical results suggest that such measurements will

probe the short-range properties of this strongly interacting system.

Electrons trapped at the surface of liquid helium
form an almost perfect two-dimensional electron
gas whose concentration may be varied over some
three orders of magnitude (10'&n&10').' At low
temperature, the electrons motion in the plane are
unrestricted except insofar as the electrons collide
occasionally with ripplons, thermally activated
surface waves, and except insofar as they have
Coulomb coupling to other electrons. From a
theoretical point of view, this is a particularly
fascinating system since the dimensionless
strength of the Coulomb coupling parameter [I',
= e'(2vn}'~'/ksT in the classical case and r,
= me'/(vn)'~' in the quantum case] may be varied
over many orders of magnitude. It has been sug-
gested that condensation into a two-dimensional
Coulomb solid may occur in an experimentally
accessible range. '

The problem has been, and still is, to find ways
of probing the short-g ange properties of this
strongly correlated system. A recent experiment
of Grimes and Adams' has graphically dernon-
strated the existence of long-wavelength two-di-
mensional plasmons propagating in this gas. In
the regime below 0.6 K, they were able to show
that the plasmon lifetime was dominated by ripplon
scattering and that the lifetime I/r appearing in a
Drude fit to the high-frequency conductivity,

ine' ine' i
m(&u+ilr) m&o &or

was empirically fitted by a function of the form

r„'= (eE, + eE,)'/C, (2)

with C =4o,g. Here o, =0.36 ergs/cm' is the sur-
face tension, and E, = 230+ 12 V/cm at T= 0.5 K.
In Eq. (2), E, is the perpendicular electric field
at the surface of the helium, which, along with
the attractive image potentials and the 1-eV bar-
rier preventing electrons from entering the heli-
urn, keeps a finite concentration n of the electrons
at the surface.

In a recent publication, ' hereafter called I, it was
shown that a one-electron theory gave a good quan-
titative fit to the data. In this paper, we would
like to show that there are very significant density-
and frequency-dependent effects in a calculation of
0. These effects arise because of the dynamic
screening of the ripplons by the electrons. In fact,
the explicit size and nature of these effects does,
as we will see, depend in a crucial way on the
short-range properties of the interacting liquid.
We will present numerical results assuming that
a version of random-phase approximation (RPA)
or mean-field theory is valid for this classical
strongly interacting system, although we know
from the start that such a description breaks
down at high enough densities. ' The experimental
observation of this breakdown will ultimately lead
to a better understanding of correlation effects.

For the system under consideration, the inter-
action potential between the ith electron and the
ripplons is given by

U, =S '~'g (a-+a -)e'I'~V,

where 8 denotes the area of the helium surface,
a- is the creation operation for a ripplon, and r,
~

q
is the electron coordinate in the plane. In the
limit of large perpendicular electric field (E,» E,},
the interaction potential V, is given by V, = Q,eE~
where Q, =(sq/2', p, )'~' is the displacement of the
surface due to the qth mode, and p, is the density
of the helium. Here, ~, is the frequency of the
ripplons given approximately by

2= 3(u, =q o,/p, .

When the ripplon frequencies are low compared,
for example, to typical electron plasma frequen-
cies, we can treat the electron ripplon scattering
as the scattering from a static random potential.
In this case, it is possible to show' that the high-
frequency Drude-like conductivity of such a system
to lowest order in

~
V ~-' can be written exactly in
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terms of the correct dielectric response function

of the system e(q, &o), i.e. ,

cr= (inc'/m(())[1 —I ((d)/2m&v'],

where

,( )
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e(e, ()) e(e, )) '

(5)

(6)

e(q, (d) = I+ (2«'/q) Q'(q (d)

with

(6)

Equations (5) and (6) are valid whenever the
second term in the parentheses is small compared
to one, i.e. , at high enough frequencies. For
electrons on liquid helium at temperatures of
about 0.5 K, this typically means frequencies
above 100 MHz.

Equation (6) contains all the essential physics
in the problem. ' Unlike the usual Boltzmann equa-
tion approach in I, it includes both frequency de-
pendence and self-consistent screening in the col-
lision term I(v) The r.eal part of I((d) can be sim-
ply related to a frequency-dependent mass or re-
active effect, while the imaginary part of I((d) is
related to an inverse collision time. In this paper,
we will focus on the collisional or absorptive term.
Substituting the value of

~
V, ~' into Eq. (6}and using

our Drude formula, Eqs. (1) and (5), we can define
a frequency- and density-dependent relaxation time
v„((0), i.e. ,

1 1 k~T
dq Ime..() e, e ee* e(e, ))'

where I/v, =(eE,)'/4&rP is the frequency- and den-
sity-independent inverse collision time found in I.
The

1 4ve' imp(q, (()))

e(q, (()) q' Ie(q, (()P

arises from the imaginary part of the polariza-
bility Q, i.e., the single-particle continuum and the
zeros of e(q, (d}, i.e. , the collective mode contri-
butions.

In order to explicitly evaluate Eq. (7), we must
use some approximate form for e(q, (d). Since
there are no known analytic results for arbitrary
Coulomb coupling (I', = e'2'/'v'/'n'/2/ks T),we choose
to evaluate our expression utilizing a classical
RPA dielectric function,

function for momentum p at a finite temperature T.
The classical HPA dielectric function has much

of the correct physics in it. While it neglects
explicit correlation effects, it is known to be
exact at long wavelengths (q —0), and to be
quite accurate at short wavelength (q-~}. It has
a collective mode, the plasmon which is exact for a
small plasma parameter (F;0), and is a pretty
good approximation to the phonon mode in the solid
as(F,-~). While it is clear that the details of this
calculation will be incorrect at intermediate cou-
pling, the qualitative features will indeed be re-
produced correctly by such an approximation. The
difference between our calculations and an experi-
ment, when it gets done, will enable us to empiri-
cally get at the role of correlations in such plas-
mas.

Since our system is classical, we would like to
take the classical limit of Eq. (9). However, such
a strict classical limit leads to a divergent inte-
gral in Eq. (7). This problem and the connection
with the conventional handling, via the Boltzmann
equation, of the transport problem can best be
analyzed by examining the integral in Eq. (7) which
is proportional to,

qdq~(~) d p
~ ( ) p (f0+))()/2 f/e ))()/2)
~yq, (dj

Sq' p q (10}

For the moment, let us neglect the screening fac-
tor ~&(q, (d) ~' m the denominator, since for any
finite ~ in the limit of infinite q, e- 1. The main
difference between the more conventional formula
[see Eq. (17) of I] and Eq. (10) is the dynamic
screening in the effective interaction and the ex-
plicit inclusion of (d in the energy conserving delta
function.

The formally exact classical limit of Eq. (10)
with ~e ~= 1 and f, the Boltzmann distribution is
given by

e( )= fe )feeee",'e( -")
which diverges. For any finite ~, q is allowed to
go to infinity for every momentum p. The cutoff
comes from the 5'q'/2m in the distribution func-
tion and in the 5 function. At the frequencies of
interest (II(d «k~T), both cutoffs occur at roughly
the same place, i.e. , II'q'/2mksT- 1 and the cut-
off is Gaussian. Thus, we choose to replace n((d}
in our numerical calculations by

Q'(q, ~) = —.2 d P ~ n+ha/t 2 Jn -&a/2

In Eq. (9), f~ is the Fermi-Dirac distribution

(9)

(-)=fe
I z(q, (u} I' sp
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FIG. 1. Mean-field density dependence of the low-fre-
quency electron collision time with T =1 K and no
=106 cm

The more standard Boltzmann-equation (see I} ap-
proach is equivalent to neglecting co in the 5 func-
tion, i.e. ,

(13)

1
1

277'e'8'n'
ro m(ksT)' (14)

This analytical result was obtained by integrating

or q=(2P/5) cose. We will see in our numerical
results, that in the limit of zero screening and
zero frequencies the two approaches give roughly
(30/~) the same answers. The differences arise
from the detailed handling of the cutoff.

In Fig. (I}, we plot the density dependence of
Eq. (7). The quantity n, = OI' c/m' and T, = 1 K.
We have divided out (I/r, ) so that the answer given
in I for I/r would be unity in these units. The re-
sistivity decreases rapidly with increasing n. This
is primarily due to the static screening of the rip-
plons. Assuming e =1+q„/q has its static mean-
field value with q„=2vne'/ksT, it is possible to
show that to a good approximation the resistivity
decreases linearly from its zero density value,
l.e. )

p =. ll/np = 300

O
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FIG. 2. Mean-field frequency dependence of the col-
lision time (solid curve} for T = 0.5 K and an n = 3 x 108
cm ~. Dotted curve is the pole contribution.

over q from a lower cutoff given by q„ to an upper
cutoff k = (2mksT)'~'/l.

We expect that the mean-field results given here
are inaccurate for large values of (n/n, ). Where
it breaks down, one cannot say a priori, however,
it is clear that for a strongly correlated system,
the screening length in this mean-field theory
becomes much smaller than the interparticle spac-
ing, i.e. , q„(vn) '~'=2(2&ne')'~'/ksT» 1. Phys-
ically we know that the screening length for a
strongly correlated system will be limited by the
interparticle spacing. The deviations of the experi-
ment from these RPA results will give important
information about the effects of correlations.

It has been pointed out to us' that there may be
some experimental evidence for such a strong
density dependence. Three measurements of the
low-temperature (T-0.5 K) low-frequency ripplon-
dominated mobility have been made. "'p For'
n =10 cm ', p, =4x10', for' n=3x 10', p, =2
x 10', and for' n —- 3 x 10', p. -—1.3 x 10'. The first
two measurements are dc measurements, while
the last is a plasmon linewidth measurement. The
trend is in the right direction to be accounted for
by a screening effect. However, it is safe to say
that a detailed comparison must await a syste-
matic study, on a single apparatus, of the density
dependence of 7 for constant perpendicular electric
field.

The frequency dependence of the conductivity is
even more interesting and informative. In order
to clarify the physics somewhat, we show a plot
(solid curve) of r, /r for n/n, = 300, as a function
of &u/~„where &u, =[(2v}3~'n'~'e'/m]'~' is the zone-
boundary plasmon. The striking increase in re-
sistivity comes almost entirely from the contribu-
tion due to the pole [zero of &(q, u&)] in the inte-
grand of Eq. (7) (dotted curve}." In essence, the
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ripplon potential breaks the momentum selection
rule and permits excitation of arbitrary wave-
vector plasmons by the long-wavelength electro-
magnetic field. The details of this contribution
will depend on the detailed dispersion relation of
these short-wavelength modes, plasmons in the
gas, and phonons in the two-dimensional Coulomb
solid if it exists.

While RPA, as we have stated, is quantitatively
inaccurate at large values of nln„ it does give us
a pretty good qualitative description of the collec-
tive mode as a function of q even for a two-dimen-
sional Coulomb solid. We would expect on a quali-
tative basis that a correct description of the two-
dimensional solid would give a more rapid fre-
quency variation, i.e. , the single-particle portion
would be totally surpressed, and the pole contri-
bution would remain. For a harmonic solid, one
can rewrite Eq. (7) as

1 1 ksTg " d'Z (0 ~ e
'5( ) (15)

~0 m(o ~ ~ 4g 2m&

and the frequency dependence is qualitatively
similar to the dotted curve in Fig. (2). It does
not pay to belabor the detailed numerics since the
results given here are only approximate quide-
lines. Again we must turn to the experiments for
confirmation of these ideas. The essential point is
simply that the frequency dependence of the q =0
resistivity is sensitive to the spectrum of collec-
tive modes at q0. We know of no current experi-
mental work in this area.
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the integral is the pole (error bar). However, the
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we could in fact say that the entire contribution for
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