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A variational calculation of the ground-state energy of liquid 3He is presented. The trial wave functions

investigated are correlated pairing functions. By including pairing, we are able to investigate the possibility

that the ground state of liquid 'He is pair condensed. The correlation permits us to apply the theory to a
realistic model of the 'He interactions, including the strong short-range repulsion. The energy of a normal-

state trial function is compared at several densities to the energy of singlet s-wave pair condensed state (BCS
pairing) and the isotropic triplet pair condensed state (Balian-Werthamer pairing). Within the approximations

used, the lowest-energy state from this class of trial functions is the normal state. We briefly discuss possible
reasons for the failure of this calculation to exhibit the experimentally observed superfluid state.

I. INTRODUCTION

In this paper we consider the ground state of
liquid 'He with a view toward exhibiting the pair-
condensed (i.e., superfluid) nature of the ground
state. We begin with a Hamiltonian of the form

N 2 N

H=Q- &, +Q V(ro), (l2m g&)

where V(r) is one of the phenomenological two-
body potentials obtained from gas-phase data. '
To be specific, the I ennard-Jones 6-12 potential
is chosen for V(r); we do not believe that another
choice from the list of phenomenological poten-
tials wouM affect the qualitative results presented
here, nor do we think that the inclusion of three-
body or higher-order potentials would significantly
alter the results.

Our method of calculation is to consider a class of
trial functions which have the possibility of either
the presence or the absence of off-diagonal long-
range order (ODLRO), then minimize the expecta-
tion value of the Hamiltonian in this class of func-
tions. We are faced with the familiar problem of
having to deal with the strong, short-range re-
pulsions between the helium atoms. While this
precludes the direct application of a weak-coupling,
BCS type of theory to the problem, that difficulty
can be overcome by introducing a factor into the
trial functions which takes care of the short-range
correlations in a systematic fashion (e.g. , a
Jastrow function). This is a correlated pairing
theory, and was first introduced into condensed-
matter theory by Clark and Yang, who applied it
to the problem of superQuidity in neutron matter. '
Here we adapt this approach to the superfluid 'He
problem. This requires developing a new approxi-
mation scheme, which is described below. For
reasons of simplicity, we limit our attention to
isotropic pairing, of which there are two possi-

bilities: singlet s-wave (ordinary BCS pairing)
and triplet P-wave pairing [Ballan-Werthamer
(BW) pairing]. The energies of these states are
compared to the energy of the normal state at sev-
eral densities with the same approximations
throughout. We find in every case that the normal
state is favored over the triplet state, which in
turn is favored over the singlet state. There are
several possible explanations for our failure to
obtain the experimentally observed superQuid
state. The most plausible reason is that we have not
built into our trial functions the ability to adjust
the spin-density zero-point motion. We are pres-
ently investigating that possibility more carefully.

We continue this introductory section with a
brief review of previous efforts on the theories
of Fermi liquids relevant to our present discus-
sion. Section II contains the more important de-
tails of the formalism. Our comparison of the
energy of the superQuid and normal-fluid trial
states is given in Sec. III. Section IV contains
the results of our calculation of the energy versus
density for the normal system. The results of
$ec. IV differ quantitatively from previous calcu-
lations of the energy of the normal state primarily
because we have introduced a new approximation
scheme. We conclude in Sec. V with a brief dis-
cussion of the results and prospects for improved
calculations.

A. Pair-condensed Fermi systems

Following the success of the BCS theory of super-
conductivity, there were several attempts to apply
the theory to other Fermi systems whose ground
states might also be coherent paired states. The
first work on liquid sHe was done by several
groups at about the same time. Emery' and
Thouless4 related the presence of a BCS-type
phase transition to the divergence of the Brueckner
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T matrix. Emery and Sessler' and Brueckner,
Soda, Anderson, and Morele used T-matrix theory
to provide an "effective pairing interaction'* at the
Fermi surface; they used weak-coupling BCS the-
ory to estimate the transition temperature and
shift in specific heat. Anderson and Morel' and
Balian and Werthamer' generalized previous re-
sults to paired states consisting of spin triplets
with odd relative orbital angular momentum.

Throughout that work estimates of T, ranged
from below 0.2 to 1 K. In 19'72 the second-order
phase transition to a superfluid state was actually
found at 2.5 mK, with a first-order transition to
another superfluid state at somewhat lower tern-
perature, depending on the pressure. ' Those pro-
perties of the condensed phases that depend on the
qualitative physical microstructure (i.e. , aniso-
tropic or isotropic triplet pairing in a relative or-
bital l = l state) seem to be described by the work
of Anderson-Morel' and Balian-Werthamer, ' re-
spectively. But the actual transition temperature
and other thermodynamic properties of the system
have never been calculated from the known micro-
scopic properties of 'He atoms, in part because
He is a strongly interacting system, while the

best developed theoretical approach presently
available for studying the highly nonanalytical
pairing correlations is the phenomenological meak-
coupling generalized BCS formalism and strong-
coupling corrections to it."'" The only recent
microscopic theory is the sophisticated T-matrix
calculations of the Daresbury group"; that theory
does not appear to be any more successful than
earlier work in obtaining the transition tempera-
ture or the Cooper-pair / value of the paired state
for sHe.

B. Correlated wave-function studies of Fermi systems

In the study of Bose systems, whose symmetric
wave functions are much easier to deal with, the
most successful calculations of the structure,
ground-state energy, sound velocity, etc., have
come from correlated wave-function theory, the
central feature of which is the expression of the
N-body wave function in the form" "

Here |iI, is a symmetric N-body function that van-
ishes very rapidly as the particle "hard cores"
begin to overlap, and P„ is a "model function"
containing special physical properties of the sys-
tem such as the symmetry, pairing correlations,
restriction of particles to lattice sites, etc.

Motivated by the early success of correlated
Bose-system calculations, and following the work
of Iwamoto and Yamada, " Feenberg and Wu laid

the theoretical groundwork for application of cor-
related-basis-functions(CBF) techniques to Fermi
systems. " Feenberg, Woo, and Tan have applied
this formalism to 'He and have obtained reason-
able agreement with the properties of 'He in the
normal Fermi-liquid state. '

To consider the possibility that the ground state
of a Fermi liquid is pair condensed, Clark and
Yang enlarged the class of model functions P„ to
include pair-condensed model functions Q~. The
reference state for the normal phase is obtained
by letting (t)„be a Slater determinant (t)s&, and the
estimate of the condensation energy e, is given by

where

(5)

A positive-valued c, for some choice of BCS
parameters in (t)~ indicates that g, is the lower-
energy state, which is interpreted as a sign that
the ground state is pair condensed.

Clark and Yang' consider the question of super-
Quidity in neutron matter and nuclear matter using
this method. They use a Jastrow function for P, :

II ( gg)/a (6}

where e"+ approaches zero rapidly at the hard-
core radius of the nucleons. By restricting their
attention to low-density nuclear matter (i.e., the
hard cores are a small fraction of the total vol-
ume) they were able to use a cluster expansion of
the Jastrow function to evaluate the matrix ele-
ments of the Hamiltonian. The expectation value
has the same form as the usual BCS expectation
value except that the local potential V(r») is re-
placed by an effective local potential W(r»} given
by

W(r„) = e"'»' V(r, ) +(Ii'/rN}

xt(V, e"&"»' '}'+-,'(e"'»' —l)
x V~y(r,'~; r»)/y(r»; r»)],;, , (7)

where

y(r,'»r»} =g F (r,', o» rs, o»r» o»r»oa), (8)
ol a2

where I' ' is the two-body density matrix for the
model state P~ or Q~~.

While this is an approximation which is not valid
in the density range appropriate for 'He, it illus-
trates several points which hold in general. The
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first is that the effective potential reduces to the
pair potential in the limit where the correlation
function is turned off, since then e"=1. Second,
this effective potential is density dependent through
the density dependence of e" and y. Finally, and

perhaps most importantly, the effective inter-
action is state dependent in that it depends on the
BCS parameters through the density matrix y.
This is a well-known feature of so-called "strong-
ly" interacting systems. A consequence of this is
that the gap equation which is generated by max-
imizing ~, with respect to the BCS parameters
will have extra terms.

C. ODLRO in correlated theories

The main result of the work reported in this pa-
per is the extension of the correlated pairing
theory to include the types of triplet pairing
thought to exist in superQuid 'He, and the develop-
ment of an approximation scheme more suitable
for the 'He than that used by Clark and Yang. Be-
fore getting on with that, there are several as-
sumptions already made which need to be stated
clearly and discussed. The most crucial assump-
tion concerns the nature of the ordering in the
trial states g„and g,. The premise is that the
central feature of the state of a Quid which gives
it the coherence which is characteristic of super-
Quid is the existence of ODLRO, most likely
ODLRO in the lowest possible density matrix (the
two-body density matrix for a fermion system).
Implicit in the procedure of Clark and Yang is the
assumption that the presence (or absence) of
ODLRO in the model function (t) „implies the pres-
ence (or absence} of ODLRO in P, i.e., the pres-
ence of the correlating factor g, does not affect
the order qualitatively. This assumption restricts
the choice of g,. A counter example serves to il-
lustrate the point: consider an uncorrelated BCS
wave function P~s written as a correlated Slater
deter minent

4 =Oat= &sn 4.
where

Then clearly g is more highly ordered than Qsn.
We speculate that this increase in the order of P
is due to off-diagonal long-range divergences in
the density matrices of this particular choice of
correlating function P,.

In this paper we restrict our attention to g, 's
which could serve as reasonably good trial func-
tions for the boson ground state of the Hamil-
tonian under consideration in this problem. An
example is the Zastrow function [Eq. (5}]used by

Clark and Yang. These correlating functions,
taken by themselves, have a Bose condensate and
ODLRO in the higher-density matrices as well. "
Since they have no off-diagonal long-range di-
vergences, however, we do not expect the corre-
sponding g„ for a Fermi system [see Eq. (4)] to
have ODLRO in any of its density matrices.

This supposition is given further support by the
recent calculations of the single-body density ma-
trix for g„. Although the single-body density ma-
trix does not have ODLRO in a Fermi system, its
detailed structure reQects the presence or ab-
sence of BCS-type ODLRO in the two-body density
matrix. In particular, the single-particle occupa-
tion number n~ is the Fourier transform of the
single-body density matrix. In a normal Fermi
liquid, n& has a discontinuity at the Fermi sur-
face; when BCS ODLRO is present this discontin-
uity disappears. Thus it is important to note that
recent calculations of n~ for correlated Slater-
determinant trial functions for the ground state of
liquid 'He show that there is a discontinuity in n,
at the Fermi surface. "' 's This is a strong indica-
tion that a Slater-Jastrow g„does not have ODLRO
in the two-body density matrix, and should there-
fore be a reasonable reference state for the nor-
mal phase in the correlated pairing theory. We
do not at present have any calculation showing that
the discontinuity in n, is absent in a correlated-
pairing function of the form iII~ [Eq. (5)], nor do we
have any direct information about the two-body
density matrix for either g„or gs.

In summary, we are motivated to assume that
P„has no ODLBO while gs has ODLRO in the two-
body density matrix. We attempt to enforce the
assumption about g„by restricting the correlating
function f, to be a function without off-diagonal
long-range divergences.

II. CORRELATED PAIRING FORMALISM

A. Energy of a correlated Fermi system

We start by deriving an expression for the quan-
tity

E =(
Wt IHIP')/(ale&,

when the wave function is of the form g= g,f, with

and we write dT = d'r„. .. , d'r„, and include spin
sums in the first integral In (I), P. „=f is the
totally antisymmetric fermion model function,
either a ground-state Slater determinant (SD} or
a pair-condensed BCS state. g, is a completely
symmetric function of all the particle coordinates,
that can be chosen to be positive definite, and thus
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written in the form

~12

() =e'""' (fe'ee (10)
g (y(-(a'/3m)v( ((I)) g (y(V(r(, )(())

(sl 0&

=T+V.
Using a Hamiltonian in the form of Eq. (1), the

energy expectation value is
Using the Jackson- Feenberg transformation the

kinetic energy becomes"

T= g (J(( e)ige) 2 (fe ( v ()«)e ( (v ( )(«) (f (()e )

Application of the chain rule to P = g,f and use of (9) gives after some algebra,

h~
T («g (f j+ v) ref + v f)+i/ (fe2v]f vlf ) ( f ( f f () «

8m 4=y

so that, regrouping the terms

{13)

The first term in (13) can be dealt with using a generating function developed for Bose systems. '4

Define

(t). ( ) = ()' "/[I. ( )]' '
where

Sm
V = Q V(r(i) — Q V( 4)

Sm

I, (a }-=jt g e "dr .

%e can now define

(15}

where E„ is the expectation value of the Hamiltonian (1) in the symmetric state g, . The first term in (13)
can then be written

E, = p, * Vg, dT g, *g, dT

=d d=d—ln 1, (a) J~(L(a)f~f(I), (a)dr, =E, +—ln g, (a}f«fg, (a)dr

Using the identity

v, f* ~ v, f= ,'[v', (f*f) f'v', f --fv', f*]-
the second term in (13) can be written

N ~g E
«4 f'Z -4 v*if+f g-4 v(f*+6 Zvl((f*f) 4. 4.f f4. «.

combining (16) and (17), we find

E =E
3 +E2 =Ec+EI +E~+E& =Ec+Ey

(16)
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where E, is defined in Eg. (15},

V2 + — V~] * dT $c ~ gcdT

Eg= dT$~ A + f~ Q dT i/J~

(18}

N

4c dT dT

d d (20)

The first term in the energy E, is the boson ex-
pectation value of the Hamiltonian and as such con-
tains most of the energy due to short range corre-
lations. The second term, EI, contains most of
the energy shift due to statistics. Indeed, iff is
the Slater determinant, Ez is just the energy of
the Fermi sea. The remaining terms in the en-
ergy, E, +E&, are due to cross correlations be-
tween f and g,. The reason for choosing this de-
composition of the remaining terms is to take ad-
vantage of the fact that E, vanishes for special
choices of g„ independent of the choice off.'""
In particular, it vanishes if g, is the boson ground-
state wave function of the Hamiltonian of the
problem. It also vanishes if P, is the optimum
Jastrow trial function for the boson ground state
and the approximations introduced in Sec. IID be-
low are used.

In summary, by decomposing the energy in a
particular way we have isolated the primary de-
pendence upon the model function f in two terms,
Ef and E,. The term E, does not depend upon f un-
less we allow g, to change as a function off. For
simplicity we will fix p, to eliminate E,. With this
choice, E, is no longer directly relevant to the
pairing equation. We discuss the implications of
this choice further below.

Having made this decomposition, we have the
further advantage that E, can be calculated using
any one of many successful techniques for handling
symmetric many-body wave functions. The re-
maining terms find the differential operator V&

operating only on the Fermi function f, leading to
expressions easier to deal with than the straight-
forward form V', g. This wol be shown in more de-
tail later.

If&=n 'll (1+g-«.. -„'. 'x )Io&,
4» &0
aa'

where I0) is the vacuum and

i f'2

=11 ("Q I . I'+I I')

(21.a)

(2l.b}

is the normalizing factor, with hg =-ggggpg
-gqRggH. Note that by definition, gg„.
= -gg, ., In practice, it is sometimes easier to
work with (21) written

I&& = a&'g(ng. ~+~g.. cZ c'g. )I0&,

8%oa'= Uk aa'/ncaa' ~ (22)

where g& is the appropriate normalizing expres-
sion. As is well known, the choice

Caa' 3 vkaa' ~a, -a'y k kE 1

~a, .=5a a., Vg i=0, k&k~,
(23)

xl- =&f Ic&.c-I. If&

The "pair wave function" is defined as

(25)

gives the ground-state Slater determinant for the
noninteracting Fermi gas. The special cases of
BCS, AM, and BW pairing are specified by choos-
ing appropriate forms of ~ ., vt; a. ; or al-
ternatively, of gt;, .

These forms are chosen as follows. The "order
parameter" in coordinate space is defined as

X(~i si ~ s.) =-&f lk. ,(~i)I.P.) If&. (24)

where f, (r} is the destruction operator for a par-
ticle at r with Z component of the spin s. For a
uniform system it has Fourier transform

8. Fermi-model functions I f)
The Fermi-model functions are most easily des-

cribed in the language of second quantization. We
use generalized BCS-type states

0'(~„e„~., e,)-=&0Ie. (&,)e.,(&.)lf&,

and it has Fourier transform

q, , =&olc,.c,. If&.

(26)

(27)
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Both (25) and (27) are in general matrices in spin
space. For a state with either BW (isotropic
triplet) or BCS (isotropic singlet) pairing, the
matrices (25} and (27} are proportional to one
another. The AM state is more complicated be-
cause of the anisotropy. For simplicity we limit
our attention in this paper to BCS and BW pairing.
The coefficients g„,. are chosen in these two
cases to be proportional to the weak-coupling gap
b, as obtained by BCS and BW, respectively.

The state (21) is not an eigenstate of the particle
number operator ¹ Since the correlation func-
tion g, is conveniently expressed only in coordi-
nate space, we must formally consider the com-
ponent I N) of the state If) which is an eigenfunc-
tion of N with eigenvalue N (&f I N

If) = N):

ar fp

o,'~l»O=o '( E o».. »»„»»o. , io&, (oo&

k„&o

where q„' is the normalizing expression g„
= ((N IN))' '. It can be shown that the energy cal-
culated from (21) differs from that found using
(28) by O(N ), i.e., E„=E~[1+O(N )], where

so that in the thermodynamic limit (27) gives the
same result as (28}."

C. Correlating function f,
The purpose of the correlation factor g, in the

many-body wave function is to take care of the
strongly repulsive cores of the 3He particles.
Thus g, is chosen to vanish rapidly for interpar-
ticle distances smaller than the hard-core dia-
meter. The two forms of g, used in most pre-
vious work are" ": (a) A Jastrow function of the
form of Eq. (8), with u chosen variationally to
minimize either E, or the total energy of the
fermion system; and (b} the exact N body boson-
ground-state wave function of the Hamiltonian (1).

As we pointed out in Sec. II A, the simplest choice
is (b), so that a major component of the energy
(E,}vanishes. Having made this choice we are
still faced with the practical task of the evaluation
of integrals involving g„which means we need to
know some of the distribution functions for g,.
While we cannot solve the boson problem exactly,
we can rely on much previous theory developed
for the ground state of liquid 4He to obtain approx-
imate information about the necessary distribution
functions. We choose to approximate f, by the
optimum Jastrow function for the hypothetical
mass-3 boson system. The procedure we use for
determining this Jastrow function, the paired-
phonon analysis, is precisely the procedure which
has beep used for the 4He ground-state problem,

described in Ref. (27). The He-He potential we use
is the Lennard-Jones 6-12 potential

V(~) = 4~[(os)"—(os)'),
using the deBoer-Michels parameters

q =10.22 'K

(29)

is the density-fluctuation operator. Thus, the po-
tential energy enters the problem only through its
boson liquid-structure function, which is a much
better behaved function.

D. Approximation for the energy

We turn now to a simplification of expression (17')
for the energy. Similar expressions have been
dealt with before in 'He in the special case that f
is a Slater determinant. "' The procedure then
was to cluster expand the Slater determinant, pro-
ducing an approximation for the energy in terms
of low-order distribution functions for tt},. We can-
not avail ourselves of that approximation scheme
in the present context because of the more general
form of f of interest here. On the other hand, while
Clark and Yang included the BCS form for f in their
correlated pairing theory of nuclear matter, their
approximation scheme was to cluster expand the
correlation function P, for which they used a Jas-
trow function. ' That is a valid procedure in low-
density nuclear matter, since the hard cores take
up only a small fraction of the total volume. The
'He core takes up a large fraction of the liquid-'He
volume so that cluster expanding p, is not appro-
priate.

The approximation scheme we adopt in the pres-
ent work is based upon the observation that all of
the terms in Eqs. (17)-(20) can be written in the
general form

0 =2.556 A.

It should be noted, however, that explicit reference
to the potential used appears only in the energy in
the term E,. The potential affects the remaining
terms in the energy only through the distribution
functions of g, . In particular, in the approximation
used in this paper (described in Sec. III} we only
need the liquid structure function S,(k) defined by

S,( k) = &q. I p-, p &, I q. ) IN&y, I y.), (I)
where
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where P, and P~ are both symmetric functions of
their arguments, In all cases P, is just I Jj, I', but

Pz is a product of f ', f and a symmetric operator
in the several possible orders, with spins summed.
A complete set of symmetric functions can now be
introduced into I:

P, n nPy (31)
n

Our choice for the complete set of states ln) is the

set of free-particle boson eigenstates (i.e., sym-
metrized N-body plane waves). A cumulant anal-
ysis of the functions (P, I n) and (nl P~ & leads to a
natural approximation scheme for I in terms of the
distribution functions for P, and P~. Retaining the
lowest nontrivial cumulants in such an approxima-
tion leads to an infinite partial summation of (31).
A complete description of the analysis will be giv-
en elsewhere. ' It is shown in Appendix A that the
resulting approximation for the energy is given by

h2h2 Ep(k)E (k)E=E,- g 2
' -+2Re g g-„„, Inl(I I'

1-Ep(k)F, (k) JJ„&o 2
oa'

1
(32)

where

F,(k) =S,(k) —1, Fp(k) =Sp(k) - 1,
where

s (h) =&f1 p-p=„l f&/N(fl f&.

The normalization integral qp and the generalized BCS parameters g, , are defined in Eq. (21). Expres-
»ons for Fp(h) for all model functions considered in this paper are given in Appendix

The variational equation for the BCS parameters is obtained by minimizing Eq. (32} with respect to
g~, . This produces the gap equation of the present work. For simplicity, we illustrate the procedure by
considering isotropic singlet (i.e., BCS}pairing. Toward that end we define I f&~~, the BCS model function
in second quantization, by

where normalization is now taken care of by requiring

I u-.. .l'+I vt.. .l'=I (34)

In (33) u„-, , and v-„, , can both be chosen real. If we now include the chemical potential explicitly (to per-
mit the use of the second quantized form with indeterminate particle number for f), expression (32) be-
comes

1 F.(lp-p'I)
E PN E np&(f u) nppnp ~

—
I „,„„,„[e (1 —np„) +e (1 —n&z) - —,'e(

p pl J ]
P)J.

E.(lp-p'I)
I)

[e'( —2n-,„)+e'(I—2n~„)- J-, ~J],v, u, , v, (35)
p p'X,

where npJ, =vp„, and ep =h'p'/2m. To get from (32) to (35) the expression for Fp(h) from Appendix B is
used.

For the normal system described by (23), (35) becomes

h'p' 1 1 E.(p -p')e;- -,
.( J,( tr&)

'—'-
pX. p p'X

and it is tempting to identify a quasiparticle energy (measured from the Fermi level) as

h'p2 1 Fc(P-P'k(p
p J

I -F.(p -p')F, (p -p')
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[Note that F, =0 when g, is a constant (i.e., no correlation) so that t' takes on its usual noninteracting val-
P

ue in the uncorrelated theory. ] 'Ihen

(39)

which is similar to the usual Hartree-Pock, or mean-field, expression. Extending this to the pair-con-
densed (BCS) state energy, we identify

F,(p —p') n;, &p jFe(P —P')

p~ 2m P~ N $ I-F,(p-p')F~(p-p') N 5 I F~(-p-p')F, (P-P') '

The effective pairing interaction is identified as the coefficient of u~ v~u~, v~, in Eq. (34):

I F,(p- p')[~F(I-»pk)+~p (I-2np k) -~l'p-p I)
pp'x. 1 —F,( P —P')F„(P—P') (40)

A similar formal identification can be made with the energy of the AM and BW states, except that V»,~ in
those two cases contains angular factors not present in (40). This effective interaction is state dependent
through the function n~~ and also through the dependence of F~(k) on the BCS parameters. 'Ibis state de-
pendence complicates the Euler-Lagrange equation (i.e., "gap" equation), obtained by minimizing the en-
ergy with respect to g~, ,

Introducing the BCS angles through the usual definitions
2 2tC», —V~ =COS2ekkaa' koa' kaa' &

+ kaa'~koan koa' &

the BCS "gap" equation is

F,(k) [~'„- -R„-.F,(k)]
2(e- —g) sin28~ + —g „1 k~

',
&~], [(1-cos28&,k, ) sin28~, +(cos28-, )(-sin28-, „-,)]

k

F,(k)—e-' —p l, k, ,-) [(1—cos28„-; )(2sin28-, cos28, )+(cos'28, —sin'28- )(-sin28- k, ))
k

F,(k) e' [cos28~, (-cos28&,-„,sin28-, -„,) + sin28-, (sin 28-,„- )] = 0, (41)
k

where

g' = h'k'/2m
k

Rp~ =——g (sin28-, ~ [sin2(8-„,; ~ + 8-, ~)
1

(42)—sin28;~]) .
We discuss our attempts to solve this cumbersome
set of equations in Sec. III.

III. VARIATIONAL CALCULATIONS

The goal of the work described here is a com-
parison of the energy of a reference normal state
with several possible pair-condensed model states,
keeping everything else fixed. It is useM to have
an order-of-magnitude estimate of the expected en-
ergy difference between the normal state and the

superQuid state, i.e. , the condensation energy.
Toward that end, recall that the condensation en-
ergy in weak-coupling BCS theory is roughly
N(0)4', where N(0) is the density of states at the
Fermi level and & is the gap. In superconductors,
T,= &, and assuming the same to hold for 'He, the
condensation energy is of order 10-' K per particle.
Consequently we must resolve amongst different
model states energy differences as small as 10-' K.
A calculation of the absolute energy to that ac-
curacy for a comparison with experiment is of
course meaningless; the uncertainties in the bare
two-body potentia1 are of the order of 1 K, as are
the uncertainities in our ability to calculate the en-
ergy from a given potential. All is not lost, how-
ever, since we can compare the energies of two
states to a much higher precision, adequate for
determining energy differences of order 10 K.
The sensitivity to the interaction potential is at a
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TABLE I. Fermi-model structure functions for the
Slater determinant, and for BCS and BW states charac-
terized by T*=O.l K.

'8)8 ~ cong
cos6g sing-„e'&J

(44)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.3
2.3
2.4
2.5

Sy (A')

0
0.095 291137
0.189810 014
0.282 784 371
0.373441 948
0.461 010483
0.544 717718
0.623 791392
0.697459 245
0.764 949017
0.825 488 44 7
0.878 305 276
0.922 62V 242
0.957 682 087
0.982 697 550
0.996 901371
1
1
1
1
1
1
1
1
1
1

SBcs(y)

0.047 106 79V
0.110351614
Q.197 154 982
0.287 514 831
0.376 864 99V
0.463 649 086
0.546 833 356
0.625 533 483
0.698 921 176
0.766 193046
0.826 558 154
0,879 232 356
0.923435467
0.958 389 740
0.983 318837
0.99V 42V 083
1.000 128 808
1.000 000 522
1.000 000 001
1.000 000 000
1.000 000 000
1.000 000 000
1.000 000 000
1.000 000 000
1.000 000 000
1.000 000 000

0.046 893 976
0.10g 69169V
0.196428 692
0.286 V75 564
0.376 121185
0.462 903 170
0.546 086 297
0,624 V85 735
0.698 172 981
0.765444 544
0.825809433
0.878 483 473
0.922 686 461
0.957 640 639
Q.g82 569 826
0.996 699289
0.999992 368
1.000 000 079
1.000 000 005
1.000 000 OOQ

1.000 000 000
1.000 000 000
1.000 000 000
1.000 000 000
1.000 000 QQO

1.000 000 000

Pg =B~ (BC8),
1 0

(43)

comparable level, i.e. , if the energy difference be-
tween two states is of order 10 ' K based upon the
Lennard-Jones potential of Eq. (29), changing the
potential to another of the phenomenological He-He
potentials will change the energy difference by an
amount of order 10 ' K.

Calculations for isotroyic yairing are much sim-
pler than for anisotropic pairing, so we focus our
attention on BCS and BW yairing. The pairing par-
ameters g~ for these two cases are best ex-
pressed as a matrix g~ in spin space:

where B~ depends only on the magnitude of k and
the angles Pg, 8~ are the polar angles of the vector
R. With this notation, the expectation value of eg,
the fermion number operator in the uncorrelated
model function, is given by

sr =&a. Ic-' e.l @.&~&&. I &.&=Bl~('+fit) (46}

for both BCS and 8% pairing. Note also that the or-
der-parameter matrix for the uncorrelated model
state has the same form in spin space as g~:

&e.-Ictf.c ~ I e.&~&es I e.& =('+ffl) 'g~
(46)

Our attemyts to solve the "gap" equation for the
optimum B~met with failure presumably for want of
a good starting place in the iteration scheme. To
find a good starting place we parametrized our
model function in terms of two parameters, g~ and

p, as follows:

(l d
$4(IIV/2ccc dc)} (47}

Here g* is an "effective inverse temperature" that
allows us to vary the amount of smearing out of the
Fermi surface, henece the amount of pairing. This
form reproduces the genera1 shape of the Fermi
sea expected for a pair-condensed ground state.
The parameter p, is chosen so that

n„"=N,

where N is the number of particles in the system.
With p determined in this fashion, g* is the single
variational parameter of the calculation.

In the remainder of this section we give the for-
mal results obtained using Eq (46) for.the singlet-
pairing (BCS}case only. The BW case is treated
the same way, the only changes being small modi-
fications of one term in Ear"(k) and one in the en-
ergy.

The BCS structure factor (minus one) is given by

1 1 I2q2 4f+ k S2l
d (d}=, —

~
dddeech-, 'd —C Cdlcece-,'d —e)8F p 2' 2'

82 2

q dq 1 —tanh&P* —p,
0 2m

jd/' 1 —tanhgP* p (48)

The fact that the innermost integral in this ex-
pression can be done analytically allows us to make
our very accurate comyarison between the normal-
state energy and that of the different condensed
states. Since most of the energy difference comes

I

from a narrow region of k space about k, and be-
cause the integrands are varying rapidly there for
large P*, high accuracy is difficult with a purely
numerical evaluation of the integrals. This same
fact presents difficulties in solving the variational
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1.0

~5 s{k)

.2 .3 A .5 .6 .7 .8 .9
k{k')

FIG. 1. Single-particle occupation number &~ as a
function of k for T*=0.1- K. Here k~= 0.786 ~

equation itself numerically.
Table I lists the values of San(k), S»~(k), and

Ss»v(k) at T»= 0.1 K for purpose of comparison.
Viewed as a numerical evaluation of (48}, the num-
bers in Table I are accurate to at least 10-', and
illustrate the small differences we are dealing with
even in the extreme situation (T» = 0.1 K) illus-
trated by Fig. 1. Figure 2 is a plot of S» (k) and
S»~(k) as functions of k. (It should be kept in mind
that the entire paper deals with 'He at T = O'K, and

.2 .4 .6 .8 1.0 1.2 lA 1.6 19
k{4')

FIG. 2. Fermi-model function structure factor S&(&)

for the Slater determinant (solid line) and for a BCS-
type condensed state characterized by T*=0.1 K
(dashed line). On this scale the difference between SE(A'j

for BCS and BW states is not visible.

that T* is a parameter used to change the size of
the region in k space over which the pairing effects
are important. )

Once we have the structure factor S»~(k) we can
find the energy. E(I. (35) in this case becomes

1 I'2 F (k)F~~(k)@so(=E +Eecs=g, + k'dk 2[1 —tanhy(k)] —
1 'F (k}Fees(k)0 c F

kdkF k2l j+k
I dl sechy(l) tanhy(l) q dq sechy(q)16v'p' 0 1 —F (k)F»~(k) 0 2m I s-al

g2)2 l+ 0
(dl sech y(l) q'dq[( —tanh((q(]),

0 2' (49)

where y(x}= ,' P»(R'x'/2- m——p). All numerical inte-
grations were done with Simpson's rule: step size
was decreased until a finer mesh changed the re-
sults by 10' or less. Interpolation of tabulated

I

functions was linear. We believe that the resulting
energy shifts nE/N accurately represent the pre-
dictions of our mathematical model.

Table II displays the results of this calculation

TABLE II. Fermi-sea contribution to the energy/particle at p= 0.0164 A 3, k+=0.786 A '. T* measures the width of
the region about p in which pairing is important. We compare singlet (BCS) and isotropic triplet (BW) states with the
normal (SD) state energy at T=O. Ec must be added to get the total energy: E~~=Ec+Ez~, E ~ =Ec+Ez, where
Ec/N -2.96 oK at this density.

Z. . (oK) + (oK) E (oK)
EB%P (oK)
N

E
(OK) peal (g 3) (' )'

0
0.0001
0.0002
0.0004
0.001
0.002
0.004
0.01
0.1

1.947 666 424
~ ~ ~

1.94V 666 424
1.947 788 319
1.947 910256
1.948 154 230
1.948 886 968
1.950 111027
1.952 569 629
1.960 028 534
2.085490 392

0
0.000 121895
0.000 243 832
0.000487 805
0.001220 544
0.002444 603
0.004 903 205
0.012336 211
0.137823 968

1.947 666 424
1.947 788 312
1.947 910226
1.948 154 110
1.948 886 219
1.950 108 033
1.952 55V 690
1.959 954 612
2.078 983492

0
0.000 121888
0.000 243 802
0.00048 7 686
0.001219795
0.002441 609
0.004 891266
0.012288 188
0.131317068

0.016400 105
0.016400 105
0.016400 105
0.016400 106
0.016400 106
0.016400 109
0.016400 118
0.016400 187
0.016 408 292

0.000 000 067
~ ~ ~

0.000 006 662
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TABLE III. Condensed-state energy as a function of &* for p=0.0153 A, k+=0.768 A &.

Add E~ to get the total energy: E~/N =-3.00'K.

Escs/N EBW/N (EBW ESD)/N (EBCS EBW)/N

0
O.QQ0 095
0.000 190
Q.OOO 382
0.000 955
0.001910
0.003 819
0.009 548
0,095477

1.891 281 673
1.891 393 983
1.891 506 333
1.891 731126
1.892 406 269
1.893 534 154
1.895 799 740
1.902 674 326
2.018 565 270

1..891 281 673
1.891 393 976
1.891 506 305
l.891 731 014
1.892 405 572
1.893 531 370
1.895 788 636
1.902 605 559
2.012 502 197

0
0.000 112303
0.000 224 632
0.000 449 341
0.001 123 899
0.002 249 69V
0.004 506 963
0.011323 886
0.121220 524

0
O.OQO 000 007
0.000 000 028
0.000 000 112
0.000 000 697
0.000 002 783
0.000 011104
0.000 068 667
0.006 887 941

TABLE IV. Condensed-state energy as a function of T* for p=0.0189 g 3, k+=0.824 A '.
Add E, to get the tetal energy: EJN= 2.62'K. -

SB~~/N E BW/N (EBW E $/N (EBCS EBW)]N

0
0.000 109
0.000 220
0.000440
0.001099
0.002 198
0.004 3/7
0.010 992
0.109920

2.066 l07 402
2.066 250 633
2.066 393 912
2.066 680 585
2.067 541 538
2.06S 979 698
2.071 868 012
2.080 627 938
2.227 434 131

2.066 107 402
2.066 250 624
2.066 393 877
2.066 680 445
2.067 540 668
2.068 976 221
2.071 854 148
2.080 542 125
2.219 895 249

0
Q.OQO 143 222
0.000 286 475
0.000 573 043
0.001433 266
0.002 868 819
0.005 746 746
0.014 434 723
0.153 787 847

0
O.QOO OOQ 009
0.000 000 035
0.000 000 140
0.000 000 870
0.000 003477
0.000 013864
0.000 085 813
Q.QOV 538 882

TABLE V. Condensed-state energy as a function of T~ for p=0.0214 g 3, k+=0.858 A '.
Add E~ to get the total energy: E~/N =-1.77 K.

gBCS/N E BW/N (EBW ESQN (EBCS~BW)/

0
0.000 119
0.000 239
0.000478
0.001 194
0.002 388
0.004 VV6

0.011941
0.119411

2.174 650 223
2.174 814160
2.174 978 151
2.175306 263
2.176291 650
2.177 937 601
2.181242 987
2.191265 832
2.358 826 778

2.174 650 223
2.174814150
2.174 978 112
2.175 306 104
2.176290 658
2.177933 637
2.181227 180
2.191168 007
2.350 238 035

0
0.000 163 927
0.000 327 889
0.000 655 881
0.001 640 435
0.003 283 414
0.006 576 957
0.016 517 784
0.175 58V 812

0
Q.OOQ OQO Q10
0.000 000 039
0.000 000 159
0.000 000 992
0.000 003 964
0.000 01580V
0.000 09V 825
0.008 588 743
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TABLE VI. Condensed-state energy as a function of T* for p= 0.0339 g 3, kr= 0.891 A i.
E~ to get the total energy: E,/N =-0.35 K.

0
0.000 129
0.000 257
0.000 514
0.001285
0.002 571
0.005 142
0.012854
0.128 539

E~~/N

2.274 882 890
2.275 067 035
2.275 251 240
2.275 619792
2.276 726 616
2.278 575 360
2.282 287 801
2.293 543 392
2.481 392 779

Esw/N

2.274 882 890
2.275 067 024
2.275 251 195
2.275 619613
2.276 725 500
2.278 570 901
2.282 270 024
2.293 433 381
2.471 733 401

(EBw EsD)f/N

0
0.000 184 134
0.000 368 305
0.000 736 723
0.001 842 61
0.003 688 011
0.007 387 134
0.018 550 491
0.196 850 511

(EIKs~ Bw)/~

0
0.000 000 011
0.000 000 045
0.000 000 179
0.000 001 116
0.000 004 459
0.000 017 777
0.000 110011
0.009 659378

for a range of values of T* at the saturated vapor
pressure density p = 0.0164 A ' (kr = 0.'186 A '). In
that table we have used the definitions

&E~/N = (E~ —Esn)/N (50)

n.E~/N = (Ea~ E")/N, (51)

where Es~ is the reference normal-state energy.
%'ith these definitions, pair condensation would be
signalled by a negative value of &E.

The chemical potential used in these calculations
is

P, =P,,=If'kr/2m,

which introduces a small error, as can be seen by
the calculated density p~ given in Table G:

1p~ = — n~,

where 0 is the volume of the system. We de-
termined the effect of this approximation for p by
including the leading correction:

i =&.[I—t'. ~(ks 'T/& )ol.S

(58)

This produces an additional small shift in the en-
ergy given as &E'/N in Table II. We see that even
with the variational parameter T* as large as
0.01 K, the additional shift &E'/N is much smaller
than AE~/N and &E~/N.

A convenient procedure for scaling some of the
Fermi quantities to other densities is given in Ap-
pendix C. Then the main results of this paper,
&E and bE ~ as a function of the variational
parameter T* and density, are given in Tables II-
VI.

It is convenient to think of W as the half width of
the region about E~ in which pairing effects are im-
portant, i.e. , where 0&n~&1. Within the ap-
proximations we have made, we find no phase tran-
sition to either singlet or triplet pair-condensed
state: the normal state characterized by a cor-
related Slater determinant is always the state of

1.120"

hC0
Z '

I

1.125"

1.130"

.0001 .001
T ('K)

.01

FIG. 3. Energy per particle as a function of T* at the
saturated vapor pressure densityp =0.0164k ~ (solid
line). The dashed line is located at the normal state
(Slater determinant) energy for reference.

lowest energy. This is illustrated for p = 0.0164 in
Fig. 3. However, at all densities considered, the
triplet-paired state has lower energy than the sin-
glet paired state, which is a good sign that with a
bit more sophisticated model function (say, the in-
clusion of spin-density fluctuations if yossible) or
perhaps a smaller number of approximations, we
may soon see the condensed phases of bulk liquid
'He appear as a result of the atomic properties of
'He atoms. On the other hand, if the approxima-
tions we have made are good ones, our results
might indicate that, over and beyond stabilizing th(
AM phase with respect to the BW phase as is now
believed"" the paramagnon fluctuations may be e~

sential for any pairing at all to occur. We should
emphasize again, however, that we have not con-
sidered anisotropic pairing. In particular we have
not considered singlet d-wave pairing, where con-
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FIG. 4. Energy per particle in the normal state as a
function of density. Solid circles are results of this
calculation. Solid line is the experimental curve.

densation was predicted by the early t-matrix cal-
culations. '"' While an extension of our calculation to
d-wave pairing might produce a paired state of
lower energy than the reference normal state, the
effort required for such a calculation is not merited
by this possibility.

V. DISCUSSION

The method of calculation we have introduced here
gives results for the normal-state energy of 'He in
reasonable agreement with experiment in view of
the fact that the total energy involves large cancel-
lations between the potential energy and the kinetic

IV. NORMAL-STATE RESULTS

While the focus of our calculation has been the
question of suyerfluidity in liquid 'He, we have in
the process produced a new apyroximate expression
for the normal-state energy as a function of density
given by Eq. (36). This expression differs from
that given by Wu and Feenberg" by the appearance
of the denominator in the last term of (36).

The results of this cal,culation are shown in Fig.
4. Note that the experimental and theoretical re-
sults differ by a fairly constant energy (=1.5 'K) as
a function of density, although the calculated equi-
librium lies at a lower density than experiment.

energy. We arenotyet able to show the experi-
mentally observed transition to a pair-condensed
state. We hope to make refinements in the general
approach described in this payer which will enable
us to describe the pair-condensed ground state of
liquid 3He.

There are several refinements which bear men-
tioning here, any one of which might produce the
desired result. Perhaps the first which comes to
mind is to change the bare He-He interaction V(r)
which appears in Eq. (1). This would affect our
calculations here by changing g„which would yro-
duce a change in S,(k). This certainly would pro-
duce quantitative changes in our results. We be-
lieve, however, that the essential features of the
'He system are weQ-represented by the Lennard-
Jones 6-12 yotential used here, namely, a strong,
short-range repulsion followed by a weak attraction
which goes asymytotically into the Van der Waals
attraction. This potential, or any of the other phe-
nomenological helium potentials, should produce a
pair-condensed triplet phase qualitatively similar
to that seen experimentally. We think the wisest
course for our calculation is to stick with a single,
reasonable potential and refine the many-body the-
ory. The quantitative effects of changing the yot-
ential can be investigated after the many-body the-
ory has been adequately developed.

There are two types of refinements of our for-
malism which should be considered. The first has
to do with the form of the correlated pairing theory,
while the second one has to do with the approx-
imations used here. The question of the adequacy
of the approximations is particularly difficult,
since liquid helium seems to be a system for which
there is no natural small parameter in which to ex-
pand. While we give a rationale in Appendix A for
expecting the higher-order terms in our cumulant
analysis to be of less import than the terms we
have retained, we know of no simple way to place
an estimate on these contributions.

Probably the most fertile area for modifications
in the theory presented here is in the class of trial
functions used in the correlated yairing theory, Eq.
(2). It should be noted that all of the variations per-
mitted in our calculation have been in the model
function P„. The function g, has been fixed at the
value determined by the 'He boson problem of the
same density, and f„ is only permitted to sample
the generalized BCS functions. Thus our reference
normal state (with P„a Slater determinant) has no
variational latitude at all. We would certainly ex-
pect some improvement in our calculated normal-
state energy if we allow g, to vary (being careful to
let it vary only over those functions for which P
= P,P» does not have ODLRO). One straightforward
approach to this problem is to consider a mod-
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ification to P,:

&.= &.II&"'"""
i&/

(54)

where f~ is the boson ground state used in this
paper and e"/' is a Jastrow function which can be
varied to remove the over correlations due to the
presence of the Slater determinant. That is, u is
chosen to satisfy

(5/5(() ((}(iH i((()/ ((}( i g) = 0. (55)

With this Jastrow factor present in g„ the term E,
[Eq. (19)]in the energy no longer vanishes, but it
may be calculated using similar approximations to
those discussed in Appendix A. The results of this
calculation are reported elsewhere, ~ where it is
noted that the resultant shift in the ground state en-
ergy per particle is rather small, (0.02 K at equi-
librium density). These corrections come from
throughout the Fermi sea. The significant func-
tion in the pairing question S,(k) also undergoes
small changes in the range 0 ~ k ~ 2k&, with the lar-
gest changes occuring at long wavelengths.

When the pairing model functions are used for P„,
Eq. (55) should be solved for each choice of BCS
parameters. However since the difference in en-
ergy between the normal and pair condensed states
is the primary interest here, and since the change
in u has Occurred for both the normal and condensed
trial function, we expect the condensation energy to
be changed by only a few percent. This point
should be investigated further, however.

As we have pointed out several times above, the
most significant omission in our calculation is a
careful treatment of spin correlations (or, more
suggestively, spin-density fluctuations). This is
seen most clearly in the reference normal-state

trial function, where the spin coordinates enter
only through the Slater determinant. It could be
said that they are only treated in a mean-field fash-
ion. The inadequacy of this trial function for spin
correlations is demonstrated by the fact that the
calculated magnetic susceptibility of this system is
an order of magnitude larger than the experimental
value "(the state is too highly paramagnetic). This
problem is rectified to some extent by introducing
a linear combination of excited state Slater deter-
minants for p„with coefficient determined by sec-
ond order perturbation theory. ' s The result is an
improvement in the ground state energy by -0.4 K
per particle and a magnetic susceptibility which is
within 20% of the experimental value.

Thus we feel that the most promising extension of
our theory is the development of a procedure for in-
cluding spin density fluctuations in the formalism.
We hope to make some progress in that direction
in the near future.

APPENDIX A

To obtain Eq. (22) from (18) and (20) we express
the integrands as generalized Fourier series in
(r„.. . ,r„). The general procedure for doing this
will be given elsewhere. ~' To summarize it, we
note first that g and f «f are functions totally sym-
metric in the valuables (r„, . . . , r„) so that a good
set of basis functions for a Fourier expansion is

p(|«)(p p ) — P &((5( r( +«( r(2+ ~ ~ ~+j~ r( )

&l~V"'~&a

(Al)

These functions are orthogonal but not normalized.
The normalized versions of (Al) are

- l/2 l/2
q( „-.,n,)-=—,i &"(&()"' (i p"(*'"' (p(, " p(p2, ",p. , "., p, ",p }jel

(A2)

where N is the number of particles in the system
and A is the system's volume; the argument p,
appears n( times in the set (p„.. . , p„). The p( '

can be thought of as generalized density fluctuation
operators, since they can be expressed as poly-
nomials in the ordinary density fluctuation opera-
tors p, =Z(e"'(; i.e.,

p(()(k }
(As}

p"'(k„k,) = Qe"('(e('2's=p; p~-p;.~, etc.
f4f

lr,l Q kl+Q y

To use these functions in the energy expression,
we assume that P, is the boson ground state wave
function so that E, defined by (18) vanishes. Then

E=E+ g * — V&f+ — V&
* g dT |I} * g di

+2 g, v', *,d7 p, * gd~. (A4)
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Since the second term in (A4) contains V~ operating
on f or f" separately, it can be evaluated only
when a specific form for f has been chosen. On

the other hand, the last term can be evaluated out-
right, and we use it to show how the density-Quc-
tuation expansion lends itself to a simple approxi-
mation. We now evaluate

2 |I), V j g, dr tt}, p, dv' .

(a) Denominator. First expand

where

(:((s;)) f=q ({«'))ff«
and (g-„Z„.) means the sum over all distinct

k'

choices (s„.. ., n„) such that

nj+N.
jel

Then the denominator is

(A6)

f.f ff =ll.Q)c({2)f f.q({ ())(«.
k nk

Now define

* p* n- dv. =-G~ n

where

and likewise

(A7)

As observed in (A9), these E„functions either van-
ish or are of order N, depending on the momen-
tum sum. Thus the different terms in (A6) are of
different orders in N, and the order in N can be
determined by counting the number of E factors,
the number of free momentum sums, and taking
account of the combinatoric factors involving ¹

Of course the series is not isotropic in N, but in-
stead must exponentiate:

jt),p n dw=G' n- (ff.f f4.«) f4f dr so()(()

These functions have cumulant expansions~ defined
by

G,(|,) -=E, (k,),
G2(k„k2) =E, (k,)E,(k ) +E2(ki, k~),

G,(k„k„k,) =-F, (k,)F,(k,)F,(k,)

+F~(tk, )E2(k, k )+E~(k )E2$„k~)

+F~(k~)E2(k~, k )+F~(k~, k), k ),
(A8)

etc.
Since the Ef((ng) have the translational proper-

ties of the system, we have for a uniform system

Eq({nJ) =0 if QkeO,
(Ae)

Ef((nJ) =O(N) if Q k=O.

The functions E„have some very useful proper-
ties for convergence of series expressions such as
(A6). The two factors on the right-hand side of
(A6) are G„ functions, one G'„and the other G„. By
the definitions (A8), the right-hand side of (A6} be-
comes a polynomial in the E„functions (E'„and Ff)

Any approximation for this series must be chosen
to preserve this exponentiated dependence upon
the number of particles. One such approximation
scheme is to set E„=O for n larger than some pre-
assigned value.

An approximation scheme where higher order
E„'s are zero can be given further support by con-
sidering the values these functions take on for non-
interacting systems. For example, the E„a11van-
ish in the noninteracting Bose ground state, which
follows from the fact that the p'"' are all orthogonal
to a constant. For the noninteracting Fermi gas
(i.e., the ground state Sister determinant) the F„
do not vanish but they do become increasingly less
important as n increases. To see this, recall the
well-known result that

E (k k) (4 8D PtP j+~48D)-

p+kF,

typal+

jfg

which is -2 times the covo1ume of bvo Fermi
spheres a distance k apart. Similarly, E,(k,k,k,}
for the Slater determinant is -4 times the covol-



16 CORRELATED PAIRING THEORY OF LIQUID He 2015

ume of three Fermi spheres centered at the corn-
ers of the triangle formed by the three momenta

k„k, and k,. This result generalizes so that
Ff(tt„.. . , k„) is a measure of the covolume of n

Fermi spheres centered at the vertices of the poly-
hedron formed by the momenta k~, .. . , k„. Thus

F„for the ground state Slater determinant is an
increasingly short-ranged function of its argu-
ments as n increases, and can be reasonably ap-
proximated by zero beyond some value of n.

It should be clear from this discussion that one
systematic approximation scheme is to set F„ to
zero beyond some value of n for both the Bose and
Fermi factors in the correlated wave function. In
this paper we have taken the simplest nontrivial
approximation, which is to set F„=0 for n —3 for
both factors. In analogy with the analysis of prod-
ucts of density fluctuation operators, "s"this pro-
duces the approximate result

and

Putting them into (A6} we get

~ f, dv = N- n-„~ 0"N

&2' [F2 (k, -k)F~N(k, -k)] ~ . (A11)

The central assumption of all cluster expansion in
many-body theory is that the series converges after
a small number of terms. Thus in (A11) we set

c
N —Qp j!/N! =I/NIN (A12)

and remove the restriction that m =Zan ~N, to get

,dv ~ F2, -k F2

m = n.„=even, (A10)

G„((sg)=0, m =odd.

All these properties apply to both integrals

(A13}

(b) Numerator. Applying (AS) to the numerator,
we have

'
4 n~ N- n~ t 0"N/ n~~ d~ P* n-„dv P n~ y A&4

k n~ i
~l

where Z~ means that a term characterized by (nk] is multiplied by Zf (Km@'/4m)s-. Putting (A11,) into the
right-hand side of (A14) leads to

1 ~ ~ II F (I l)2 (I f} '!
r{ 2 F (k, k) Ik-Fk))"-',

Rff1 ~ 1

kit'1s 1

1 I'l' E2r g, -f)F;(f -1) 1
0", 2 ip 1 F(I'()F,(I I },/PP , g 1 —F (fr k)F;(2, 2)/N')--

'81~ 1

f fg d
S*f* E.(f, -T}E;(T. -T)/X'

~~

2m 1 -E, (f, -I)F~(1, -1)/N'

using (A13}to get the last line. Now we put (A15) into (A14) to get, for the last term in (A4),

~ k, -kF~, -k N

~ ~ -
N (} 1-Em (k, -k)E2(kp — )/N

(A15)

(A16}
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As mentioned, the other two terms in (A4) require an explicit expression for f B. efore introducing one

me expand

where

~V] = D n-„q ng
i

(A17)

h2
()([»»[)= f» ([»;")) 4-f*»', y.

In second quantization (A18)

(A18)

D(l~f}) =&f Iq'((nf))Q c„-'c„-" If&. (A19)

Now, the state corresponding to (21) but having a fixed number Z of particles js
N/2

ggy(((), cI)()c -()
aa

p„&o

(A2o)

~h~~~ &, is a normalizing factor that will drop out at the end of the calculation. Enserting (A2O) tn+ (A19)
we find with some algebra that

8'n', g/2 8/2 1
cl c Qg;„,cl c'. , IO&=-,'X Q 2g;,cl c'. Q g;...c.' c'. IO)

go y aa' p aa'
P~&0 k+0

-&'-"("--',.-'..)(W ="-::--")"'I
k+0

So, treating the gybe, as parameters distinct from g-„* „we have

&fI&(&+18 p 4
c c„ lf&=~~

I Q 2 s '8 . I. I+pl &fl(f(b-. Blf&ll,*,
ka 'jf,aa'

kg&0

where I,» means that g» is formally held fixed.

So, putting (A22) into (A17) and using approximation (A10) gives

J P.f*(-Z»l)f(l.«j 4,f'f('.«

A&@! gk! y P gk y P gk
nk

1
X p p d7 +pc.

(A21)

(A22)

n-„! 0"N! n-„l g, p n;

»)„).z,„~-„.'; l lail*(fl ([» )»)If)[l, I ( J~ ~ ~ f~ ") +»'»'

n„- ! QN¹f 5nn Ecz
y kF2 ky k "t

g- Ny g
* f dT Ã~ + Ãg g-~

»[(fl g) (» —g») ) () Nl 5„,„.[»(k, -k)P, (k, —:.))" +»». ,

Ny $, gd

(A28)
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where the first factor in large square brackets on

the right-hand side cancels with J])],f fg, dr. The
two terms in (A23) are logarithmic derivatives,
and we have

4
V' /de' tt)

* pd7

P &0 QfyC

], ), 1 —F'(,](k, k)F]2](k, -k)/N'

This expression has been obtained from a state
with fixed numbers of particles. However, (A24)
depends on the Fermi-model function only through
derivatives of the normalization IN& I', since it is
possible to express F~&»(k, -k) in terms of quanti-
ties like (8/Sg„) lnI]N~I', (6/Sg„)(S/Sgs) InlN&I',
etc. ; and we can show that in the thermodynamic
limit we can replace

without error. That is, expression (21) and (A20)
can be used interchangeably without error.

In the body of this paper we use the notation
F, (k, -k)/N—=Fz(k), and F,(k, k)/N=F, (-k) for con-

FIG. 5. Spin quantization axes.

venience. Expression (21) for the energy follows

straightaway.

APPENDIX B

Here we give the general formulas for F, (k, -k),
E, and the variational equation, and the forms ta-
ken by these quantities in the special cases where
the "pair wave function" has BCS, Anderson-
Morel (AM), or BW symmetry.

(a) Structure factor. In general

F~(,)(k, -k) -=Q F"„-(k,-k)

(I++ Iz-.„- I'+Ik.,;I'
aty'

g- '+ h- '
1. + g- '+ h;'

~g'yg~ gyp &+ gy~ '+ hy
'

The symmetry is given to the parameters g;,~ by requiring that the pair wave function ]C];„.[see (26)] have
the appropriate physical properties. In general
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(82)

EF (k k) g Kk+ix-k

(1+ ~ g I,;i-)) ~
') (as)

g-, , = g;,~ &( function of ~&))
~
.

(i) B&$ I.n this case ((t, (&') =(4t) or (tt} and the space part of the wave function is isotropic. Thus [see
(21)] we can choose &(~...v~, , isotropic, the third term in (81) vanishes, and we have

~ g k ya-X ~ I g y)t-)t ~

( +~st.;..~') ( +~a'&~, ~') '

which reduces to

(2)( ) & ~ ( /gyes g &)yp)) )) )) )) pg )) p)))) gVyg gJ D ~ (Ng~()Vg~& Q()Vy V ~yV )
y)t y

(84)

(ff) AM. In this case (o, o ) =(0t) or (kt), and (Bl) simplifies to a formula like (BS) with the replacement
(-&( —&(}. In matrix notation, we now require thai'

which leads to

t' I",(f )

y ('(f» f
(85}

2

gM ~ cy sln8y cy k sln8y k g (y y ) cy s jn gyF jk, -kj=2 Z 2 2 2 ~ 2 8 +k P}+c sjn 8- }+c sjn 8- }+c sjn 0
y y y+k y+k y P

2
Cp k Sln ey

+c,-„sin 8-..„
2 - 2-

cN sine)- c;.I sine;+I , c~ sin e; c~.~ sin 8;,~cos Q;.;—(II);}—*));:, " ' ) ~ c*;s n*e; ) ~ c*.., s n*e-,.,-) ' (86)

since only the real part contributes. Here the coordinates with respect to the spin-quantization axis are
shown in Fig. 5. In (86}c~ is isotropic, a function of ~p ~

only.
(iii) BW. In this case all combinations (o, o') appear, and we have'

/~», '(f) y', (f) }*

( I",(j) M2r (j) j (8'7)

After some algebra we find that the third term in (81) still vanishes, and the remaining terms reduce to

Fs(,"&(k - k) = 2$ [(&-„.,(),.~;&);(I -p ~ k) -()-'„-()-' ], (88)

where u~, v~ are functions of ~P ~only, satisfy ~u~)'+ ~()~~'=1, and can be chosen real, i.e. , (88) uses the
same notation as the second line of (84).

(b) Energy. In general

(H &(N) = E —p.N-

=E,+EF - pN

2 g (eo p)s Q eo J[E(2&(k, -k)/N]E(~&(k, k)/N-
&)„& 0 a~& 0 1 —[F'&2&(k —k)/N]E+&z&(k —k)/N

[E(2&(k, -k)/N]N '
~ 1 -[E&»(K, -R)/N]F~&»(%, -R)/N

X 2+ )1 —ll)6E )k, —k) ~ 2 Q (1 — )f -E.()& k) I Ep-(k, —k)} E
y all y Itll y

where e =II p'/2m, n&= v&, and E&~»(k, -k) is defined by (81), and

(89)
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)hyf ng,y

1+5 Ig I
'+

I l)( I
'

+ 2kk Q ((r; ~ ( 1)'"'-k. F2-.- I/(2+Elm- . I*
fyN

For future reference define

(F'.;-(-2)"'2'".;F.,;,. ] ( (Qlr; , I'.. l)x.;I*) .

R~=-2 1-~y+j &~+g+ ~ -~y E'p E~~ k, -k — & ~ k —k . (B10)

To simplify (B9) we need only the manipulations that led to (B3), (B6), and (BS), along with a lot of pa-
tience while doing the algebra. The results are the following:

(i) BCS:

E —gN = E, + 2g n~(&0~ —g) —P e',
Fe ca (k)EO(k)

kk & 0 1 E 22c(k(2)F (k)

teak[-2v v s +vj+ I()( )(Ky'kkk L vyx k+ja x(~yg g g &) ] 2

a )o 1-F,(k)Fees(k)
(B11)

where Fs~(k) -=E~&»(k, -k)/N for BCS symmetry Usi.ng (B4), Eq. (B10) is easily put into the form of Eq.
(24).

(ii) L4M:

E..(k)E.(k)
F (k)F (i)

ap 0 aM c

F,(k)
+ Z 1 F (k)F (k) Z 1+C-' -„sin'8;;„1+C-;sin'8; 1+Cisjn'8-

A'g &0 yg

[see (B5) and (B6)].
(iii) BW:

C;,-„sine-;, C; sin&; 1-C;sin 8;+ 2 2 2
' cos (t)- a.)1+C'- sin'8. -1+C-' sin'8- 1+CS sin'8

y 4j y+t y

Fs„(k)E,(k)

ltd& 0

(B12)

F,(k)+Z 1 F(@F (k)
2 'Ã-2~". ~" "a -"-. ~ '(-.- . -p' ].

&0 c Bw

For definitions see (B4), (B7), and (B8)
(c) "Gap equation. " The general expression for the variational condition on the energy (B9) is

k)/N

X X

x 2P (1 —xx)k F, (k, —k) kg (I —2;)2;1F;(k—k) —Q, 2 L(k, —k)). ,
qOO~

I)

(B13)

[F„',(k, —k)/N ]N~ (1 -[E (k k)/N]$ (k --k)/N)' ~ " sg
X
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APPENDIX C

16

Scaling Fermi quantities to other densities. In expression (47) consider two integrals characteristic of

the Fermi surface.

Es»cs(k) [see Eq. (46)],
g2 $2

CBCS(k) —
~l l dl sechy(l) tanhy(l)

0 2m

1+k
~q dq sechy( q)

l&-kf 1

52l' ~ l +k

l dl sechy(l) q dq[1 —tanhy( q) ].
0 ~ Ir-k)

Define dimensionless variables

l= l/k», q=-qlk», k-=klk», P*=k»P;

then

8'x'
y(x) =— —]d, =y(x},&, -=}I'k'/2m;

2 2m k

(C1}

(C2)

tas +k

F (0 ~P») = qdq sechy(q) l dl sechy(l )
Sk " Ic-kl

w 0

qqo +%

q dq [( —tattttq( q) ]) t dt [1—ttttthq(l }]}
fe-k)

—E s cs(k
~
p «) (C3}

2 2 l+k
Cscs(k) l]») = ks»

~

l dl sechy(l) tanhy(l ) J) q dq sechy( q)
~0 2m 17-kl

ldl sechy(l ) q dq[1 —tanhy(q)]
~2m i (c3')

so that Fs»cs(k ~P*) and k»«Cscs(k ~P»} are functions only of the dimensionless k and a density-scaled effective
temperature P». Arrays of numbers can thus be computed for a range of P» for a given density, then scaled
to other densities without repeating the entire calculation. If E,(k) is also expressed as E,(k} (a simple
scale change}, the energy (47) takes the form

ksks 3 "-, - -- 2 "-, - E.(k)E (k) e "- - E.(k)C»(k}

The same procedure is as easily applied to the BW energy expression: however, C»(k) and E»(k) take on
different forms in that case.
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