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The quasiparticle spectrum of a film with superconducting surface sheaths is calculated for states with

energies less than the maximum value I of the pair potential. The influence of a magnetic field parallel to the

film surface is discussed semiqualitatively. The probability of Andreev scattering (AS) in a surface sheath is

found to be limited by ordinary reflection processes to a narrow range of values of momentum perpendicular

to the film surface. The "normal" region behaves like a gapless superconductor. When a ground-state current

flows in it, in thermal equilibrium quasiparticle states with momenta opposite to the ground-state flow are

preferentially populated. Those with high probability of AS continuously transfer momentum to the

condensate so that a voltage must appear in order to maintain a stationary current. Current-voltage

characteristics are calculated and discussed for various temperatures and film thicknesses. They show step

structures due to the spatial quantization of the quasiparticle states. The theory is compared to the

experiments on quantized resistances.

I. INTRODUCTION

Current-voltage characteristics (CVC) of films
with superconducting surface sheaths measured
recently' ~ exhibit two striking features: (a)
finite voltages are sustained by the supercon-
ducting surface layers parallel to which stationary
currents from a constant-current source are
flowing; (b) there are steps in the CVC, and linear
current branches with quantized resistances can
be traced out. While steps and finite voltage drops
in the CVC of superconducting films and micro-
bridges have been observed and interpreted by
various groups and authors, 4 ' their experimental
situations and the magnitude of the observed cur-
rents and vol. tages differ significantly from the
ones reported in Refs. 1-3. Also, special effects
like the decrease of the quantized resistances
with increasing magnetic field parallel to the
phase boundaries and low-field resistances higher
than the normal film resistance (see Fig. 9 of
Ref. 2) are difficult to understand on the basis
of vortex-channel' or phase-slip-center' mech-
anisms.

Hayler, Geppert, Chen, and Kim (HGCK) elabor-
ate a phenomenological model. ' in order to describe
their linear current branches in terms of quasi-
particle currents through quantized states, bound
between the pair potential walls. ' Making a num-
ber of assumptions concerning the quasiparticl. e
momentum k~„normal to the phase boundary, the
quasiparticle relaxation time &, and the quasi-
particle energy E„ in the presence of current flow,
they obtain quantized resistances after fitting the
quasiparticle density n „and reproduce rather

well cutoff voltages and current intercepts. '
Despite its success the simple phenomenological.

model of HGCK does not resolve the theoretical
problems posed by the observed CVC. By its
very nature it cannot explain the ability of the
superconducting surface sheaths to sustain a finite
voltage difference between their ends nor does
it give the reason why the current should flow
through a certain bound quasiparticle state. Fur-
thermore, the assumption that the relaxation time
&, responsible for energy dissipation and the ap-
pearance of a resistance (or voltage), be equal
to the time a quasiparticle needs to cross the
normal region between the phase boundaries"
is not self-explanatory, since reflections at the
normal (N)-superconducting (S) interfaces pro
duce the bound quasiparticle state; they do not
limit its quantum-mechanical lifetime. Finally,
the energy relevant for the definition of a bound
state, i.e., a state with exponentially damped
wave amplitudes in the S regions, is independent
of the drift velocity of an applied current (see
Sec. II and Ref. 8); this aspect differs from the
point of view adopted in Ref. 2.

Therefore, a different approach towards a theo-
ry of superconducting-normal-superconducting
films with the outer surface bordering on vacuum
and with current flow parallel to the phase bound-
aries appears to be justified and necessary. Based
on prior considerations of the processes involved
in particle-hole scattering at N-S phase bound-
aries"0 and the spectrum of ISNSI filmss (I, in-
sulator), we will try to show how current and
voltage steps can originate in suitable layer struc-
tures because of quasiparticle-induced spatial and
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temporal variations of the pair potential's (order
parameter's) phase. Like HGCK we build our

theory on their fundamental. idea, that quantized
bound quasiparticle states are responsible for
the structure of the CVC,"but contrary to HGCK

we do not assume current conduction through
individual quasiparticle states. We rather follow
Bardeen and Johnson" and look into quasiparticle
countercurrents established in. the low-lying bound

states by relaxation with the lattice.
According to experiments reported in Ref. 3 and

mentioned in Ref. 2, ISNSI sandwiches of Pb and

Ag layers sustain finite voltages and show steps
in the CVC even without an applied magnetic field
H. Therefore, and for the sake of simplicity,
we will at first disregard H in Secs. II-IV. Sec-
tion II presents the eigenvaLue equations for all
bound states, i.e. , states with energies E' (in
a frame moving with the ground-state flow) which

are less than the maximum value b, of the pair
potential. They are solved for the lowest-lying
states E'«4 with any value of the Fermi mo-
mentum component kz~ normal. to the phase bound-

aries. The higher bound states with & - 4 are
calculated for k~~» 2m~, m being the electron
mass. In Sec. III we show how "current-excited"
quasiparticles in these states can induce electrical
potentia1. differences between the film ends, and
discuss in Sec. IV the energy dissipation due to
quasiparticle relaxation with the lattice and quasi-
particle recombination into Cooper pairs. The
treatment of the magnetic field in Ref. 8 (and in

a number of papers quoted therein) is inadequate.
We will look into its influence on our results in
Sec. V. Section VI presents numerical calculations
of: (i) the very-low-temperature CVC of ISNSI
systems whose normal regions are so wide that
several. states with high particle-hole scattering
probability can satisfy the condition Eo«b; (ii)
the voltage as a function of the ground-state
current when al. l. states with &'& 4 are involved.
Qualitative and quantitative features of the cal-
culated CVC are compared to the experimental
results of' ' HGCK in Sec. VII. Appendix A pre-
sents the derivation of the quasiparticle eigen-
value equations and in Appendix B the probability
of particle-hole scattering from NSI boundaries
is calculated.

E~u~(r) = —(1/2m)(V'+ k~z)u~ (r)

+e'"'s(z) v, (r), (2.la}

E, v, (r) = (1/2m)(V'+ k 2r )v, (r)

usual idealized model of a steplike pair potential.
which has the constant value 6 for a& ) z( & D and

is zero for ( z( &a.' " Since the work function
of a metal against the insulating vacuum is much

larger than b, we approximate the height of the
surface potential barrier at

~
z( = D by infinity.

The situation is depicted by Fig. 1 of Ref. 8. We
assume that no magnetic field is present, i.e.,
that the SNS structure is produced by sandwiching
normal and superconducting layers' and that the
proximity effect may be neglected. "

Investigating a normal layer imbedded between
two practically infinite superconducting regions
Ishii" concludes that the spectrum of the bound

states with large Fermi momentum components
k» normal to the phase boundaries is more like
that of a gapless superconducting state than of the
usual normal state, so that the N region is capabLe
of carrying a supercurrent. As pointed out in
Ref. 8, the N layer between two thin supercon-
ducting surface sheaths has the same property,
due to the spectrum of the energetically low-lying
quasiparticle states with k» & (2m')'~'. There-
fore, it is justified to consider an ISNSI system
that carries a homogeneous ground-state flow
in y direction parall. el to the interface with an
average momentum per electron e,q. [The spatial
constancy of q simplifies the process of solving
Eqs. (2.1}. It does not mean that the total cur-
rent, which includes the quasiparticle counter-
current due to relaxation with the lattice, is spa-
tially homogeneous, see Eqs. (3.18)-(3.21). It
will be largest at the film edges. Consequences
of an increase of q towards the film edges will.
be discussed qualitatively in Sec. VII.] Thus, in
the stationary state we assign the phase 2qy to
the pair potential in both surface sheaths and con-
tinue it into the N region. The magnetic field of
the current wil. l be neglected. "

In this system the Bogoliubov equations for the
electron and hole components of a quasiparticle
in the state 0 are

II. EIGENVALUE EQUATIONS AND BOUND-STATES

SPECTRUM
+e '"' n, (z) u~ (r), (2.1b)

Let us consider a pure metal film of thickness
2D with a central normal layer of thickness 2a
and two superconducting surface sheaths, each
of thickness D -a. As in Ref. 8 we choose the

~(z) =[n, (z)[ =~e([ z[ -u), k=1.

The quasiparticle energy E» is measured relative
to the Fermi energy k2r/2m. The solutions are
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(
=e''""&" „, ea — z) a, az +a, n 'z +b, Pz +b, p 'z

V& e '"
V V V

+e(z -a} A, , y(z)+A, , y '(z)+A, 5(z)+A, 6 '(z)

v ' V-
+e(-z-a) B, 5(z)+B, 6 '(z)+Bz ', y(z)+B~, y '(z)

V V V V
(2.2)

where u~ (z =+D) =0=v~(z =+D). (2.5)

n (z) =- exp[ ikzr(l + e}'/'z),

P(z) =—exp[ ikzz(1 —e)'/'z],

y(z) = exp[ikzz(1+i5z} '/'z],

6(z) =- exp[ik»(1 —i6z)'/'z],

and

(2.3a)

(2.3b)

kzz = (k 2z —k,' —k', )'/',

kz ky are wave numbers,

e=—2mE'/k2zz, E'=E, —k, q/—m,
—2m(~2 E02)1/2/k2

&= exp[i , arcc-os(E'/&)].

(2.4)

k symbolizes the complete set of quantum num-
bers, including the spin, that characterize the
quasiparticle state.

The solutions are subject to the boundary con-
ditions

They are normalized:

In Ref. 8 it is explained how three different types
of quasiparticle surface scattering mix together
all. degenerate solutions with the same k~~.

As a result of the matching conditions and Eq.
(2.5} there are 12 equations for the 12 integration
constants in (2.2). The energy eigenvalues as
usual result from the requirement that the deter-
minant of the coefficients of the integration con-
stants vanish. Expanding this determinant in Ap-
pendix A we obtain the folLowing results:

(a} The eigenvalues of the energies Eo«h for
any value k~~( k~ are

E„'( kz)r=(n —a')vkzr/2ma, n =1, 2, 3. . . ,

(2.6a)
where

o.' = a. '(kzr)

—= (1/2z)Parccos([([-, 5' —(1+6')'/'+ 1] cosh2z + [ —,P+ (1+6')'/'+ 1] cos2K

—26 sinhz sinK+ 5 (coshz cosK+ —,')}4 cos(4kzza)

—( [(1+5')'/' —1]sinh2z + [(1+5')'/'+ 1]sin2K

+ &26{[(1+6')'/'+ 1]'/' sine cosK+ [(1+6')'/' —1] ' ' coshz sinK)) 4 sin(4kzz a)

—2([(1+6')'/'+ 1]cosh2z —[(1+6')'/' —1]cos2K —2 —46 sinhz sinK}]

&& ([(1+6')'/'+ 1] cosh2z + [(1+5')' ' —1]'cos2K+ 4+ 46'(coshK cosK+ z)} '} (2 6b)

Thus, 0& n'& &. (Pindicates that the principal value is to be taken. ) The meanings of the abbreviations
are

6=2m&/k'zz, z= v2 [(1+6')'/' —1]'~'kzz(D —a), K—= v 2[(1+6')'/'+1]'/'kzr(D —a). (2.'7)

The more specialized cases of Ref. 8 are included in Eq. (2.6).
(b) The eigenvalue equation for the higher bound states with E's 6 and k» so large that(la i5z}'/'= 1 is

0 = —cos(4 mE'a/kzz}+ 2[ 1 —(E'/6)'] cos(4kzrD) +( 1 —cosh[ 4 m(&' —E")'/'(D —a) /zk]r}
—[2(E'/b, )' —1]cos(4mE'a kz/)+cosh[4m(a' —E")'/'(D —a)/kzr]
+2(EO/b)[1 —(Eo/6)2]'/2sin(4mE a/k )zszinh[4m(h'-E )'/ (D-a)/kzz]. (2.8)
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x„=xo +n2z/p, (2.10)

with n an integer, is an approximate solution,
too. In fact, the numerical calculation of the zeros
of the right-hand side of Eq. (2.9) for P =45 yields
eight practically equidistant solutions obeying
the relation

x„=0.07+n 0.13, 0 n~'f (4, z =0.14).

Therefore, in the kz range where Eq. (2.9) is
valid we have equidistant bound energy levels

ED=En(kzz)+nzkz„/2m', n =0, 1, 2, . . . (2.11}

according to Eq. (2.10}. This spectrum has the
same structure as that of Eq. (2.6). (Note the
different ways of counting n. ) It agrees with the
density of states curve calculated by Ishii" for
thick S layers. As is shown in Appendix B the
vaLues of kzr and D -a, for which Eq. (2.11) holds,
are just the ones that allow a nonvanishing prob-
abil. ity of particle-hole scattering in the thin
surface sheaths. We will see in Sec. III that these
states are of fundamental importance to voltage
induction.

If

g=—4m(6'-Eo')'~'(D —n}/jkzz

and

i 4mE'(D=-—a)/kzz

are so small that the approximations coshg= 1,
sinhg=g, 1 = cosi, i = sini are justified, Eq. (2.8)
becomes

cos(4kzzD) = cos(4mEOD/kzz). (2.12)

The solutions of this equation are the energies
of a normal film of thickness 2D.S [Equation
(2.12) also results from Eq. (2.8) in the limit
b -0.] This is not surprising, because smaLL

For E'&~ this equation also yields the eigen-
values of the "continuum states" whose wave func-
tions do not decay in the 8 regions.

It is not possible to give analytical solutions
of Eq. (2.8) in the complete range of its validity.
However, it simplifies for k~z values such that
(1 + i6z)'~' = 1 and yet 4 m (6~ -Eo')'i'(D —a)/kzz ~ 3,
because then the dominant terms in Eq. (2.8) are
the ones involving the exponential functions and

we obtain

0 = —1+(2x' —1)cos( px) + 2x(l —x')'i' sin( px),

(2.9}

with x=E'/& and—p=—4maa jkzz.
When P is large, one might expect that, if xz

is a solution of (2.9), then

values of g and i mean that the quasiparticles
pass the surface sheaths without hardly ever
noticing them.

III. SCATTERING AND VOLTAGE INDUCTION

Three different quasiparticle scattering mech-
anisms in joint action are responsible for the ap-
pearance of the voltage jumps we are about to
calculate. (i}Particle-hole scattering, also cal. led
Andreev scattering9 (AS), at the X-S phase bound-
aries is a process possible only in (inhomogeneous)
superconductors; it is of fundamental importance
to the effect. It has been investigated and de-
scribed by many authors. 9 '6 (ii) Thin supercon-
ducting surface sheaths cannot completely damp
out quasiparticle waves with large k~„despite
E & b, . Therefore, these waves can be reflected
at the outer film surfaces. This type of scattering,
together with ordinary reflection from the pair
potential walls' for very small k~z, limits finite
probabilities of AS to a narrow range of kzz. (iii)
Quasiparttcle scattering from phonons establishes
thermal equilibrium with the lattice and causes
decaying quasiparticles in the S regions to re-
combine into Cooper pairs. Let us look into these
processes one after another.

A. Andreev scattering (AS)

When a quasiparticle in a state above the Fermi
surface passes across an inhomogeneity of the
superconducting order parameter il (r), it will
be scattered into a state below the Fermi surface
with a certain probability, and vice versa. This
mixing of states is responsible for the Tomasch
effect" and for the combination of wave functions
in the mixed state of type-II superconductors, "
and in superconductors with magnetic impurities,
etc. Its nature was first described and analyzed
by Andreev' for the intermediate state. Consider
an electron of excitation energy E with a mo-
mentum k' above the Fermi sea which moves
in z direction from a normal into a supercon-
ducting region where the pair potential is 4. If
E'& b, , the electron encounters a zero density
of states in the S region. Around itself it creates
an unstable normal region by pushing a Cooper
pair out of the volume el.ement it occupies. The
charge deficit in this volume element pulls in a
second electron, of the same energy and with
momentum k below the Fermi surface, out of
the normal region. A hol. e is left there close to
the phase boundary which is filled up by an elec-
tron in an adjacent volume element deeper in the
N region and so on, so that effectively the hol. e
moves away from the phase boundary with a group
velocity —k /m. " Via the phonon-mediated at-
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n, div&S„= 4 m Im[ 4(z)v ~ u~ ]; (3 1)

tractive el.ectron-electron interaction the two
new electrons in the energetically forbidden S
region form a Cooper pair, transferring their
total momentum%'+% =2%+ to the condensate
into which they merge. This momentum and the
charge 2e, transported from the N into the S re-
gion in a single-particle-hol. e-scattering process,
are carried away by a supercurrent, which re-
sults in a phase shift 2S~ of the order parameter.
In Ref. 13 the equation for this phase shift was
derived:

PQ(kzf j

Q5-

10 15 20 kzF
Xp

n, is the electron density in the ground state.
[The factor 1 f, in-Ref. 13 is due to the non-
equilibrium situation assumed in the derivation
of Eq. (3.1}. It can be replaced by 1 here. The
value of the right-hand side of Eq. (3.1) for seml-
infinite X and S regions is given in Ref. 13.]

The solutions of Eq. (3.1) are subject to bound-
ary conditions determined by the positions of the
external current leads. For instance, if these
are connected to two points on the z axis of the
N-S system which are on either side of and far
away from the phase boundary at z =0, we have
the solution of Ref. 13 with a supercurrent in
z direction in the stationary state. On the other
hand, if both semi-infinite regions were com-
pletely surrounded by particle reservoirs so that
there were no constraints on the directions the
quasiparticle-induced currents may take, then
the solution of Eq. (3.1) in the stationary state
would yield the supercurrent density

j z, = (ne/m)VS, =2%z(e/m)(1-e "')/V„,

(3.2)

V„being the volume of the normal. region and
K = kzy&~ Note that although the momentum of
a quasiparticle excitation is nearly completely
conserved in a single process of AS," in a station-
ary situation charge and momentum flow is as-
sociated with a continuous flow of electrons
towards the interface and holes away from it.
Close to the interface curl j ~~4 0. The two pen-
etrating electrons with forbidden energy and a
surrounding unstable normal region form de-
caying vortices as they scatter into Cooper pairs.
In the situation of interest to us, a net current
can flow parallel to the y axis only. Before dis-
cussing this in detail it is necessary to find out
how probable AS is in a thin superconducting sur-
face sheath.

B. Ordinary surface scattering

In Appendix B we calculate the probability of
Andreev scattering in a superconducting layer

FIG. 1. Probability Po(kzz) of Andreev scattering in a
single surface sheath of thickness T for various T
values. The slight energy dependence of the scattering
probability is not shown. It smears out Po(k zy) by
about 0.05.

of thickness T backed by an infinite potential wall
at z = T. A semi-infinite normal region extends
to the left of z =0. Figure 1 shows this probability
Po(kzz). We see that for the quasiparticle states
under consideration with energies E'& 4 the par-
ticle-hole scattering probabilities have their max-
imum values equal or close to 1 in the range

2z, & kzz S 2 5z„z,—=.(m4)'~'. (3.3)

C. Relaxation with the lattice

Let us consider an ISNSI system of length L,
width W, and thickness 2D, with an electric cur-
rent from an external current source flowing in
y direction parallel to the phase boundaries.
Following Bardeen and Johnson" we may divide
this current into two components: a ground-state
flow with a net momentum q =e„q per electron
and a countercurrent in -y direction carried by
the quasiparticles which are "excited" (in a ref-
erence frame moving with velocity q/m), in order

With decreasing layer thickness T the range of
finite P,(kzl) shrinks, because less and less waves
will be damped out completely in the S region.
Rather the probability increases that the electron
(hole) component of the quasiparticle is reflected
into itself at the outer film surface and returns
into the N region without having been scattered
into the hole (electron} component. Excitations
with very small kz„cannot penetrate at all into
the S regionbut suffer ordinary reflection from
the pair potential wall at z =0. Therefore, P,(kzz)
drops to zero for kz~

Multiple-scattering processes from opposite
surface sheaths in ISNSI systems should peak
the AS probability —designated by P(kzz) then—
even more sharply than in Fig. 1 around its max-
imum.



1984 REINER KUMMEL 16

f(E, ) = [exp(Ez /kT )+1]
where according to Eqs. (2.4)

E~ =E'+ k„q/m

(3.4)

(3.5)

is the quasiparticle energy in, the laboratory sys-
tem (i.e., in a reference frame fixed to the lat-
tice). Equations (3.4) and (3.5) show that quasi-
particle states with a momentum k„opposed to
the ground-state momentum per electron q will
be preferentially populated. Especially in the
zero-temperature limit, T- 0, only those quasi-
particle states are occupied for which

that the electron system be in thermal equilibrium
with the lattice. In thermal equilibrium the quasi-
particle distribution is given by the Fermi func-
tion

k,' = kzz + (n —a)w /2a (3.10a)

for the electron component of the quasiparticl. e
and

k, =kzz —(n —o.)w/2a (3.10b)

for the hol. e component. Here we have expanded

If bias current and ground state momentum q
are such that Eq. (3.6) will be satisfied for a num-
ber of states given by Eq. (3.9), then even at very
low temperatures quasiparticles will be present
which carry rather la, rge momenta —j k„~ into
the surface sheaths when suffering Andreev scat-
tering. Their momenta in z direction normal
to the surface sheaths follow from Eqs. (2.3),
(2.4), (Bl), and (3.9). In the N region their mag-
nitude is

E,& 0, i.e., k, q& 0, [ k, q[ /m&E'. (3.6) (1+e)'~'= I + -,'e.

P(kzz = k, ) = max,

where

(3.7)

In a normal metal, relations (3.6) lead to a quasi-
particle countercurrent which exactly cancels the
ground state flow, i.e., a current without an ap-
plied voltage will die out because of quasiparticle
rel.axation with the lattice. In our system, how-
ever, the structure of the excitation spectrum,
especially of its lowest part where the energies
are given by Eq. (2.6), only allows for excitation
of relatively few quasiparticles so that the counter-
current is not sufficient to cancel the ground-
state flow (see Figs. 3 and 4). Therefore, in films
with superconducting surface sheaths at low
temperatures currents can flow without an applied
voltage, as long as q remains below a critical
value q, to be determined later. For this reason
SNS and ISNSI systems behave as gapless super-
conductors. ""

The states with finite probability P(kzz) of An-
dreev scattering have kz~ values close to k, de-
fined by

Since P(ko)=1, the wave functions (2.2), with

kg~ = kp in good approximation, divide into two
degenerate, independent solutions: one with
+k ', (az=O=bz) and one with -k ~ (a, =O=b, ),
because perfect Andreev scattering only mixes
electron and hole states of nearly equal momentum.
Figure 2 shows the corresponding excitations.

As discussed in Sec. IIIA, each particle-hol. e
scattering leads to a transfer of charge 2e and
momentum 2%z to the ground state. On the other
hand, hole-particle scattering pulls two electrons
of momentum 2%+ out of the S region (and the
ground state) into the N region in a process time
reversed to the one described above. Therefore,
the net momentum and charge which are effectively
transferred to the ground state in one surface
sheath depend upon the difference in the rate at
which electrons and holes hit upon the phase bound-
ary.

In the stationary state the wave functions (2.2),
with kz~ =k, and properly chosen coefficients

&ty

k = 2.5(mn)'~' (3.8)

according to Fig. 1 and Eq. (3.3) for a single
process of AS. We do not expect that kp is shifted
appreciably, when multiple AS occurs in surface
sheaths facing each other. The energies of these
states are given by Eqs. (2.6) and (2.11)which
can be unified into

Eo (kz„) = (n —o. )wkzz/(2ma),

n=1, 2, 3, . . . , kzr=kpy
(3.9)

o. '(kz„) if E'«a,
1 —2maEo(kzz)/(wkzz) if E' ~ h.~

~

FIG. 2. Current-excited quasiparticles in states with
perfect Andreev scattering.
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a; and 5;, describe a continuous flow of electrons
and holes towards either phase boundary. Let
us consider the surface sheath on the right-hand
side of Fig. 2. The number N~ of current-ex-
cited electrons of momentum%+ = e, k, +e„k„
+ e, k,+, group velocity v' =0 /m and density p„
and the number N„of holes of momentum —k
= —(e„k,+e„k„+e,k, ), group velocity vz =+k /m
and density p0 which per unit time hit the N-S
interface is

N', =p, LW(e, v', ) =p, LWk', /m. (3.11)

= paLWz(n —a)(ma) '. (3.12)

The momentum transfers in +x direction from
degenerate states of opposite k, cancel. The
supereurrents in positive and negative z direction
induced in both surface sheaths are reflected at
the outer film surfaces, flow back and eliminate

The BCS model" of noninteracting quasiparticles
is assumed. The rate at which charge 2e and
momentum 2%z are transferred to the ground
state by particle-hole scattering anywhere in one
surface sheath is, with Eqs. (3.10) and (3.11),

r, ' =N» —N» =p, LW(k,' —k, )/m

d V, S» —z(n —a)j k, ( P(kz„)
ma2n, V

where we have put

p, = (LW 2a ) '. (3.15)

The total phase-shift gradient V„S, due to all
excited quasiparticles, is the sum of Eq. (3.14)
over all states k occupied according to the Fermi
distribution function:

each other. They spread the net transferred mo-
mentum 2k„&0 as a uniform ground-state flow
opposite to q across the total cross section of
the gapless superconducting ISNSI film. Con-
sequently, the phase shift of the ground-state
wave function, i.e., half of the phase shift of the
order parameter in the S regions, has the gradient

VS»=e„V,S»=-e„2( k„( P(kzz)/n, V. (3.13)

Here V is the volume of the film, so that n, V is
the total number of electrons in the ground state
of the film which receive the y momentum of a
quasiparticle suffering Andreev scattering with
a probability P(kzz) close to unity. The time
change of this phase shift is

—V, S =—, Q (n —a)P(kzz)k„ f E' — ' f E'+-d r k,q, k,'q (3.16)

Therefore, Andreev scattering of current ex-
cited quasiparticles would continuously decrease
the ground state flow until no current at all would
be flowing unless a potential difference eU that
accelerates the ground-state electrons in the
+y direction is established between the film ends.
If the ground-state momentum gain from eU just
balances the loss given by Eq. (3.16), we have
the stationary situation of constant ground-state
flow and continuous AS we are investigating. "
Thus, eU is just the integral of Eq. (3.16}along
a straight path of length L from one film end to
the other. (We could also say that Andreev scat-
tering produces an internal electric field which

just cancels the electric field from the potential
difference eU. ) Alternatively, we can also cal-
culate eU using the gauge transformation proper-
ties of the pair potential and the vector potential
in the Bogoliubov equations": A superconductor
with pair potential 6e' ', vector potential A'

and scalar potential 4' is identical to one with
4, A =A' —(hc/e}VS and 4 =4'+(h/e)8S/St. (It
is convenient to reintroduce I here. ) Therefore,
in the stationary state considered by us, with
pair potential 4 and zero internal el.ectric and
magnetic fields, the potential difference between
the film ends at y = —L and y =0 is

e U(q) =e [ C (- L) —4(0)]

g@2L 02k„q k'k„q=g —V, Sdy =, Q (n —a)P(kz„)k, f E' — " —f E'+
dI ' ma'ri V ~,„' m m

(3.17)

The density of the total current flowing in this
situation is the sum of the ground-state flow

e„2ek
WL2

k»ay &0
(3.19)

ja =e,n, ehq/m

and the quasiparticle countercurrent
2a* is the average effective part of the film thick-
ness over which quasiparticl. es spread and
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The total current in y direction is

I(q) =j g2DW+j ~ 2a*5'. (3.21)

f, —f, =f—(EO —g'k„q/m) f—(EO+k 'k„q/m).

(3.20)

current (3.19) is a result of this equilibrium. A
number of quasiparticles in it would leak away into
the ground state, inducing a ground-state counter-
current, becaus e of Andreev s cattering. There-
fore the quasiparticle countercurrent would de-
crease by' the amount

IV. ENERGY DISSIPATION AND EFFECTIVE RESISTANCE

Let us discuss Eqs. (3.17}-(3.21) from the point
of view of energy dissipation. A fundamental
condition for the validity of these equations is
that of thermodynamic equilibrium of the electron
system with the lattice. The quasiparticle counter-

I„= Q 2k„P(kzz)(f, -f2)
kk &0

= —kn, W2D Q ~ &„S,((f, f,)-
k,ky &0

during the average time w, defined by

(4.1)

' (f, -f,)-=r 'Q &, ,S(f, f,): -r '= Q r~'k P(kzz)(fi-f2) Q k P(kzz)(fi-fz)i (4 2}
k

if not, in order to maintain thermal equilibrium
via relaxation with the lattice, quasiparticles
mould be created from the ground-state flow at
the same rate at which they return to it by Cooper
pair formation in the S l.ayers. In these relax-
ation processes energy is being dissipated from
the electrons to the lattice which has to be sup-
plied by the external source that maintains the
potential difference eU between the film ends.
[If no current is flowing, there are nevertheless
quasiparticle excitations with Ek& 0 present at
finite temperatures. Since the electrons with
&zy = &0 disappear more rapidly into one S layer
than they are being pulled out of the other one
by the slightly slower reflected holes, nem ex-
citations have to be created from the ground state
at the rate r, ' given by Eq. (3.12) in order to have
the quasiparticle state "incident el.ectron-re-
flected hole" permanently occupied in both com-
ponents, as is demanded by thermal. equilibrium.
The lattice receives the energy necessary to cre-
ate these excitations from the electron pairs which
recombine into Cooper pairs in the S regions,
lowering their energy to the ground-state energy.
The induced ground-state currents cancel. ]

We may calculate the dissipated power from a
"classical" point of view, if me put it equal to
the work per unit time done by the voltage source
on the electron system. In order to do that we
use the classical relaxation time modei2' where
one assumes that during a time 7„ the electrons
may be accelerated freely by the voltage. Then
collisions inhibit a further increase of the current.
The stationarity condition that all power trans-
ferred from the voltage source to the electrons
be dissipated to the lattice means, in the model,
that the current decreases to zero within the re-
laxation time v'R after the voltage has been switch-
ed off.

If a voltage U is applied to a conductor of length
L, cross section A, and electron density n, , the
current increase according to Newton's law:
m du=e(U/L)dt, during a time interval dt, is

dI = (e'/m)n, A(U/L) dt.

When the current increases from

I(t) = (e'/m)n, A(U/L)t (4.3)

I, = (e'n, Are/mL)U, (4.5)

and all the work done on the electrons is trans-
ferred to the lattice, i.e., the energy Pdt dis-
sipated during dt is given by Eq. (4.4) with
t = rs, I =I, , so that dI =I, dt /rs.

Pdt =dg =1' =y'ge-'e'nA vs R R
(4.6)

where we have defined

Rr„=—mL/e'n, A. (4.7)

In a truly normal conductor the relaxation time
is

r„=rz = mL/e'n, AR, — (4.8)

8 being the normal-state resistance. The dis-
sipated power has the familiar form

P= =I B.dt (4.9)

to l(t)+dl, the increase in kinetic energy of the
el.ectrons is equal to the work dW done by the
voltage source:

dW =n, AL ——t dt =, I dI. (4.4)
e U eU mL,
m L J e nsA

In the stationary state the current in the relax-
ation-time model is obtained from Eq. (4.3}re-
placing t by 7R:
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In our LYSI system we have

where r is given by Eq. (4.2) and

(4.10)

(4.11)

is the fraction the quasiparticle current of Eq.
(4.1) constitutes of the total current I, . Equation
(4.11) expresses the fact that, if after each time
interval w the lth part of the total current changes
into the countercurrent -I„, then in the relax-
ation-time model the total current is zero, when
the time 7„=lv' will have passed after switching
off the voltage. We recall that only the compon-
ent -l„of the quasiparticle countercurrent par-
ticipates repeatedly in the dissipative processes.
For the consideration of the stationary state we
neglect the initial dissipation due to the establish-
ment of the remaining part of the countercurrent.

Inserting Eq. (4.10} into Eq. (4.6), we obtain
the dissipated power

dt ' l&
(4.12)

where the effective resistance of the 1SNSI sys-
tem is being defined as

R,a = Rrz/I r— ' (4.13)

With Eqs. (4.13), (4.7), (4.11), (4.1), (4.2), and
(3.12) the voltage U related to the stationary cur-
rent E, by R,~ is

mL I
U =IsR,~ =

e'n, A v.

V. MAGNETIC FIELDS AND SURFACE CURRENTS

When solving ihe Bogoliubov equations (2.1) we
neither considered a magnetic field parallel to
the film surface nor the associated screening
currents in the surface sheaths. Therefore, the
results of Sec. I-IV are valid strictly speaking
only for the ISNSJ systems where current and
voltage have been observed in zero magnetic

(n —a)k„P(kzr}(f, —f,).
s A, A„&0

(4.14)

This is U as given by Eq. (3.17) with V =LA. U
and I, are the values of voltage and current shown
by the instruments in a stationary experiment.
The effective resistance R,a, defined by Eq. (4.13)
or as U/I, according to Eq. (4.14), consists of
components proportional to n —e whose weight
increases with increasing ground-state momentum
q according to the difference of Fermi functions

j. 2'

field." However, the majority of the experi-
ments reported in Refs. 1-3 were done in the
presence of parallel magnetic fieMs and the au-
thors interpret their effect as consisting mainly
of an increase of the width 2a of the Ã region and
a suppression of the proximity effect. ' The
theoretical justification of this interpretation
given in Ref. 8 is questionable, because it did
not care about constant components of the vector
potential outside the N region, "which only sel-
dom bear any physical relevance otherwise. '4

The electron velocity in a supercurrent

v, = [k V}(—2(e /c) A ] /2m (6 1)

- e, yH, B(a —
[ z() as +-0, (5.2)

giving rise to a magnetic fieM

H =e, H,8(a —
[ z[), (6 3)

results in g =0. The physics is the same as with"

A =e„H,[-z8(a —
( z[) —(sgnz) a8([ z[ -a)]

and X 0. In the Bogoliubov equations the terms
in A' must not be neglected, because y varies
along the total length of the film. Thus, we have
the term (I&/sz+eHg/ei)2 in the momentum op-
erators of the electron (- } and hole (+) wave
functions. If we use Gogadze and Kulik's concept
of a local, i.e., spatially dependent, energy" the
following changes result in Appendix A and Sec. II.

relates the phase g of the order parameter and
the vector potential A to each other. Therefore,
in two paralle18 layers of extreme type I, where
a parallel magnetic field cannot penetrate, the
condition v, =0 results in phases g of the pair
potential which have equal magnitudes but opposite
signs in the two S layers according to the change
of sign of the piecewise constant vector potential
A."'" Thus, the usual simple gauge transforma-
tion ' to a real pair potential is not possiblexs. xe

and the treatment of the vector potential. in Ref. 8
is inadmissible in SNS systems with S layers of
extreme type-I behavior.

Gogadze and Kulik" find that no spatially quan-
tized (Andreev) states show up in the density-of-
states function of an SNS system with zero pen-
etration depth A~ of the magnetic field and no
screening currents in the S layers. Rather they
obtain states with the energy separation of Landau
levels. On the other hand they demonstrate that
Andreev levels appear in quantum effects where
local interaction is significant.

Let us consider an ISNSI system of extreme
type I (X~-0}. There, a vector potential

A = e,yH, (e(a —
I zl)+e(l zl-a) exp[- [(j z( -a)/g]$
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We define a phase factor

X =- exp[i ,'z-4(y)/4, ],
where

4(y) =H,2ay; 4, =hc/2e

(5.4)

is the magnetic flux quantum. Let D» symbolize
the element in row k and column / of a determin-
ant. Then, in Eq. (A1) the elements D„„D„„

5 10 9 10 8 11 12 11 8 12 12 12 a
multiplied by A, , and the rest of the elements in
columns 9-12 are multiplied by A. '. In Eq. (A4)
& multiplies the elements D,' z D6 9 De gp D, 7,
and D'„, and ~ ' the remaining ones in columns
7-10. The first of the large square brackets [ ] in Eq.
(A5) is multiplied by (A'+A ') and the last term
in the numerator of Eq. (2.6b), which is

—2[ [(1+6')'~'+ 1]cosh2K

—[(1+5')'~' —1]cos2K- 2 —45 sinhz sinK),

is multiplied by cos[2z4(y)/4, ]. In the limit
6«1 and D-a large compared to the coherence
l.ength, this term is the leading one in the nu-
merator of Eq. (2.6b). In kilogauss fields with
2a being of the order of some 10' A the concept
of local energies then only makes sense within
regions of a length of some 10' A where 4(y)/4,
varies little. On a macroscopic seal. e the energy
levels of Eq. (2.6) appear as being smeared out.
This is the situation analyzed by Gogadze and
Kulik. ' For arbitrary 6 and thin superconducting
layers the relative weight of the y-dependent term
decreases in Eq. (2.6) and the validity of the local
energy concept improves. If, furthermore, a
constant N-layer thickness exists in limited sec-
tions of the film only, either because the evapor-
ation technique' results in a spatially varying
film thickness or/and because of the very mech-
anism of N-region formation in parallel fields, "
only local energy spectra will exist. Therefore,
it is not impossible that the states with maximum
Andreev scattering probability induce the voltage
locally in a number of uncorrelated regions and
show up experimentally as being spatially quan-
tized despite the magnetic field.

In the first report on quantized resistances the
films were specified as type-I superconductors. '
In the second reyort2 the classification is changed
to type II. In any ease, the supposition that the
magnetic field does not penetrate the thin surface
layers is unrealistic, and screening currents in
the S layers should be taken into account in view
of the fact that the phase of the order parameter
so decisively may determine the character of the
solutions of the Bogol.iubov equations. The cor-
responding quantitative, electrodynamical, ly self-

VI. VOLTAGE AND CURRENT (REF. 26)

Equations (3.17)-(3.21) give the voltage U and
the current I as a function of the ground-state mo-
mentum q.

When computing U we replace the sharply peaked
probability of Andreev scattering P(kzr) by a
weighted & function,

P(kz„}=r 5(zk zkz, }, (6.1)

where the positive number r has to be chosen so
that the integral over kzr of both sides of Eq. (6.1)
yields the same result. For P, ( k)ztzhis is the
area under the respective curves in Fig. 1 for
which r would vary between 4 and 10.

Inserting Eq. (6.1) into Eq. (3.17) with k labeling
the set of quantum numbers (k„,k, n, spin), per-

consistent calculations are difficult and have yet
to be performed. Qualitatively for type-II films
one may argue that in thin surface sheaths about
half a coherence length thick" the magnetic field
will. be mir. imum in the center and increase
towards the edges. The screening current at the
outer edge of a surface sheath will flow in a di-
rection opposite to that of the current at the inner
edge. In a gauge where A has the direction of

y and depends on z, sufficiently strong screening
currents may change the sign of the phase y which
the quasiparticles "see" when moving through
the S layer. Therefore, the net influence of sur-
face currents and vector potential on the quasi-
particle wave functions may approximately cancel
in the S layers. Then A has to be considered in
the N region only, as it was done in Ref. 8, so
that indeed the effect of the magnetic field only
would consist of an increase of the width of the
N region and suppression of the proximity ef-
fect 2'3

It should be emphasized that measurements
on ISN and SNI systems show little qualitative
difference from the ones onISNSI systems. "In
these systems vector potential and phase of the
order parameter are not fixed, because no mag-
netic flux is enclosed between S layers. There-
fore, the problems with the magnetic field dis-
cussed above do not exist there, while voltage
inducing quantized states with high Andreev scat-
tering probability can be present in these samples,
too.

The preceding discussion gives some possible
reasons for the relatively little qualitative dif-
ferences observed in the CVC of ISNSI systems
with and without applied magnetic fields. ' More
detail. ed and more exact analyses, however, are
necessary in order to fully clarify the role of
magnetic fields and surface currents.
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forming the spin sum and the integrals over k„and
k, and observing that two quasiparticle states with

opposite z momentum belong to each energy value
(3.9) with nearly perfect Andreev scattering we
obtain

2(n a )2 1/2
0

»U=»U, I (» —»,) R» 1 ',
~

~,)ffa 1
S0&~

=eQ U„ (6.2}

O4

at T =0 K, where

f, f, =8( E„'+k'~k„~q/m).

We have defined

(6.3)

I /Ip

/Up

» I » »

e U, = g'Lrxg, (kz —k',)' '/vmn, Da',

a =a(k ),
qo =w(1 —ao)/2a(km~/k20 —1)'~'.

(6.4)

(6.5)

Equation (6.3) with Eq. (3.9) has determined the
range of integration of k„. As a consequence non-
zero contributions to the voltage occur only if
q&q0. At T =0 K there is a lower critical current
I,=I(q,) below—which no voltage appears between
the film ends, because no bound quasiparticle
states with finite AS probability are occupied.
When

q =q„,-=q, (n —a,)/(1- a,), (6.6)

the quasiparticle states with the quantum number
n start contributing to the voltage.

Calculation of the total current according to
Eqs. (3.18)-(3.21) is difficult. In order to compute
the quasiparticle countercurrent (3.19) we must
know the complete quasiparticle spectrum for all
k z y at 1east in the energy range up to the last
quasiparticle states with kzy' k0 which enter the
voltage sum (6.2).

If the width 2a of the N region is so large that
E„'(k,) «4 for several integers n n„ the-n all
"current excited" quasiparticle states have the

FIG. 4. CVC of films with wide N regions at T =0.01 K.
Ip =eSW 0&/~n', 2a = 15 000

spectrum (2.6) as long as q ~ q„,. In this case at
low temperatures an approximate calculation of
the current can be done, if we replace a'(k») of
Eq. (2.6) by an average value a. This approxima-
tion is unavoidable because of the complex struc-
ture of a'(kez). Figures 3-5 show the low-tem-
perature CVC for 0' =0.2. The quasiparticle
countercurrent never exceeds 15% of the ground-
state current. " Because of the structure of the
spectrum (2.6) only relatively few quasiparticle
states are available. Therefore the ISNSI system
behaves like a gapless superconductor in the zero-
voltage region where q&q0.

If the N region is so narrow that only one or two
states with k, have an energy E„'(k,) «a, while the
other ones involved in the current fill in the range
up to 4, we only know about their spectrum that
it changes from the form (3.9) for kez=k, to the
normal-state relation for k»~ k~ and small D -a
which results from Eq. (2.12). We expect that the

0

o5-

I

1S

Uo

FIG. 3. Current-voltage characteristic (CVC) of films
with wide N regions at temperature T =0 K. Up is given
by Eq. (6.4), Ip =(e/m}kn~qp2DW O, p =0,2 =0..

I /Ip

U/Up

FIG. 5. CVC of films with wide N regions at T =0.1 K.
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quasiparticle countercurrent becomes comparable
to the ground-state current, because a good num-
ber of quasiparticles will have nearly normal-state
energies. Preliminary computations indicate that,
as in the simpler case of Bardeen and Johnson, "
great care will have to be taken, when calculating
the net current as the difference of two big quanti-
ties, once the full energy spectrum can be handled.
At the present stage of the theory, for the case of
narrow N regions, we can only calculate the volt-
age as a function of the ground-state momentum q.
Figure 6 shows the contributions U„from the differ-
ent bound quasiparticle states to

E1IC6

at various temperatures T. Z„U„ is obtained from
Eq. (3.17) after performing all integrations and
summation's except for that over n.

U
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VII. COMPARISON TO EXPERIMENT

A. Qualitative comparison

It should be emphasized that one of the basic
presumptions of the theory is that of a ground-
state current flowing in the N region. Therefore,
the CVC of Figs. 3 and 4 must be compared to the
returning sections of the experimental CVC, ' '
since when the current is lowered after the film
has become completely normal, it should flow in
the whole cross section of the film, even after re-
appearance of the surface sheaths. A sudden with-
drawal of current into the surface sheaths would
lead to thermodynamical instabilities because of
the formation of supercritical surface currents.
Furthermore, being limited to the S layers the
current would be associated with zero voltage, as
is the current of the first sweep up to g."' This
would be contrary to experimental observation.
In the final part of the returning sections of the
observed CVC, see Pigs. 3 and 4 of Ref. 2, there
are current and voltage steps that resemble the
ones of our Figs. 3 and 4. The quantitative dif-
ferences will be discussed later.

Tracing out of the linear current branches wite
the quantized resistances is performed by differ-
ent techniques. ' One way is to increase the cur-
rent at the end point of a voltage jump. " It is
reasonable to assume that the additionaL current
from the increase preferably flows in the surface
sheaths, in order to keep the energy dissipation,
described in Sec. IV, as small as possible. This
assumption is consistent with the observation of
the resistanceless first current increase up to Q.
In the rising current the average ground-state mo-
mentum per electron in the N region q~ is less

.5.
0

0

U„2.5

020

1 2
tI(10m )

1.5

i.0

0.5

0
0

2.5

1 2

q(10m )

0- T= 42K

1.5

1.0

0.5

0
0

I s . s I

1 2 3
(1 (An ')

FIG. 6. Voltage contributions U„ from quasiparticle
states with quantum number n vs ground-state momentum
q at various temperatures T. It is assumed that the
mean free path l z» 2a =3000 A.
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than q~ in the S region. This results in a phase-
matching problem of the wave functions at z =+a
which has not yet been resolved. Qualitatively we

expect that q„will replace q in Eq. (3.17}, because
the relevant quasiparticles are limited to the N
region. With qs& qz the total current (3.21) cor-
responding to a given voltage U(q„) will be greater
than the current on the returning section of the

CVC associated with a voltage of the same magni-
tude. Therefore, a suitable distribution of the in-
creasing current over the N and S layers can lead
to a nearly linear increase with current of the
voltage contributions proportional to n —a,. In
this mechanism we see the origin of the quantized
resistances.

A linear current branch should terminate when

in the S layers the critical current is reached and

the whole film becomes normal. Alternatively,
when the current has become near critical, part of
it may shift into the N region and cause population
of the next quantized level. This may account for
the different ways of leaving a given current
branch reported in connection with Figs. 3 and 4
of Ref. 2. When q„& q, the whole cross section of
the gapless superconductor can carry the current
I&I, without appearance of a voltage. This ex-
plains the observed lower critical currents. ' '

The voltage of Eqs. (3.17) or (4.14), (6.2) and the
corresponding resistances R,«or dU„/df decreases
as a ' with the N-layer thickness 2a. This agrees
with the decrease of resistance with the magnetic
field H which HGCK relate to a widening of the N
layer by H. ' '

Our Figs. 3-5 show low-temperature CVC for
wide N regions with 2a =15000 A= 10), $ is the
coherence length. The qualitative similar return-
ing sections of HGCK were taken from samples
less than 10' A thick at 7 =4.2 K. The theoretical
limitation to large a is due to the necessity of hav-
ing only states with E„'«~ contributing to the
countercurrent. In a plot of voltage versus q for
narrow N regions, i.e., 2g&10'A, at g ~0.05 K
the sum of the U„ from Fig 6(a) yields a dependence
of U =Z„U, from q which is very similar to the
CVC of Fig. 4. The expected large quasiparticle
countercurrent in this case should result in cur-
rent steps much smaller than the q steps.

From Fig. 5 we note that the steps in the CVC
become less pronounced when kT becomes com-
parable to the spacing between the relevant quasi-
particle levels. Figure 6(d), which exhibits U„(q)
for narrow N regions at T'=4.2 K, results in a
practically smoothfunction U(q) =Q„U„(q). Appar-
ently all structure is gone. It will reappear for
two reasons.

First, we have to expect a large quasiparticle
countercurrent in samples with narrow N regions

at T =4.2 K. The total current I, which will be
much less than the ground-state current (3.18),
should increase proportional to q" where g&1, be-
cause the number of populated quasiparticle states
will increase drastically as q makes higher states
with energies close to that of a, normal metal

(kzr ~ kz} available for occupation. Therefore, the
voltages U„should rise more steeply with l(q) than
they do with q in Fig. 6(d). A second and more
important reason is given in the following discus-
sion of mean free path and Pauli principle.

B. Quantitative comparison

We have calculated voltage and current for pure
films with ideal lattices where the quasiparticles
have such large mean free paths that spatially
quantized levels can form between the pair poten-
tial walls. Only inelastic scattering from phonons
has been taken into account implicitly when as-
suming that it establishes thermal equilibrium
with the lattice so that the Fermi function (3.4)
describes the quasiparticle distribution. " HGCK
report' that the samples w'hich yielded good re-
sults, had mean free paths L„of slightly less than
10' A (in the completely normal film). Scattering
from surface roughness will contribute to the
limitation of l„. It will not be felt in the presence
of superconducting surface sheaths by the quasi-
particles with maximum Andreev scattering prob-
ability, since, decaying in the S layers, they are
not influenced by the film surface. Also, in the
ISNSI system there are less states into which
quasiparticles with E„'&6 can be scattered than in
the completely normal film. Thus, its mean free
path should be larger than l„. Still it remains
doubtful, if these restrictions on scattering can in-
crease the mean free path by an order of magni-
tude. This will be necessary in order to have well
quantized levels, because the quasiparticles should
travel unperturbed at least once or twice across
the N region of several 10' A thickness. We see
from Eqs. (3.4}-(3.6) that the Fermi function f(E)
approaches 1 for states with E &0, and inelastic
scattering with energy loss and elastic scattering
out of these states become very unprobable be-
cause Pauli s exclusion principle strongly inhibits
transitions to states with high occupation proba-
bility. Therefore, the mean free path of quasi-
particle states, which in the presence of ground-
state flow have EI, &0, will become large enough
to allow for spatial quantization with well-defined
wavelengths despite lattice defects and impurities.
Probably it is unjustified to count the states with
positive E~ in the voltage equation (3.17), if one
considers real films. Only states pulled below a
certain temperature-dependent energy value E~
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~ 0 according to Eq. (3.6), will have sufficiently
long mean free paths which allow them to enter
Eq. (3.17). Consequently, the difference of Fermi
functions f, —f, in Eqs. (3.17), (4.1), (4.2), (4.14)
should be replaced by the step function e( Es-+Er).
This results in voltage steps like that of Fig. 3
and Eq. (6.2) even at the "high" temperature of
4.2 K.

Next, let us calculate the number N of states
with k, that satisfy Eq. (3.9) with

a ~ E„'(kg =s(n —ao)R'kg2ma .

ual voltage step is of the order of Uo defined
Eq. (6.4). We take the data of the lead film whose
CVC is given in Ref. 1: length I. = 5 mm average
thickness 2D =4000 A. We define

(V.4)

use

n, =k'/3s'
g g

and the definitions (7.1). This yields

We define
Uo = 0.71prs/x'y'& 10 ' V . (V. 5)

k -=sr, = s (mA/k ') '~',

~ =-P x 10 ' eV, a -=y & 10' A,
and obtain

(7.1)

E„(kg gs(P)'~'/yj(n —~g& 1.37x 10-' ep, (7.2)

so that

N= V. 3( y/s)(P)' (y (7.3)

HGCK report that their data were taken from films
whose thickness varied between 2000 and 6000 A.
The film thickness was estimated by use of a
quartz oscillator during evaporation. ' Errors up
to 3 of these estimates apparently are not ex-
cluded by the authors (see their comment below
Fig. 14). Such relatively thin films produced by
evaporation do not have a constant thickness along
a length of several millimeters. Plane film and
phase boundaries may exist only in certain local
regions and be bigger or thinner there than the
estimated average. The film from which Fig. 1 of
Ref. 1 and Fig. 4 of Ref. 2 were taken is reported
to have an average thickness of 4000 A. Each sur-
face sheath should have a thickness of several
hundred A. Thus, the normal region may have a
thickness 2a between 3000 and 4000 A (allowing for
errors of 3) which locally may be even larger.
Therefore, we may estimate that in Eqs. (7.1) and
(7.3) 1.5 & y ~ 2. According to Fig. 1 2 ~ s ~ 2.5
for reflection from a single surface sheath. (P)'~'
will not differ much from 1. For the states with
E'«b„, 0&0,, &&. For the higher states the range
of z, could not be determined accurately but tri-
vially it does not exceed 1. Consequently we have
5&~~8. While 5 is too low, 8 comes closer to
the number of 10 quantized resistance branches. "
The remaining difference may be due to local
thickness var iations.

Finally, let us come to the magnitude of the
quasiparticle induced voltage. As we can see from
Fig. 6(a)—or Fig. 3 if there we replace I by q for
the narrow N-region case —the length of an individ-

As discussed below Eq. (6.1), for a single Andreev
reflection 4 ~ r & 10. We may assume that multiple
reflections reduce the upper and lower limits of r
by a factor of about 2. The value of x is approxi-
mately 1. (If one determines kr of Pb from the
free-electron density model one finds k~ = 1.57 A '.
Specific-heat data and the BCS relation between
Fermi velocity and coherence length yield k~
= 0.5 A '.) Several reasonable combinations of the
parameters P, r, s, x, and y from their respec-
tive ranges of value are possible which yield Uo
= 0.5~10 ' V. This is the average length of the
voltage steps one obtains from Fig. 1 of Ref. 1 or
Fig. 4 of Ref. 2.

The quasiparticle induced voltage has been cal-
culated microscopically without resorting to phe-
nomenological models. The five parameters ap-
pearing in Eq. (7.5) have relatively narrow ranges
of value. The experimental and theoretical order
of magnitude of the voltage agree. This agreement
and the common qualitative features of theory and
experiment justify some confidence that the pres-
ent theory is not irrelevant to the phenomenon of
the quantized resistances. Nevertheless, the
problems left open in this paper require further
investigations.
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APPENDIX A: DERIVATION OF THE EIGENVALUE
EQUATIONS

We demand that the electron components u(r)
and the hole components v(r) of the quasiparticle
wave functions as wel. l as their gradients each
join smoothly at the phase boundaries at z =+a.
Observing furthermore Eq. (2.5) we obtain 12
homogeneous equations for the integration con-
stants the determinant D of which is
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VP

p/v

vy

1/vp

vjr

V/T 0 0

0 1/vT T/v

V/T

6/v 1/v6 0

VT

T/v 1/v T 0

v/p

1/vp pjv

0 0 0 0

O O 0 O

0 0 0 0

0 0 0 0

n 1/n 0 0

D y/v
k4z„

1jvr v/6 0 0

0 1/v6 6/v v/y

0 0 P 1/P
(A1)

0 0

0 v/6 v5 1/vy y/v 0 0 1/P P

vy8 —(v/y)8 (6/v)u —&u/v6 0

(y/v)8 —8/vy v6co —v&@/6 0 0 O O 0 P - 1/P

n —1/n 0 0

0 0 0 a&/v6 —6u/v v8/y —vy8 1/n —n 0

0 v&u/6 —v6&u 8/ v y —(y/ v) 8 0 0 1/I3 —P

Supposing that e is small, see Eq. (2.4), we have approximated

kzz(1~ e}~~2=kzz~ (A2)

wherever it appeared as a factor multiplying an exponential. n, P, y, 6 are n(a), P(a), y(a), 6(a} according
to Eq. (2.3) and p =-y(D), T= 6(D},8-=—(1+f6z)'~', ~ —= (1 —f6z)'~'

The determinant can be simplified by adding and subtracting rows and columns multiplied by appropriate
factors. With the abbreviations

A =—
z [(6/ r —T/6) + rd'(6/T+ T/6)], B—= —z [(6/T —T/6) —&d(6/T+ T/6)],

(As)

C=p/y —y/p, D—= 5 /T —T/6, E=n ' —n', F=p' —p', G=——z(1 —8),

this leads to

C y/p 0 0 0 0 0 0 0 0

0 0 0 0 —C p/y 0 0 0 0

D/16k'„(v' —v ')'=D'-0 v D/v 0 0 0 0 1 0 0

0 1/v vD 0 0 0 0 0 0 1

0 0 0 —D/v 0 v E na 0 0

0 0 0 —vD 0 1/v 0 0 F Pz

v8 vG A/v 0 0 0 1 0 0 0

8/v G/v vA 0 0 0 0 0 1 0

0 0 0 B/v v8 v G 1/n' 0 0 0

0 0 0 vB 8/v G/v 0 0 1/P' 0

(A4}

Expansion of this determinant yields
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D' = — Cce —(A —DG) —(B D+G))+C (A'—DG)(B+DG)+D 8'
y p

2 p2
acDG —e —8+cc Aac'G A-ace —-ace' —,( -'-() ~ —,( ' —())

y P p - P'

~ ACDG —8 ——8 —CG ABC G ABC8 — AD8 —,( —1)+ —,( —1))
P 2 P

p y P' Q

— ABCG —8 ——8+CG -AB8' (v —v ) —,+ —, +ACD —8+CG —,v + —,vP a 4 I3

y p p2 2 P'

y & 4 P 4 2 y p
2 2 2 2

+BCD —8 —CG, v + —,v + CD G —8 ——8 —CG +ABC +D 8 —,+ —,P

p p' n2 p y p2 ~2

+azpB(vB —v B)B BCDG —8 ——8 —CG -ABCzG-ABC8 —+BD8
L p y

+ ABCG —8- —8+CG +BC DG+BCD8 —-AB82 P
p y

+ B B (v —v ') ACDG —8 ——8+CG -ABC G+ABC8 — AD8B-
p

+ ABCG —8- —8+CG -AC DG+ACD8 —-AB8P 2

I r p P
(A5)

In the limit E «GZWee haVe V=ezp(is/4) and
bz =2m&/k~». After elementary but lengthy cal-
culations and with the expansion (1+e)'/B= 1+Be,
Eq. (A5) and the condition D' =0 lead to Eq. (2.6).
[As usual the set of negative energies -(n+a'), n
& 0, is being discarded. ]

If we allow for the full energy range 0&E &4
and regard k» values sufficiently large so that
(I+i6 )'/zB1= 8=sr, we haveA =5/v, B=r/5, and
G =0 in the set of definitions (AS}. Then D' of
Eq. (A5} simplifies considerably, and we find it
to be equal to the right-hand side of Eq. (2.8).

APPENDIX B: PROBASILITY OF ANDREEV SCATTERING

Let us consider an electron above the Fermi
surface of energy E & 4 coming from a semi-
infinite normal region and incident on a super-
conducting layer with pair potential 4 and ex-
tension between 0 & z & T. At z = T an infinitely

high potential. wall rises. The electron may either
be scattered into a hole or reflected into itself
at z =0 or z = T. The most general solution of
the Bogoliubov equations for this situation can
be obtained from Eq. (2.2) if there we replace
6(a —

( z() by 8(-z), 6(z-a) by 8(z), and put
b2=0=B, =B2=B,=B,. We may also choose q=O.
Then, the probability of particle-hol. e scattering
is given by ( b, /a, )' -=PG.

The coefficients of the wave functions are de-
termined by four matching conditions at z = 0 and
the boundary condition at z = T in complete analogy
to Sec. II and Appendix A. With the new set of
abbreviations,

k = k»(1 g e)8/B k z,
= k»(1 g ibz)&IB

a -=i(a'/E" —1)'/', 8, = exp(ik ~ T),

we obtain

b, /a, = —2(1 —a')'/'8, 8 k,+[(k~ —k z)(1 —8 ' 8 )+(k J, +k&)(8+' —8 )]

((8B —8+')((8 —8 ')2ak,+k, +(8 +8 ')k a[(1 —a)ka +(1+a)k,'])
—(8, +8,')((8 +8 )2akz, k~+(8 —8 ')kz, [(1—a)k,++(1+a)k, ])) (B2)

Supposing that z =2mEG/kzz is sufficiently small compared to 1 so that one may retain only the first order
of it, we can further evaluate Eq. (B2).

With the dimensionless units

& = kzz/&z, T = zzT, where zz —= (mme)'/'(I —E '/EBB)'/',

and the abbreviation $, = (1+4/x')'/'+1, we finally obtain the probability of particle-hole scattering
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Po(kzz, E, T)—= ( b, /a, t =(4/E )'(1+2mE /kzz)[(g )'~ sin[&2($+)' 2xT]-(g+)'~' sinh[&2($ )~~~xT ]j
x ( z (o, /E —1)[$ cos[ v 2 ((~)'~' x T ] + $~ cosh[ v 2 (f. )'~'x T ]j'

+ ([x '($, )'~' —(g )'~']sin[W2($, )'~' xT]

+[(g )&'+x '(g )'~']sinh[v 2(g )'~'xT]j')

Figure 1 shows the probability P,(kzz, E', T)-Po(k») as calculated numerically from Eq. (B3)
for different thickness values T of the surface
sheath. It depends only very little upon E'.

The maximum of P,(kzz) lies near kzz= 2 5/co.

= ko, Ko = Kz-0. Eq. (2.9) is valid, if 4 md (D —a)/
kzz& 3. 4m+D-a)/k, =4mb (D -a)/2. 5 4mb ex-
ceeds 3, if T= (D-—a)&2/zo. As we see from Fig.
1, P, ( kzz) rises up to 1, when the surface layer
thickness is T &2/tc, .
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