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A two-band tight-binding model of the electronic bands near the Fermi surface is formulated for the A-15

compounds, based on Mattheiss's result that the density of states at the Fermi surface is composed mainly of
the 8, {x' —y ') orbitals on the transition-metal sites. The model involves two tight-binding parameters {one
intrachain and one interchain), one electron-phonon coupling constant and a bare elastic constant, and

exhibits both an X-point Peierls gap and Jahn-Teller effects at a couple of saddle points in the bands, which

are found to be jointly responsible for the instability of the electronic spectrum. For parameters determined

by Mattheiss calculation, and fits to the martensitic-transition temperature, specific heat at low

temperatures, and c» —c,~ above the transition, the model is able to predict the temperature variation of the

susceptibility, distortion in the tetragonal phase, and the specific-heat jump at the transition. The results are
in very good agreement with experiment for V,Si, but not so good for Nb3Sn, where because of the

extremely short zero-temperature coherence length, lattice entropy, not included in the present model, could

play a major part. A qualitative discussion of the soft.ning of the shear modulus c~, the marked softening of
the [110] transverse [110] polarized phonon away from k = 0, and effects of non-transition-metal site

alloying is included. Modifications of the highly successful Landau theory of the martensitic transition in A-
15 compounds by McMillan and the author, based on the Gor'kov model, are discussed in light of the
present model and found to lead to no essential changes in its results.

I. INTRODUCTION

Much effort has gone into understanding the
properties of the high-temperature superconduct-
ing A-15 compounds (crystal structure shown in
Fig. 1). Many of these compounds, like V, Si and

Nb3 Sny in their purer forms are known to show
structural instabilities and a martensitic trans-
formation, ' involving a cubic to tetragonal change
in the unit cell and (sublattice) pairing of the tran-
sition-metal atoms on the faces of the unit cell
(see Fig. 2), at a temperature T, before they be-
come super conducting. Extensive experimental

data exist on all kinds of properties of these ma-
terials, particularly V,Si (T -21 K, T, -1V K} and

Nb, Sn (T -45 K, T, -18 K), and more are avail-
able by the day, in the hope that these measure-
ments will yield more clues as to the microscopic
origin of the peculiarities that exist in these com-
pounds.

Anomalous properties that characterize these
compounds include: (i} Elastic softening as the
temperature is lowered, particularly of the modu-
lus (c» —c»), which becomes almost totally soft
at 7 . 'The modulus c« is more weakly dependent
on temperature, while the bulk modulus (c„+2c»)
is essentially constant. (ii) The transverse [110]

FIG. 1. A-15 structure, AQ. {Nontransition) atoms
B form a bcc lattice and the (transition-metal) atoms A
form three orthogonal chains along the cube faces with
twice the periodicity of the lattice.

(-'& I)0

FIG. 2. Tetragonal phase in Nb3 Sn (c/a & 1). Cell dis-
tortion is accompanied by a F&2(+) sublattice distortion.
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phonon with [1IO] polarization shows considerable
softening with lowering of temperature, up to a
substantial fraction of the way to the zone bound-

ary. (iii) A divergent central peak is observed in
neutron scattering experiments for the [110]trans-
verse [1IO] polarized phonon as the transition is
approached from above; however, no pretransition
(300}Bragg reflection corresponding to pairing
of the transition-metal atoms is observed. (iv}
Magnetic susceptibility increases as the tempera-
ture is lowered, and the Knight shifts are tempera-
ture dependent too. (v) The normal-state specific
heat at low temperature has extremely large linear
terms, indicating an anomalously large density
of states at the Fermi surface. (vi) The tempera-
ture dependence of the resistivity of these corn-
pounds is rather unusual.

ln almost all cases, there is a strong correla-
tion between the anomalous properties and T;.
the greater the anomaly, the higher the supercon-
ducting temperatures. One exception is Nb, Al,
which, in spite of having T,=18.5 K, shows negli-
gible temperature dependence of magnetic sus-
ceptibility and Knight shift, and a much smaller
linear term in the specific heat; it does, however,
show elastic softening, which is believed to be one
of the reasons for the high T, of these compounds.
For further details, the reader is referred to the
numerous review articles on the subject. ' '

Most microscopic theories attribute the anoma-
lous properties to a large peak in the electronic
density of states. In addition, the model must
describe the mechanism by which the electrons
drive the transition. In the original Labbe-Fried-
el model' the martensitic transition is attributed
to a second-order Jahn-Teller effect. Labbe and
Friedel took a simple one-dimensional (1D) tight-
binding model with the d orbitals of the transi-
tion-metal atoms which form linear chains on the
faces of the cubic unit cell (Fig. 1), and include
only nearest-neighbor (intrachain) coupling. The
Fermi level was placed very close (-20 K) to the
bottom of the d band (the point 1 in reciprocal
space}, where the three 1D bands due to the three
orthogonal chains were degenerate, and the den-
sity of states had a E '~' singularity. This degen-
eracy was removed by the tetragonal deformation
with two of the bands moving together in one direc-
tion and the third moving twice as much in the op-
posite direction. In this noninteracting-chain mod-
el, no sublattice distortion was predicted and the
shear modulus was predicted to be independent of
temperature, both in disagreement with experi-
rnental results.

Soon afterward, Cohen, Cody, and Halloran (CCH)'
constructed an idealized model with a step-function
density of states, put in a degeneracy splitting

FIG. 3. Cubic Brillouin
zone, showing the &, &,
M, and R points.

exactly like the Labk -Friedel model, and showed
that essentially similar results were obtained by
placing the Fermi energy close (-100 K) to the
step in the electronic density of states. Since then,
more refined versions of the Labbe-Friedel and
the CCH model have been studied, ' ' including
coupling to optical phonons. However, all these
theories rely on a very sharp variation of the den-
sity of states, much sharper than is possible in
a 3D band structure, with a consequent drop in den-
sity of states below the structural transition al-
most an order of magnitude larger than is actually
indicated by the drop in magnetic susceptibility.
In fact, Mattheiss' band-structure calculations"
show that interchain coupling is strong enough that
the 1D character of the bands is essentially wiped
out; there is no threefold degeneracy in the bands
at the I' point near the Fermi energy, and there-
fore the Labbe-Friedel model is inappropriate.

The other major theory of the instability in the
A-15 compounds is due to Gor'kov. "'" The Gor'kov
model of the martensitic transition is based on the
Peierls charge-density-wave driven transition in
a 1D chain. The model locates the Fermi energy
close to the X point (center of the face of the cubic
Brillouin zone —see Fig. 3), where by symmetry
of the A-15 structure, two bands meet with op-
posite slopes of equal magnitude. This X-point
degeneracy is removed by pairing of the transi-
tion-metal atoms in the linear chains, with a con-
sequent lowering of energy if the Fermi level lies
close to the X point. The pairing optical modes
of the linear chains are coupled in turn to the
strain tensor, and therefore the Gor'kov model
leads to distortion of the unit cell as a secondary
effect.

Gor'kov starts" with a model of three nonin-
teracting orthogonal chains of transition-metal
atoms. The temperature variation of the various
elastic moduli follows directly from considerations
of the crystal structure for various strains. A
pure longitudinal [100] strain causes a uniform
compression of the [100] chain of transition-metal
atoms, while atoms in the [010] and [001] chains
pair and depair, respectively (because of the cou-
pling of the pairing optical modes to the lattice
strain). This causes gape to open up in the elec-
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tronic spectrum at the [010] and [001]X points
and a (negative) logarithmic variation of the elastic
constant c» with temperature is indicated, as for
the Peierls chain (see Ref. 14 for details}. On

the other hand, a uniform compressive stress
causes no pairing, nor does a shear stress along
one of the cube directions for noninteracting
chains. Since no gapa open up, the bulk modulus

ggc»+ 2c») and the shear modulus c«are tempera-
ture independent in this approximation.

Thus for the Gor'kov model

bc» = --,'bc„-ln(~/T),
where ~ is some cutoff energy of the order of the
bandwidth, while 5c44 is a measure of the inter-
chain coupling.

To explain the temperature variation of the mag-
netic susceptibility, Gor'kov includes interchain
coupling to essentially first order. For a pair of
bands which are quite flat (to within -1000 K} in the
entire XMR plane with no dispersion along XM
for one band, he obtains a density of states which
has logarithmic singularities at the X and R points
(such singularities are, of course, not present
in Mattheiss' band structure or in a higher-order
tight-binding calculation). For Gor'kov's band
structure the variation in susceptibility in the cubic
phase with temperature is logarithmic too.

Comparison between Gor'kov's theory and ex-
periment yields reasonable agreement on the whole:
the logarithmic terms describe the variation of the
elastic constants and the magnetic susceptibility
well over a large temperature range. The density
of states determined from the fits is in agreement
with experiment for V,Si, but is too large for
Nb, Sn. The tetragonal distortion (e =

~

c/a —1 ~)

at zero temperature, not correcting for the stab
ilizatioz at T„for the same values is 0.0037 for
Nb, Sn (experimental value 0.0062), and 0.0015
for V,Si (experiment 0.0024). For Nb, Sn the sus-
ceptibility drop below the transition is predicted
to be more than twice the observed drop. One more
discomforting feature of the model is the extremely
crucial placement of the Fermi energy, much like
in the original Labbe-Friedel or the RCA models;
a change of about 50-100Kwould essentiallywash
out all. the singularities. Qn the other hand, in
the Gor'kov model the structural instability and
superconductivity, both due to instability of the elec-
tron spectrum to opening of gaps at the Fermi
surface, are intimately connected, and the tran-
sition temperatures are predicted to be of the
same order of magnitude. For the Jahn-Teller
models the instabilities are connected too; how-
ever, the proximity of the transition temperatures
is essentially coincidental.

%hile Gor'kov's calculation is successful in ex-

plaining several phenomena associated with the
martensitic transition in A-15 compounds, it is
based on essentially a 1D band structure, which is
not borne out by Mattheiss' band calculation. Con-
sequently, a phenomenological. Landau theory based
on Gor'kov's picture of a charge-density-wave
driven transition was developed by McMillan and

the author" (hereafter referred to as 1), to test
the model without making any inappropriate as.-
sumptions about the band structure. 'The calcula-
tion was successful in explaining almost all the
major experimentally observed phenomena —the
fits to both the [110]transverse and [100] longitu-
dinal sound velocities were done with essentially
one adjustable parameter, and with one more pa-
rameter —the coherence length —the [110]trans-
verse-phonon curves were fit accurately at all
temperatures for k halfway up to the zone bound-
ary. Central peaks in neutron scattering and ul-
trasonic attenuation were shown not to follow from
electron dynamics, and at least the former was
in agreement with impurity scattering. Further,
the heat capacity jump at T was in agreement with
experiment using parameters determined by the
low-temperature distortion. The (nonlinear)
stress-strain curve just above the transition in
V3Si was adequately exp 1ained. The model showed
a correlation between the sign of tetragonality
and the effect of pressure on T and T„in agree-
ment with the results for V,Si and Nb, Sn. The
change in sign of tetragonality of Nb, Sn with Sb
alloying was accounted for. As demanded by the
experimentally observed absence of (300) reflec-
tion above T, no optical mode was found to be-
come soft. A calculation" of the interplay be-
tween the charge-density-wave gap of the Gor'kov
model and the BCS superconducting gap in V,Si
(where T is just above T,) showed that the re-
duction in the el.ectronic density of states due to
the Peierls gap led to a 0.3-K reduction in T,.
Further, the onset of superconductivity arrested
the growth of tetragonality as found experimen-
tally, and for high-pressure (-25 kbar) it pre-
dicted that the martensitic transformation would
be completely suppressed.

A few points, however, were not within the scope
of the phenomenological theory —it did not explain
the temperature variation of c«, as interchain
coupling was left out of the model, and this could
be remedied. Further, it did not provide any in-
formation about the temperature variation of the
magnetic susceptibility; indeed the only result ii
could yield in that respect was the drop in sus-
ceptibility below T, provided a correspondence
was made between the parameters of the theory
and those of a 1D Peierls model. " There the ef-
fects were disastrous": itpredicted five times the
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observed drop for Nb, Sn, clearly indicating that
such a correspondence was not correct and that
3D effects were important. Another result of the
fit was that the zero-temperature coherence length
in both Nb, Sn and V,Si, particularly the former,
was very short and consequently the phonan soften-
ing extended way into the zone. For the Peierls
chain the coherence length is related to the Fermi
velocity; if such a correspondence was made the
X-point velocity came out to be -2 x 10' cm/sec,
which is so low that it essentially invalidates
Gor'kov's assumption that the bands near the Fermi
surface vary much more from 1" to X than in the
XAR plane.

Recent augmented plane wave-linear combina-
tion of atomic orbitals (APW-LCAO} calculations
of the band structures of a large number of A-15
compounds by Mattheiss" pose another problem
for the Gor'kov model: they do not show any
Gor'kov-like bands, which are flat in the XMR
plane near the Fermi surface. What they do in-
dicate, however, is that the density-of-states peak
near E~ involves primarily transition-metal-atom
d states with 5,(x' —y') symmetry. Further, the
calculation shows a set of two bands near the Fer-
mi surface which is relatively isolated from the
other bands for a large fraction of the Brillouin
zone, except near the R point. The consistency
with which Mattheiss finds the same bands near
the Fermi surface for all the compounds studied
leads one to the conclusion that any anomalies in
the A-15 compounds which are electronic in origin
should be due to these bands. However, Mattheiss'
calculations are not much more precise than the
width of the bands, and so details of the bands and
the exact placement of the Fermi level within
the band cannot be taken very seriously.

Consequently, in the present study a tight-bind-
ing model of the A-15 compounds is formulated
from the 5, orbitals on the six transition-metal
atom sites, including both nearest-neighbor (in-
trachain) and next-nearest-neighbor (interchain)
interaction, and keeping only the two "relevant"
bands. For interchain coupling less than about
15/() of the nearest-neighbor interaction, the den-
sity of states has a sharp peak due to a couple
of saddle points in the bands —one along I"X for
the upper band, and one at M for the lower band.
A Fermi energy close to the peak would thus ex-
plain the large linear terms in specific heat at
low temperatures. The model exhibits both a
Peierls gap at the X point and a Jahn-Teller split-
ting at the M points for the lower band and at the
I'X saddle points for the upper band in the tetra-
gonal phase with sublattice pairing. For inter-
chain coupling of the magnitude given above, all
these points are close to the Fermi level and

therefore both the Peierls gap and the Jahn-Teller
splitting are jointly responsible for the electronic
instability, and must both be taken into account.

The nearest-neighbor coupling has been taken
to be within Mattheiss' rms error, while the next-
nearest-neighbor coupling has been adjusted to
give a reasonable fit to the low-temperature elec-
tronic specific heat. The overlap matrix elements
(both nearest and next nearest neighbor) are as-
sumed to vary linearly with the distance between
the atoms, with a single phenomenological elec-
tron-phonon coupling parameter. Fitting the ob-
served transition temperature and the elastic con-
stant (c» —c») in the cubic phase just above T„
determines both the "bare" elastic constant and the
electron-phonon coupling constant. With no further
adjustable parameters, the magnetic susceptibility,
tetragonal distortion below T, and the specific-
heat jurnp at the transition are predicted. The
results are in good agreement with experiment
for V,Si; for Nb, Sn the agreement is not so good.
Effects of (i) neglecting the lattice entropy. , (ii)
hybridization with other bands, and (iii) strong
electron-phonon coupling taken into account only
in a low-temperature limit in the present model
are discussed, and (i) appears to be the cause of
the few inadequacies of the model.

In order to present the essential physics of the
Jahn-Teller effect shown by the bands (for the
Peierls transition the reader may look up Ref. 14
or references contained therein), an idealized Jahn-
Teller model with a more realistic density of
states than the Labbe-Friedel or the CCH model
for 3D bands is solved analytically in Sec. II; how-
ever, the results of this model necessarily bear
only qualitative resemblance to the actual com-
puter calculation for the tight-binding model. The
tight-binding model is described in Sec. III, while
Secs. IV and V include discussions of the calcu-
lational details and the results, respectively. The
concluding Sec. VI summarizes the present state
of affairs in the theory of A-15 compounds, and
includes a discussion of the modification of the
Landau theory of I in light of the present calcula-
tion.

II. IDEALIZED JAHN-TELLER MODEL

Of the idealized models exhibiting distortions
due to a Jahn-Teller effect, the Labbe-Friedel'
1D [N(E) -E '~'] and the CCH step-function den-
sity of states' [N(E) -8(E), as in the 2D free-
electron case], have been used often in connection
with the martensitic transition in the A-15 com-
pounds. However, SD densities of states do not ex-
hibit such a singular variation, the sharpest vari-
ation being of the type ME, near an extremum or



16 MICROSCOPIC THEORY OF THK MARTKNSITIC TRANSITION. . . 1919

N{E)

(a}
model are correct.

The three energies E„which are degenerate in
the cubic phase, split in the tetragonal phase to
(see Fig. 4):

E,=E =+&; E =-2&, (4)

-EB 0

N{E) (b}
2Np 2No

where & is proportional to tetragonal strain.
may be either positive or negative, as will be seen
later, so that the model allows for both kinds of
tetragonalities. Near the transition temperature,
all phonon coordinates which shift the electronic
energy linearly or couple bilinearly to the tetra-
gonal strain are simply proportional to each other,
and so the elastic energy is proportional to &2.

The thermodynamic potential is given by

0=0„„+Q„~

B ~ -~ 2h EB+2h -EB-2b, -2h 6 EB +~

FIG. 4. Density of states for the idealized model for
the cubic phase (a) and the two tetragonal phases (b, c).

a saddle point in the band. For the production of
a large peak in the density of states, as indicated
by specific heat"" and magnetic susceptibility"'"
data, two close-lying saddle points are required,
and this is the case in the tight-binding model of
the A-15 compounds to be discussed later.

To get, an idea of the underlying physics, and the
order of magnitude of the quantities involved, this
section describes an idealized model exhibiting a
second-order Jahn-Teller effect, which is one of
the features of the tight-binding model.

The model consists of a density-of-states func-
tion composed of three terms:

N(E) fN;(E), =

where

—EN.[1-(~E-E,~/E, )"], ~E-E, (&E,

0, [E-E,f&E, .
EB is a measure of the width of this peaked den-
sity-of-states function.

Each of the three terms in this idealized model
arise from a pair of saddle points of opposite na-
ture at the energies E„which in the tight-binding
model of the bands are the saddle points at 3f and
along I'X, for the three symmetry directions. The
simplified model further puts the two saddle points
at the same energy, and assumes that each pair
moves together, dragging the entire density func-
tion with it, which is not true in the band-struc-
ture model. These points do have quantitative in-
fluences; however, the qualitative results of this

N, (E)in[1+ e2(" ~]dE+ —,'K&', (5)P,
where K is proportional to the unrenormalized
shear modulus (c„-c„).

862
m

822 888', 8p2,

Thus,

x e(E-E ) IT/(1 e(e-)E) / T)2

and for the case p=0 (for &=0, p is independent
of T at the peak), if Ee &5T, the integrals may be
extended to ~~, and thus

(
82+

2 K 2N01-10VT EB1'2
a 0

Consequently for K & 2N„ the lattice is unstable
in the undistorted configuration at a (Gaussian)
temperature T* given by

T» =0.87Ee(1-K/2ND)2 (6)

o[TE&2 (T»)2~2]

A. Landau expansion

To obtain the transition temperature and behavior
at nearby temperatures, one may make a Landau
expansion in powers of &. The expansion is com-
plicated by the fact that for nonzero 4, even for
the Fermi level at zero, there is no electron-hole
symmetry, and one has to keep track of the chemi-
cal potential. The first few terms may, however,
be obtained in the following manner:
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At T*, the coefficient of the cubic term is
(except for terms involving (s20/sn2)„and
{s0/s&)„which vanish at &=0, T= T3)

B. ~lysis at zero temperafgre

At zero temperature the free energy is just the
total energy, and may be calculated directly. How-
ever, it may also be obtained from the thermody-
namic potential in the following manner:

(isi)"*

~&tt-tt &/ T/I e(3 tt )/ T-)8
(I + eis tt t/T-)3

Bled,

~ 86

adE 1-

which changes sign as the Fermi level (at zero
distortion) crosses the peak. Thus this model
exhibits both signs of tetragonality, depending on
the position of the Fermi level, much like the
Landau theory of I. For p, = 0, the cubic term is
zero, and the transition is second order. While
this particular value of the chemical potential is
an artifact of the symmetric density-of-states
function, any density-of-states peak not too asym-
metric will allow for both signs of tetragonality.

For the case p,=0, because all the first three
partial derivatives of the thermodynamic poten-
tial with distortion vanish at T, the coefficient of
the quartic term is

0 1 12NO

2 2
X

1 8(E+d-u) 1 ~g(g 2Q u) +K

which for T=0 reduces to

= —3 No dE 1- +K&.

Consider only n&0 (the analysis for «0 is
similar}. If p « then

= K-2ND &

[ (& —/2)' "+(/ + 2&}'"]
g(E )1/2

For the case of a half-filled band, electron
number conservation implies

e*(4e'- e'*- 1)
(1+ e*)4

= 0.053 N /(E3T33)'/2 (8)

p iE )
1/2

N= NO 1-
EB Eg

dE

which is positive, so that this model has no con-
vergence problems present in the Labbe-Friedel
model. '

'The Landau expansion for the free energy for
the half-filled band thus looks like

0 [Tl/2 (T0)l/2]1112+ ' 0 g4
(E )1/2 m (E T03)i/2

For T just below T*, the distortion is

~= 2.28 T„~e ('",

u+2h ' iE i
1/2"

or

g = [2/9(Es) / ] [(2/+ p}3/2 2(g p)3/2]

[4{~2 1)/g(E )1/2]g3/2 (13)

where ~ has been assumed much smaller than E~.
Thus p. is much smaller than 4, and keeping the
leading two orders in the expansion

= (K- 2N )&
4(2v 2 + 1) NO n3/20 9 (E )1/2 t

where 8 = (T T*)/T„*is the—reduced temperature.
The jump in specific heat at the transition" is

thus

nC „=10NOT„(T~/Es)'/' .

or

F = -1.07 NO(T~0/Es)'/'n'

+0 88 [N, /(E )'"].n3/2 (i4)

The magnetic susceptibility in the cubic phase,
which is proportional to (s2g/s/12), [Egs. (5) and
(25}]is

}I= ~ [I-1.0V(T/Es)'/2] (T ~T «Ett} . (12)

which has a minimum at

&0 =1.6T*.
As assumed earlier, 4, is much less than E~.

Neglecting the variation in chemical potential,
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FIG. 5. (a) Magnetic susceptibility and (b) distortion
as functions of temperature for the half-filled band, and
(c) variation of the quadratic (T~~) and actual (T~) transi-
tion temperatures as a function of band filling for the
idealized kahn- Teller model.

the zero-temperature susceptibility is

X(o)=4 [1-144(~JEB)'"),
which is somewhat smaller than the susceptibility
at T~ [Eq. (12)].

C. Numerical results

Numerical results show that for non-half-filled
bands the transition is first order and the tempera-
ture variation is less pronounced. Of interest are
(a) variation of transition temperature with elec-
tron concentration and (b) variation of magnetic
susceptibility and distortion with temperature.
These results are shown in Fig. 5 for 7*=0.0375
E

III. TWO-BAND TIGHT-BINDING MODEL
OF THE A-15 COMPOUNDS
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Mattheiss has recently" done an extensive LCAO
fit to his augmented-plane-wave (APW) calcula-
tion, while also improving the original AP% cal-
culation by almost an order of magnitude. The
basic conclusions to be drawn from his results
are: (i) His results show little one dimensionality,
contrary to the idealized bands of Labbe and
Friedel. (ii) The density of states near the Fermi
surface for all the A-15 compounds considered is
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0—2 MS

a+2p+8y

FIG. 6. Six tight-bind-
ing bands for typical
values of the parameters
(P &0, y= —0.15 P).

a+2P

XR

composed mainly (-50%) of the 5,(»' y') subband
with about 25%%d contribution from the v(»z, yg) or
bitals and the rest a mixture of other states. (iii)
The bands near the Fermi surface are almost an
order of magnitude less flat than that required by
Gor'kov in the entire zone face (XMR); consequent-
ly the phase space involved is too small for a
Peierls-like effect to be the sole cause of the dis-
tortion.

The band structure of Mattheiss shows a
set of two bands close to the Fermi surface in all
the compounds, which are reasonably isolatef for
most of the Brillouin zone. These are composed,
as stated above, mainly of the 5, orbitals on the
transition-metal sites. The consistency with which
the same two bands lie near the Fermi surface for
all the compounds in Mattheiss' study shows that
this result is relatively insensitive to the lattice
potential and is therefore strong evidence for these
bands being responsibl. e for any electronic insta-
bilities in the A-15 compounds. In this study,
therefore, a simplified tight-binding model of
these two bands has been taken, composed of only
the 6, orbitals on the six A sites, and including
nearest-neighbor (intrachain) and next-nearest-
neighbor (interchain) coupling. Coupling to the B
atoms has not been included. The model is partly
phenomenological; this has been necessitated by
the fact that while Mattheiss' identification of the
bands near the Fermi surface is reliable, his
tight-binding parameters for the 6, orbital are
within the rms deviation of his LCAO fit to the
APW results, and consequently not reliable. 'Thus
the nearest-neighbor coupling is taken such that
the band separation is within his rms errors, and

M„(d)=M„(0)(1-gd), (17)

where d is the change in direct (straight-line) dis-
tance between the atoms. This would be true if
the exponential. factors in the tight-binding wave
functions were the dominant variation, or if
variation in either the nearest- or next-near-
est-neighbor coupling dominated the other.
Neither of these is completely true for the A-15
compounds, so Eq. (17) should be regarded as a
further simplification of the model. 'To do a better
job would require more adjustable parameters,
and such a procedure is probably not warranted in
view of the original simplicity of the model.

In terms of the diagonal element ~, nearest-
neighbor coupling P, and the next-nearest-neighbor
constant y (in the cubic phase), the optical mode
amplitude d„and the tetragonal distortion d~, the
6 x 6 tight-binding matrix becomes of the form
shown in 'Table I. The wave vector k has been
written in dimensionless form, so that the Bril-
louin zone edges are at (sv, +v, +v) in both the
cubic and the tetragonal phases. The variation of
the diagonal matrix element 0. due to change in
lattice potential as a result of the distortion has
been dropped, as this would just give an overall
(k-independent) shift in the bands, which can be

the next-nearest-neighbor coupling has been ad-
justed to give a peak in the density of states some-
what larger than the density of states at the Fermi
surface inferred from experimental data on spe-
cific heat. 'The variation of all the matrix elements
(both nearest-neighbor and next-nearest-neighbor)
is accounted for by a single phenomenological pa-
rameter g, and taken to be of the form
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(0)

(b)

(d)

FIG. 7. Two bands near the Fermi surface in Mattheiss,
calculation for NbeSn (a) and VBSi {b), along with the
bands used in the present calculation (c), the Labbe-
Friedel model {d), and the Gor'kov model (e), drawn
roughly to scale. The shaded area in Mattheiss' band
represents presence of other bands (and consequent mix-
ing), and his rms error is indicated by I.

absorbed into the elastic term.
The bands in the cubic phase for P &0 (as per

Mattheiss' values) and y &0 (a choice necessary
to make the bands look like those of Mattheiss)
are shown in Fig. 6. The bands of relevance are
the two lowest ones which are degenerate along
I'R and XR. At I', these are split off from the
nearest band by an amount 12', while at R all the
six bands meet, as in the linear-chain model. For
most of the zone, however, the other bands are
far separated, and may therefore be omitted from
the discussion. The degeneracy at I' and at two of
the three X points is removed by the tetragonal
distortion, or the pairing optical model. The
density of states near the I' point is three dimen-
sional (i.e., N(E) -WE) for any reasonable value
of y, and therefore the Labbe-Friedel model is

not appropriate. The X-point model of Gor'kov
is in somewhat better shape; but, like in Mat-
theiss' calculation, the bands are about an order
of magnitude wider than required by Gor'kov on
the zone face XMR (the middle two bands are
more appropriate for a pure Peierls-like insta-
bility), and so the objection raised before holds.

However, for y &0.15p, the points X and M for
the lower band are close in energy (splitting ~'/P)
and the density of states has a sharp peak due to
the saddle points at I in the lower band, and the
one between I and X in the uppex band. These
saddle points shift when a tetragonal distortion
occurs (the saddle points for two symmetry direc-
tions moving one way and for the third the other
way), while gape open up at two of the X points.
Therefore, the tight-binds~ band model is capable
of exhibiting an electronic instability which can be
attributed partly to a Jahn-Teller effect, and part-
ly to a Peierls gap mechanism.

A comparison between various models can be
made by looking at the band structure responsible
for the electronic instability in each of the models.
This is done in Fig. 7 where the electronic bands
near the Fermi surface have been plotted for the
Labbe-Friedel, the Gor'kov and the present mod-
els, along with the best LCAQ fits by Mattheiss to
his APW results. As can be seen, the bands of
Mattheiss do not resemble those of Gor'kov at all;
the Labbe-Friedel model, on the other hand, has
bands which are perfectly flat in the I'XM plane,
which is unrealistic. The bands of the present
tight-binding model, however, do not have per-
fectly flat portions; further, they bear a reason-
able resemblance to Mattheiss' best fits. While
doing this comparison it should be kept in mind
that Mattheiss' rms error (shown in Fig. V) is
comparable to the width 6f these bands, and so
many of the features of Mattheiss' bands are not
reliable. It seems quite clear that the present 3D
band model is much more realistic than the ideal. -
ized models of Labbe-Friedel and Gor'kov, which
have perfectly flat portions due to the (probably
quite misleading) one dimensionality of the bands.
Consequently the results based on the present mod-
e1, are likely to have a much closer bearing on the
actual situation in the A-15 compounds. Besides
having a 3D character, the present model is sim-
ple enough that its few parameters are easily fixed
up by Mattheiss' calculation coupled with a few
experimental results, and predictions of other
quantities can be made.

IV. DETAILS OF THE CALCULATION

In order to deal with a problem involving two
energy scales —a bandwidth -10' K and a transi-
tion temperature -20-50 K —it becomes necessary
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to divide the Brillouin zone into regions which are
dealt with in two radically different ways. The
first is the bulk of the Brillouin zone where en-
ergy variations are large and which contributes
a fraction of the density of states at the Fermi sur-
face which is not sensitive to small dilations of the
lattice structure. This region has been divided in-
to cubes, each with a side —,', to —,', of the Brillouin-
zone half length w. The constant energy surfaces
have been approximated by planes within each
cube, using an averaged linear interpolation
scheme, which uses the energy eigenvalues at all
eight corners of the cube. The density of states
for this case has been worked out by Gilat and
Raubenheimer, "and the relevant formulas are
summarized in the Appendix. Since the energy
variation is greater than the temperature by a
factor -10 within each cube, low-temperature ex-
pansions of the thermodynamic functions can be
used.

For the special. regions which are comprised of
(i) the region surrounding the XM line for the
lower band, and (ii} the region from X to the sad-
dl.e point along I'X for the upper band, which are
reasonably flat and near the Fermi energy, use
has been made of a finer mesh for interpolating
the energy eigenvalues, and usual thermodynamic
formulas have been used to evaluate the free en-
ergy and its derivatives. Since the thermodynamic
functions are sharply peaked, a large number of
points (-25000) have been used for the integration
(changing the number of points by a factor of 2
does not alter the final results by more than a few
percent) and all derivatives taken analytically;
even the specific heat is obtained by a least-
squares fit to the entropy by a power series, and
then analytically differentiating the series.

The energy eigenvalue at each mesh point has
been represented by a power series up to cubic
terms in the tetragonal distortion. The bands at
an arbitrary point in the zone vary linearly for
small distortion, while the free energy itself is
quadratic because different portions of the Bril-
louin zone move in a correlated manner (the points
in the star of the cubic Brillouin zone move such
that the sum of their linear motion is zero). In
order that this enormous cancellation is exact,
the linear terms in the power series have to be
evaluated in double precision, using extremely
small distortion, about 10 4-10 ' of the actual dis-
tortion. The remaining two terms (quadratic and
cubic) in the expansion have been obtained by a
least-squares fit of the energy eigenvalues for dis-
tortions up to about twice the zero-temperature
distortion. This is somewhat in error near de-
generacy points where non-power-law terms like
(c'+ dP)' ' are present; however, the X-point re-

gion where this really matters is small, and the
net error is not consequential.

A. Thermodynamic formulas

(19a)

84 TR Bdk Tg
(19b)

Thus the minimum of the free energy is given by
the zero of the latter equation. The curvature at
the minimum (proportional to the elastic constant)
is related by the thermodynamic relation

(19c)

Other quantities of interest are the free energy,
entropy, and the specific heat:

F=O+ pX, (20a)

(20b}

(20c)

In Eq. (20c), & has to be allowed to vary to equili-
brium, given by the zero of Eq. (19b).

For the bulk of the Brillouin zone, where low-
temperature expansion has been used, the elec-
tronic part of the thermodynamic potential may be
expressed as the power series

It is convenient to work with the thermodynamic
potential A(T, &, p) instead of the free energy
F(T, &, 5I). (Since the volume change at the transi-
tion is second order in the dilatation, the volume will
be taken to be a constant and suppressed as a ther-
modynamic variable. } The thermodynamic poten-
tial is the sum of the electronic and elastic parts:

2

g gin(]+ e-sos&«&-~«»)+ sKgs (19)P„,~
where the sum is over the two bands n and the
Brillouin zone and & represents the distortion of
the crystal. (P=1/T; As=1.) K is proportional to
the elastic constant. The lattice entropy has not
been included in Eq. (18}as its effects have so far
been believed to be small (this point will come up
later in the discussion).

The electron number and derivative of the free
energy (at constant electron number) are simply
the partial derivatives of the thermodynamic po-
tential
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N E E-p, ~ dE —-'w'TN p,
p

-,—,',v'T'N" (p) —~ ~ ~, (21)

where N(y)is, the density of states at the Fermi
surface.

Derivatives with respect to p and T may be
taken in a straightforward manner. In taking the
derivative with respect to &, it has been assumed
that within each cube the change of energy is con-
stant, so that it may be replaced by (dE, /d&)
where E, is the energy at the center of the cube.
In this way, from Eq. (18) it follows that

(22)

The calculation for each point or cube was done
in single precision and the results added in double

precision, ensuring six or seven figures of final
accuracy. In the computation of the free energy,
because of the large constant contribution from
the Fermi sea in the bulk of the Brillouin zone,
the changes are obscured by noise, and Eq. (20a)
had to be modified to g emove the large background.
The density of states N~(E) was expanded in powers
of 4, assuming that for each cube, the only varia-
tion of N~(E} is through the variation of the energy
at the center, E, (which is equivalent to the as-
sumption of constant change of eigenvalues within
each cube) so that

N~(E) ~NO(E)+
d (E, E,)-dN

dE,

--', (,';.) (..—.:) .

where E, is the energy at the cube center in the
distorted configuration and the sign of the last
term is different from the usual Taylor expansion
because the derivatives are taken at E„notE',.
Using dN/dE, = (dN/dE) (i-.e., raising the energy
at the center of the cube is equivalent to taking the
density of states at a lower energy in the original
configuration), the large contribution to the free
energy per unit volume becomes

N~(E)E dEy A

E Np E —5Ec¹a E —
& ~Ec NA Ec dE

ENp E dE

+ E NA E + 5E~NA E + 2 5Ec NA E dE
Qp

EN,'E ~E,+&NA~E nE, ' dE,
e%

where 5E,= E,-E'„and p,p is a fixed reference
point (independent of & and T), chosen close to p,
so that the second integral may be evaluated by
expanding the integrand about E = p, . After some
algebra one obtains

F,/V =F;/V+ [kp'N, (y) —,' u—'N,'(V)+ ,', u—'N,"(V)]

+ VE, [n, (q) —gN, (u)+ 2u'N,'(u) —,' u'N—;(u)1

+ —,'(&E,}'[N~(p) pN~(p) + 2 p N~(P)], (23)

where F', = f"DEN, (E) dE is a large constant con-
tribution to F„which may be neglected; n~(E)
= fz„X~(E)dE is the number of electrons below E
for a distortion &; and p.p has been chosen to be
the zero point of energy. Only up to second de-
rivatives of N~(p, ) have been kept, since in the
plane energy surface approximation the third de-
rivative is zero.

The calculation was done starting at the lowest
temperatures in the tetragonal phase. The num-
ber of electrons was chosen so that the Fermi
level was close to the peak in the density of states
and the bare eleastic constant adjusted so that
the transition temperature agreed with experiment.
The equilibrium state, defined by Eq. (19a) and
the zero of Eq. (19b}was obtained using a linear
interpolation procedure in the p- & plane involv-
ing the first and second derivatives of the thermo-
dynamic potential. Convergence was usually ob-
tained in less than five iterations starting from an
educated (-20%) guess, except near the transition,
where it had to be stopped from locking onto the
cubic phase. The various thermodynamic functions,
elastic constants, and susceptibility were calcu-
lated using the formulas given. 'The transition
temperature was obtained by determining the free
energy in the cubic and tetragonal phases at var-
ious temperatures and finding the intersection of
third- or fourth-order polynomial (in tempera-
ture) fits to the two functions F,„b(T)and F„,(T)

B. Strong-coupling enhancement

It is wel. l known" that strong electron-phonon
coupling enhances the electronic specific heat in
the normal state at low temperatures by a factor
(1+ X), where X is the electron-phonon coupling
constant. This is due to a renormalization of the
electronic spectrum (and consequently the density
of states) within an energy of the order of the De-
bye temperature 6~ of the Fermi surface. This
factor is strictly valid only at low temperatures
and is washed out by thermal effects when T be-
comes a sizable fraction of 6D. Since the en-
hancement is "stuck" to the Fermi surface, at
low temperatures the effect of strong electron-
phonon coupling on the free energy of the system
may be taken into consideration by multiplying the
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thermodynamic factors by a function f(E n-)

which satisfies

f(0)=1+x

(24)

f(s~) =1,

with a characteristic variation over a range -6~.
Then

0= —— dEN(E) ln(l+ e s(s "')
p

dEN(E)f(E- p) ln(l+ e s(s "'),
P

N(E) N(E)f(E q)-X= dE ~~ u&- dE, , etc.
1+e -u g+ eD($-u)

With these replacements it is easily seen that if
the density of states is relatively constant over

6» then the zero-temperature energy is barely
changed by the modification. Qn the other hand,

the electronic entropy at low temperatures, which

depends only on an integral over a region T(«ov)-
around the Fermi surface, is renormalized by a
factor (1+a), as is specific heat. The same fol-
lows for the temperature variation of the elastic
constants and magnetic susceptibility, which are
due to a reshuffling of the electron population over
a region of width T around the Fermi surface.
Thus for a density-of-states function not varying
much over a range 6» the zero-temperature
quantities —zero-temperature energy, magnetic
susceptibility, and elastic constants —are depen-
dent on the bare density of states, while for low
temperature, the temperature-dependent quanti-
ties —entropy, specific heat, temperature depen-
dence of elastic constants, and magnetic suscepti-
bility —are enhanced by a factor (1+ X}.

If, in addition, the density of states is sharply
varying over a range Mo {as is probably true in
the A-15 compounds), then even the zero-temper-
ature quantities depending on the Fermi surface,
like zero-temperature magnetic susceptibility,
will be renormalized too —by as much as (1+X}
in the extreme case. This has been assumed in
the present study; however, this last assumption
affects only the absolute level of the magnetic
susceptibility curve, which is not well known
theoretically and has been adjusted to agree with
experiment.

Clearly, a better job would require an elaborate
self-consistent treatment involving strong coupling
superconductivity for a peaked density of states ex-
hibiting both Jahn- Teller and Peierls instabilities,
which is a formidable task.

V. RESULTS AND DISCUSSION

The tight-binding model described in Sec. GI

has been used to study the structural phase tran-
sition and anomalous properties of Nb, Sn and V,Si.
'The nearest-neighbor coupling obtained from Matt-
heiss' LCAO fit to the 5, band are -0.3'7 and -0.44

eV, respectively, which are quite small and con-

sequently not very reliable. An estimate of the

error may be made by looking at the separation
of the peaks in the density of states of the 5, orbit-
als by Mattheiss and his rms error of about 0.3
eV; the result is that the nearest-neighbor cou-
plings could be wrong by as much as 50/q.

Two sets of nearest-neighbor parameters P have

been chosen for each case, V,Si and Nb, Sn, within

the limits of Mattheiss' accuracy. The next-near-
est-neighbor parameter (y) has been adjusted so
as to give a rough agreement with experimental
results on specific heat along with reasonable pre-
dictions regarding the variation of elastic constant,
magnetic susceptibility, and tetragonal deforma-
tion with temperature, and the specific heat jump
at the transition. No elaborate fitting attempt has
been made, howsoever, and the parameters chosen
are representative, not best fits

'The position of the Fermi level has been chosen
to be close to the peak in the density of states,
where the transition temperature is the largest
and the elastic constant K is adjusted to yield the
right transition temperature. The transition is
second order for only a special placement of the
Fermi energy, which is difficult to achieve; con-
sequently, weakly first-order transitions have
been accepted.

The free energy, entropy, and specific heat in
the two phases (schematic diagram in Fig. 8} have
been calculated as described in Sec. IV, along
with the deformation below the transition, elastic
constant (c„-c„}in the cubic phase, and magnetic
susceptibility. The magnetic susceptibility is
given by

a
)((T)=()+X)g' fdaN (t)(- —+x

(25)
where f is the Fermi function f(a) =(1+e" ~~") ',
N~(c) is the density of states for both bands and

~ is a temperature-independent background
due to other bands and diamagnetic effects, pre-
sumably much smaller than the contribution from
the two bands under consideration. As stated
earlier the strong coupling factor (1+a) has been
included to give the correct temperature depen-
dence of y(T); any error in y(T =0) due to this is
absorbed into the background term. Electron-
electron enhancement effects, on the other hand,
have been left out of E(l. (25), as the data seem to
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TETRAGONAL
PHASE

CUBIC
PHASE

FIG. 8. Schematic plot of the free energy, electronic
entropy, and electronic specific heat as functions of
temperatures for a weakly first-order transition.

be better fit without them.
The calculation is valid only for reasonably low

temperatures, because of (i) low-temperature ex-
pansion in the bulk of the Brillouin zone, (ii) as-
sumption of a temperature-independent propor-
tionality between the optical mode, tetragonal dis-
tortion, and electronic coordinates which is valid
near the transition only, and (iii) enhancement due
to strong electron-phonon coupling, which is con-
stant only for T «e~, the Debye temperature.

The elastic constant (c„-c»)is determined with-
in a factor and the factor has been adjusted to
give the correct slope at the transition tempera-
ture~ this determines the low-temperature dis-
tortion (c/a —1). Since the elastic constant is es-
sentially linear for temperatures where the calcu-
labon is valid, it has not been plotted with the
other quantities to show agreement with experi-
ment.

For Nb, Sn the ratio of the sublattice distortion

to the tetragonal deformation has been measured";
the relative sign was not certain and the sign which

gives a larger gap at the X point (the motion of the

lower band at the M point is independent of the

optical mode), shown in Fig. 2 has been used. For
V,Si experimental data. on the magnitude of the
sublattice distortion is inadequate" and so the
same ratios have been used; if the M-point motion

is more important than the Peierls gap at the X
point, as appears to be the case in the present
model, this will cause only a slight quantitative
difference in the results (probably less than 5%-
10%).

The parameters for the different cases, along
with the results, have been given in Table II. The
two bands have been drawn for case I used in V,Si
and Nb, Sn, which are just scaled (1:1.5) versions
of one another (Fig. 9). The density of states for
the four cases are shown in Fig. 10. The specific
heat, susceptibility, and temperature variation of
the tetragonal distortion for the first case in both

V,Si and Nb3Sn have been plotted in Figs. 11 and

12, along with the experimental data wherever
appropriate. The low-temperature distortion and
the matrix-element variation length 1/g [Eq. (17)]
have been calculated by fitting the elastic constant
(c„-c„)above the transition temperature to the
experimental results.

The general agreement between theory and ex-
periment is good, considering that there are very
few adjustable parameters and the susceptibility
(within a constant) specific-heat jump at the tran-
sition and the low-temperature tetragonal defor-
mations have been predicted after all parameters
have been fixed by other data. The background
term in susceptibility is attractively small, unlike
that of a previous attempt" on the basis of a step-
function density of states which had two adjustable
parameters (enhancement and a large background)
and was still unable to fit elastic constant and
susceptibility with the same parameters. Varia-
tion of T with B-site alloying on the basis of the
rigid-band approximation is similar to that shown
in Fig. 5(c) for the idealized model, which allows
for quite a few percent alloying in Nb, Sn before
the martensitic transition is suppressed.

However, it is apparent from Table II that while
the fit for V,Si is very good, that for Nb, Sn is not
as satisfactory. " Firstly the susceptibility varia-
tion in Nb, Sn is much smaller than predicted by
theory. The sample studied had a rather broad
maximum in the susceptibility, 10 K above the
transition; a better sample, while giving a sharper
peak, is not likely to remove discrepancy between
theory and experiment entirely. Putting in elec-
tron-electron enhancement factors will only worsen
the fit. Secondly, the observed low-temperature
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FIG. 10. Electronic density of states for the two cases
in both V3Si and Nb3Sn.

distortion is larger than that predicted by theory
by (20-30}/p. In this connection, however, it
should be pointed out that the present results are
better than those of Gor'kov" or the Peierls tran-
sition model. '4 Also the calculated specific-heat
jump at the transition for Nb, Sn is much too small,
though the experimental data" are not very good.
Furthermore, for both V,Si and Nb, Sn the fits are
better for a density of states somewhat [(10-30}/p]
larger than that calculated on the basis of specific
data, though the latter analysis is not very re-
liable and subject to some controversy.

It is not possible in the present model to simul-
taneously remedy all these discrepancies in Nb, Sn.
The susceptibility is indicative of a lower density
of states, or a wider peak, but such a change would
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FIG. 11. Plots of the reduced tetragonal distortion,
electronic specific heat, and susceptibility as functions
of temperature for case I in V3Si. Experimental data for
magnetic susceptibility are from the later Ref. 21, nor-
malized to the room-temperature values of the earlier
Ref. 21.

reduce the calculated tetragonal distortion further

[alternatively, the calculated (c„-c»)would re-
cover much slower above T ] and lower the spe-
cific-heat jump at the transition. This is reminis-
cent of the situation in the layered transition-metal
dichalcogenide 2H- TaSe„where the charge-den-
sity-wave gap and specific-heat jump are almost
an order of magnitude larger than that predicted
by a mean-field model with a BCS-type gap equa-
tion. This is because the coherence length at low

temperatures in this compound is smaller
than the superlattice spacing, and consequently
phonons soften over a relatively large portion of
the zone, and so a mean-field theory which does
not include lattice entropy and local fluctuations
will lead to incorrect results; one has to reformu-
late the problem in terms of local and global order
parameters and include the entropy of the phonons

in the calculation. " In the A-15 compounds the
observed phonon softening is also over a large
range of wave vectors, at least for the transverse
wave in the [110]direction. From a fit to the [110]
transverse [110]polarized phonon dispersion
curves, "one obtains zero-temperature renor-
malized (experimentally observed) Landau-Ginz-
burg coherence lengths for Nb, Sn and V,Si as 0.64a,
and 0.94a„respectively (a, is the lattice spacing).
The actual ratio of importance, " v(/a„ is -2 for
Nb38n and -3 for Q,Si. This gives the recovery of
the softening along the [110]direction; there is
further recovery as one deviates from that direc-
tion and one must really include that before com-
puting the effects of phonon entropy. However,
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FIG. 12. Plots of the reduced tetragonal deformation,
electronic specific heat, and magnetic susceptibility as
functions of temperature for case I in Nb3Sn. Experi-
mental data on tetragonal distortion and magnetic su-
sceptibility are from Refs. 2S and 20, respectively, and
the dotted line is a smooth curve through the experimen-
tal points.

these numbers suggest that these compounds could
be on the border line, where lattice entropy is pre-
sumably not important enough to radically change
the results, but could account for larger zero-
temperature distortions and specific-heat jump at
the transition, and a somewhat lower density of
states. Also the effect in Nb, Sn where the soften-
ing extends to larger 4 should be more, as indeed
seems to be the case.

Another simplification of the model is the as-
sumed temperature independence of strong cou-
pling effects, though this is probably not very im-
portant till about 100 K. Finally, of course, the
model includes only the 5, subband; inclusion of
other orbitals would change results somewhat, but
it seems unlikely that the change would be suffi-
cient to remedy the discrepancy in the heat-capac-
ity jump at T . Further, it would introduce many
more adjustable parameters which could not all be
determined in any sensible manner.

Qne question which has so far been omitted
from the discussion is the temperature variation
of the shear modulus c4,. In the present model a
pure shear strain along one of the cube edges does
not cause a gap at the X point, nor does it shift the
saddle points at M to first order; however, it does
move the bands ~ the zone, and consequently
causes change in the widths of the three contribu-
tions (corresponding to the fact that the cube has
three symmetry directions) to the density of states
This would result in some softening which would
essentially be smaller than (c„-c»)because it
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is solely due to interchain coupling. While numeri-
cal. fits have not been made, it is very likely that
the slight c„softening in V,Si can be adequately

explained; for Nb, Sn the large softening seems to
imply larger interchain coupling with a consequent-

ly smaller peak in the density of states —this
seems to be consistent with the discussion on the
effect of lattice entropy in Nb, Sn. However, quan-
titative comparison can only be made when this
effect is included, at least for Nb, Sn.

VI. CONCLUDING REMARKS

The present work has tested a microscopic
three-dimensional two-band tight-binding model

of the A-15 compounds based on Mattheiss' result
that the density of states near the Fermi surface
in the A-15 compounds is composed mainly of the

5, orbitals on the transition-metal sites. The
model has relatively few parameters, determined
partly from Mattheiss' work and partly from ex-
periment. For small interchain coupling, the
model. exhibits an instability of the electronic
spectrum due in part to a Jahn-Teller effect and

in part to a Peierls-like gap at the X point, and

is capable of explaining the anomalies and struc-
tural instabilities observed in the A-15 com-
pounds.

The theory predicts the temperature variation of
magnetic susceptibility, specific-heat jump at the
transition, and low-temperature distortion for
parameters determined by the electronic specific
heat at low temperatures and the temperature
variation of the elastic constant in the cubic phase.
The results are in fairly good agreement with ex-
periment and the inadequacies can be attributed to
the role of lattice entropy which has been omitted
in the present study. The susceptibility drop below
the transition is in much better agreement with
experiment than previous models.

One question of interest is the modification of
the Landau theory of I and its results in light of
the present work. Since the X-point Peierls gap
is not the only or primary cause of the instability,
the electronic order parameters Q„cannot be
identified as the charge-density-wave amplitudes
with k = 2v/a in the x, y, and z directions. How-
ever, the success of the Landau theory of I leads
to the belief that while it may not have been formu-
lated on the basis of the correct microscopic mod-
el, its free-energy functional has the essential in-
gredients. The reason is not far to seek.

Recent work" has shown that if one formulates
a Landau theory based on a purely threefold de-
generate Jahn-Teller. model in which the elec-
tronic order parameters (corresponding to the
motion of the three bands) are coupled with the

strain tensor as in the I abbe-Friedel model, the
results of that phenomenological model are es-
sentially those of I. The main difference is that
there is no softening of the I'„(+) optical mode.

'The present model exhibits both effects —a
threefold-degeneracy splitting (like the Labbe-
Friedel model) and a Peierls gap (like the Gor'kov
model). Thus a Landau theory based on the pres-
ent model would have six electronic order param-
eters —three describing the motion of the three-
fold degeneracy of the bands corresponding to the
three symmetry directions of the cubic lattice
(such as the three M points or the three I'X saddle
points), and three others describing the X-point
gaps. The first three would be coupled to the
strain-tensor and the latter to the pairing optical
modes. 'The results would be in between those of
I and Ref. 31, but since those two agree in most
respects, such a model would also yield results
in agreement with experiment.

Secondly, the off-diagonal components of the
strain tensor would also get coupled in, to the
extent of interchain coupling, and show softening
of c«as experimentally observed. Qf course, the
value of the Fermi energy at which the transition
temperature is maximum would not be the X-point
energy but some other one. Finally, it would also
explain why the magnetic susceptibility drop be-
low the transition was incorrectly predicted" on
the basis of a simple Peierls model: because
such a microscopic interpretation of the Landau
theory parameters is inappropriate.

One difficulty faced by the Peierls-type inter-
pretation of the Landau theory of I was the ex-
tremely small Fermi velocity -2 x10' cm/sec
(renormalized; bare value about twice as large)
at the X point that resulted from the extremely
short coherence length deduced from the phonon
dispersion curves. 'The present model might be
somewhat more successful in this regard" as a
substantial portion of the zone from X to M for
the lower band and halfway from I to X for the
upper band is reasonably flat, and all this portion
takes part in the band motion which causes the in-
stability.

In conclusion, the present model of the A-15 com-
pounds, based on a 3D band structure, seems to an-
swer the need of a realistic microscopic picture of
the A-15 compounds. It is able to correlate many of
the anomalies (magnetic susceptibility, specific heat,
elastic constants) and the structural transition well.
in the case of V,Si, and less adequately in Nb, Sn (pre-
sumably because of the neglect of lattice entropy), and
also seems to be promising in its abi.lity to tie in other
aspects of the phenomenon such as softening of the
shear constant and phonon softening over a wide
range of wave vectors, which is currently under in-
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vestigation. As discussed earlier, it appears unlikely
that another realistic (nonidealized) model of the tran-
sition which pictures it as being purely electronically
driven, though based on another (perhaps 3D) band
structure, would change the results in Nb, Sn suf-
ficiently to bring about total agreement. Further,
such a model would have to be reasonably consis-
tent with Mattheiss' calculations and also have a
large portion of the band structure participating
in the transition to explain the anomalously low
coherence length. It therefore seems that the
next step would be to work out a model system of
coupled electrons and phonons mhich shows both
instabilities of the electronic spectrum (Jahn-
Teller, Peierls as well as superconducting) and
significant phonon softening, including entropies
of both systems. Further, in order to carry the
calculations up to room temperature, strong cou-
pling enhancement effects would have to be done
self-consistently keeping in mind that the width of
the density-of-states peak and the Debye tempera-
ture are comparable. This is clearly a formidable
task so it may first be necessary to do this with
idealized band structures or with approximations
to the relevant portion of the band structure of the
present model. Perhaps some general results
regarding the interdependence of structural and
superconducting instabilities may then emerge,
providing a better view into the working of these
high-temperature super conductors.
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APPENDIX: DENSlTY OF STATES AND RELATED
QUANTITIES FOR LINEAR BANDS

In the case of bands which vary linearly, the
constant-energy surfaces are a set of parallel
planes to which the energy gradient forms the
normal. Bands may be approximated in a "small
enough" cubic region to vary linearly, except im-
mediately in the vicinity of an extremum or a
saddle point, and the density of states is just the
area of the plane intercepted by the cube divided
by the (constant) energy gradient within the cube.

The distance of the plane (characterized by E}
from the center of the cube is given by

E, I/'f vE

where E, is the energy at the center of the cube.
If the direction cosines of the plane are l„l„l„
with l, «l, « l, «0 without loss of generality (this
can be achieved by simply relabeling the axes),
then define

w, =b ll, —l, —l, l, w, =b(l, —l, +l,),

w, =b(l, +I, —l,}, w, =b(l, +l, +l,),
where 2b is the length of the cube. w, -w, are the
distances, in increasing order, of the four corners
lying in the half of the cube in which the plane lies,
from the center of the cube.

Then the area of the plane intercepted by the cube
is given by different formulas for different ranges
of the distance w:

Case I: w&w, . (a) If I, & l,+l„the cross section
is a parallelogram of area

S =4b2/I, .

(b) If l, & l, +l„the cross section is hexagonal with
area

2b'(l, l2+ l2l, + I~i, ) —(w + b')

Case II: wy &w&w, . The shape is a pentagon of
area

b (3l~l, + I,I~+ l3l, ) —bw(l2+ l, —l~) —2(w + b2)

l,l,l,

Case III: w, &w&w, . The cross section is a
quadrilateral and

S(w) = 2[b'l, (l, + l, ) —b l, ]w/l, i,l, .

Case IV: w, &w&w, . The figure is a triangle
of area

S(w) = [b(l, + l, + l, ) —w]'/2l, l,l, .
For w & w„ofcourse, the plane does not inter-

cept the cube and S(w) = 0.
The density of states and its derivatives are

given by [omitting the factor V/(2v)']

N(E) = (»I«
I
)S(w}

N'(E) = (I/
I
« I') sgn(E E,)S (w),

N (E) =(»l«l}S"(w).
While N(E) and N'(E) are continuous across the

boundaries, N" (E) is not, and therefore it should
be "smoothed" over an appropriate range. The
number of states below certain energy E, n(E),
is obtained by integrating N(E) from w= w, to the
appropriate point; for E &E„the result should be
subtracted from Sb', the volume of the cube. The
results for E &E, are given below:
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Case I: w&w, .

(a) l, )l, +l„n(E)= (4b'/l, )(bl, —w)

(b) l, (L,+l„

n(E) = 4b +
123

b2w(2L, L2+ 2l, l, + 2l, l, —l, —L~ —l,')
l, l2l,

Case II: w1+w~w2.

n(E) = [L2+ 3l,(l, - l, )]
4/3

1 2

[4b2(3l,LS+ L~L, + L,L2) —2b'
4l, l2l,

+b(w, +w)(l, —l, —l,)

—s(w2+ ww2+ w )].

Case III: w (w(w, .
n(E) = (b/3l, l2)[4b L~+ 3(w~ —w) (w4 —w)] .

Case IV: w, &w(w4.

n(E) = (w~ —
w) /6l, l2l, .
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