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Rotational tunnehng in solids: The theory of neutron scattering
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The wave functions of tunneling four proton groups (e.g., CH4, NH4+) in a crystal field of low symmetry

are obtained from products of pocket states and proton spin states. The results are applied to CH4 in phase

II of solid methane, and to NH4+ in (NH4+)2SnC16 and in (NH4+)C104, where the tunneling spectra are

known. It is shown that the observed degeneracy of two T levels in ammonium perchlorate is accidental.

Neutron scattering can only supply an upper bound of 25 MHz for the diA'erence of the two levels. It is

suggested to enlarge the splitting by hydrostatic pressure or to determine its value at zero pressure by NMR

techniques. The theory of neutron scattering from tunneling molecules is developed on the basis of the pocket-

state formalism. Symmetry correlates the nuclear spin state and the rotational part of the wave functions in

the tunneling levels. Therefore, the scattering from the four portons of one molecule is coherent, in contrast

with the usual spin incoherence in protonated samples. Predictions about the angular and radial dependence

of the scattering are made and experiments to examine these predictions are suggested. Angular averages of
the cross section agree very well with the existing data.

I. INTRODUCTION

The tunneling of molecules between different
equilibrium orientations in the crystal field has
been known for many years. Until a few years
ago only integral information on the tunneling
levels was available. Such information is con-
tained in low-temperature specific-heat anoma-
lies' ' or in NMR lines which, in the presence of
rotational tunneling, remain narrow down to the
lowest temperatures. ' "

Qnly recently it has become possible to detect
transitions between individual tunneling states by
sophisticated NMR techniques" "and by phonon
spectroscopy. " Also in triple-axis neutron spec-
troscopy, where the energy resolution has been
pushed to 25 p, eV, direct observation of tunneling
transitions has become possible. " The neutron
back scattering method, with a resolution of 0.3
p, eV, nowadays overlaps with the NMR range. It
has been successfully applied to the determination
of complicated energy-level schemes. ""

Neutron scattering investigations exist for the
tunneling states of methyl groups, "of methane
molecules, "and of ammonium ions in various
environments. ""For tetrahedral molecules
with heavy nuclei at the corners (e.g. , CCl, ) the
tunnel splitting is much too small to be observed
by neutron scattering techniques. For CD4 an ex-
periment is feasible and the transition frequencies
have been estimated, "but the complexity of the
low-temperature structure will be reflected in the
tunneling pattern. Heavy methane will not be
treated in this paper, but an extension of the meth-
od to CD4 is straightforward.

In the following the theory of neutron scattering

from the tunneling states of tetrahedrally coordi-
nated H, groups (CH„NH, ') will be developed. The
intention is to find the energy levels and the cor-
rectly symmetrized wave functions of the libra-
tional ground-state multiplet. Qnce the wave func-
tions are known it is easy to calculate the double
differential neutron scattering cross section:

=
g + ~ I'. I' l&+. 1&i 'k'III'I»&I P. &l'

x g((g —~, ;) .

W= g Q A""a(r —R„„), (1.2)
n=l y=l

A""= a„„+(2a„,I[I(I+ I)]'~')S 'I„„.
R „ is the position of the yth proton in the nth
molecule, I„„is its spin operator. Equivalently
the index pair ny may define the 4N sites in the
crystal which are occupied by protons. R„„and
I„„then are position and spin operators of the pro-
ton at the site ny without identifying which one of
the four protons of the nth molecule is concerned.

(1.3)

Unprimed symbols relate to quantities before the
scattering event, primed symbols to the same
quantities after scattering. 0 denotes the solid
angle and K&u the transferred energy.

l pk) is a
plane-wave state of the neutron:

l
p& e'"', where

l p& denotes the spin state of the neutron which may
either~ be up lp&=lo'&» down lp&=l p& le. & is the
state of the scatterer, P„and P, denote the initial
probabilities for the neutron spin state and for the
state of the scattering system. 5~, + is the energy
difference E, E; between the—states

l
4, ) and

W is the interaction between the neutron and
the scatterer:
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FIG. 1. General case of the energy levels of a regular tetrahedron
the neutron scattering intensities for NH4'C104 (Refs. 17 and 18) and
transfer. The spectrum of CH4 in phase II of solid methane (Ref. 15)
lines appear at xnuch higher energies {143and 73 peV).

+3 peV

in a field which has no symmetry. Also shown are
{NH4')&SnC16 (Ref. 21) as functions of the energy
is similar to the one of (NH4 )28nC16, but the

8 is the spin operator of the neutron, r its posi-
tion. The spin-independent part of the proton scat-
tering length is denoted by a„„, the spin-dependent
part by a, . Because of the extremely small en-
ergy transfer in tunneling spectroscopy k and k'
are almost equal and the factor k'/k can be omit
ted.

In Sec. II it will be shown, that the tunneling
between equivalent orientations is of an extreme
single-particle character. The states ~4',) of the
system of tunneling molecules thus are products
of single molecule states

~
g ). Section III is de-

voted to the construction of the states
~ P,) and to

the determination of the corresponding energy
levels E in terms of overlap matrix elements.
Explicit calculations are performed for a tetra-
hedron in a tetrahedral crystal field [(NH, '),SnC1
approximate symmetry also for Ch, in phase II]
and for a tetrahedron at a site with a mirror plane
as the only symmetry element (NH, 'C10, ). An
impression of the experimental situation may be
obtained from Fig. I and Table I. The degeneracy
of all three T levels in (NH, '),SnCI, is due to
symmetry, the degeneracy of T, and T, in
NH, 'C10, is accidental.

With the knowledge of the tunneling wave func-

TABLE I. Energies and intensities of the tunneling transitions in NH4 C104 (Ref. 18) and
(NH4+)2SnC16 (Ref. 21) with different arbitrary units for the two experiments. The
experimental intensities are compared with the theoretical scadtering cross section
(in unite of ~Nef [& -f(x)]}which are calculated in Sec. IV.

NH4 CIO4 (NH, '),anCl,
--

Line

h~ (p eV)

Intensity
(arb. units)

1,2

7.17

104

10

11.28

4, 5

4.11

22

7, 8

5.65 1.51

50

123
3.0
35

15

7, 8, 9

1.5
26

12
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II. SINGLE-PARTICI. E POTENTIAL

The rotational motion of the methane molecules
or ammonium ions in the crystal is governed by
the Hamiltonian

Tq+ Vo((d), (d2, . ~ . , (d))} &
(2.1)

where T„ is the rotational kinetic energy of the
nth tetrahedron, and V,((d„(d„.. . , (d„) is the ro-
tational energy which depends on suitable orienta-
tional coordinates (d„(Euler angles, quaternions,
etc.}. V, is a sum of single-particle potentials
and of two-particle interactions:

(2.2)V, = V„co„+ V„co„,(d
n=l &n, m&

The symbol ()), m& denotes a sum over pairs of
molecules (to avoid double counting).

V, thus consists of terms which depend on the
orientation of both units (as, e.g. , the octopole-
octopole interaction) and of terms which depend
only on the orientation of one of the partners (as,
e.g. , a monopole-octopole interaction). In ionic
crystals as NH, 'CIO, or (NH, '),SnC1, the main
contribution to V„((d„) stems from the interaction
of a tetrahedron with the static (not reorienting}
ions in its surrounding.

The Hartree potential for one of the tetrahedra
is given by

V»"'= V»((d»)+ g d(d p„((d„,m )V»~(u», w»&}.

(2.3)

Here the rotational density matrix has been re-
placed by a product of single-particle density
matrices p ((d, (d'):

V(H) —~ V(H)(~ }n n (2.4}

is a good approximation for V„ if orientational
correlations between adjacent tetrahedra are
small. The eigenstates of a tetrahedron in the
potential V„'"'((d„) are the librational states which
are split by the overlap between equivalent equili-

tions, Eq. (1.1) for the neutron scattering cross
section can be evaluated. This is done in Sec. Ip.
Symmetry requirements relate the nuclear-spin
states and the rotational wave functions in the

tunneling levels and therefore the four protons
within one molecule scatter the neutrons coherent-
ly. The angular and radial dependence of the scat-
tering intensity is predicted and single-crystal ex-
periments, to test these predictions, are suggest-
ed. Polycrystalline averages of the intensities are
compared with the existing experimental results.

brium orientations. At low temperatures only the
librational ground-state multiplet is occupied and

therefore contributions of excited states to p ((d (d')

are negligible.
The wave functions

~
p„& of the ground-state mul

tiplet will be calculated in the next paragraph.
They are linear combinations of" pocket states

~t.&= Z s.;~~&.

The pocket states ~9),& differ from each other only

by permutations of the four corners of a tetrahe-
dron. Into (2.3}we insert

(2.5)

III. CONSTRUCTION OF THE PROPERLY SYMMETRIZED
WAVE FUNCTIONS

In the following the CH, or NH, ' tetrahedra will
be treated as rigid units. The consequences of
this idealization are twofold: (i) the internal vi
brations of the molecules are neglected which seems
to be well justified considering the extreme small-
ness of the excitation energies that are observed
in tunneling experiments. (ii} The other conse-
quence is a neglect of the symmetry operations
which change the molecular framework" (from
right handed into left handed). Symmetry require-
ments of the wave function under the 12 even per-
mutations of four identical particles (protons) are
taken into account. These permutations corre-
spond to proper rotations of the molecules, and
they do not change the framework. The 12 odd
permutations of the four protons are neglected as
they do change the framework. One therefore ob-
tains only half the states, e.g. , all those of the
right-handed molecules. The allowed wave func-
tions have to be totally symmetric under the even
permutations of the four protons (even number of
proton exchange operations).

Translational motions of the molecules are also

p(~. ~-') = g ~..(~.
I t-&(C. I

~-'& (2 6)

with ((& = e e~m/Z .e ~&'. All diagonal contribu-
tions V„((d„,(d )((d ~i()(&(())(~(d & to (2.3) are identi-
cal. Off-diagonal terms V„((d„,(d )((d ~())(&((p, ~(d„&

are tiny if the pocket states are narrow. Conse-
quently p„(u„, (d„) depends only very weakly on the
occupations w„„and V„'"'((d„) thus is nearly inde-
pendent of the state of its neighbors. Consequently
Eq. (2.4) turns out to be an excellent approximation
for V,((d„(d„.. . , (d~). It also shows that correla-
tions between adjacent tetrahedra cannot develop.
It thus has been established that the problem of
tunneling between equivalent orientations is of an
extreme single particle character.
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FIG. 2. Equilibrium position of a tetrahedron in the

crystal field. 180 rotations around the X, Y, and Z
axes, as well as 120' rotations around the 1-4 axes are
symmetry operations of the tetrahedron. The rotation
axes are all fixed in the crystal. In NH4'C104 the plane
spanned by axes 1 and 2 is a mirror plane of the crystal.
Rotation axes 3 and 4 as well as X and F then are equiv-
alent.

neglected. With the restriction to rotational mo-
tions only, the total wave function depends on the
rotational coordinates and on the spin coordinates
of the four protons.

A. Rotational wave function

To construct the rotational wave function of a
molecule in the crystal one starts from an angular
potential V ' that depends on suitable rotational
coordinates as, e.g. , the Euler angles'4 or the
quaternions. "" I.et us rotate the crystal such
that Figure 2 represents an equilibrium orienta-
tion of the molecule in the potential V'"'. No as-
sumptions will be made about the site symmetry at
the molecular position. This may be expressed
differently: One considers the most general case
of the potential where the surrounding of the tetra-
hedron does not have any symmetry. The potential
V'0' nevertheless reflects the symmetry of the
tetrahedron itself. In particular the 12 orientations
shown in Fig. 3 are all equivalent and they are all
equilibrium orientations if one of them is an equili-
brium orientation. For sufficiently strong V'0' the
molecule performs small angular oscillations
around one of these equilibrium orientations. Only
the librational ground states in the 12 pockets of
the potential are of importance in this context and
they will be called the pocket states

I y,). (The
energies of the exc-ted librational states are very
large in comparison with tunneling frequencies. }
The index i=1,2, . . . , 12 denotes the corresponding

I

Qto Q»

1 3

I

3

FIG. 3. If the first one of these orientations is an
equilibrium orientation of the tetrahedron in the crystal
field, then all 12 orientations are equilibrium orienta-
tions, irrespective of the symmetry of the crystal field.
The 12 pocket states are the librational ground-state
wave functions which are centered around these 12 dis-
tinct orientations.

Q
4

2

2

equilibrium orientation as drawn in Fig. 3. The
pocket states are no eigenstates of the system.
Pocket states will oscillate in time because of the
tunneling matrix elements between them.

The Hamiltonian X= T+ V'"' of the tetrahedron
therefore is not diagonal in the subspace of the
pocket states (T is the rotational kinetic energy}.
The diagonal elements X,-,. = D are all equal. There
are seven different off-diagonal matrix elements
of X. X;,=h„h„h„or h, if the states i and j
are related to each other by a 120 rotation around
the 1, 2, 3, or 4 axis. These axes are fixed in the
crystal and they are shown in Fig. 2. H„, H„and
H, denote the 180' rotations around the X, Y, and
Z axes. The off-diagonal or overlap matrix ele-
ments of the Hamiltonian are all negative in the
relevant case of small overlap. The Hamiltonian
matrix X,, (see Table II} in the part of Hilbert
space which contains only the 12 pocket states

I y, )
thus may be read off from Figs. 2 and 3. X„.may
be block diagonalized by the unitary transformation
I ~& ) = ~;n„, I P,), with the matrix n from Table III.
One obtains a singlet symmetrical ground state
I $»), with energy E„=E„=(),, I3CI f„)=D+H+2h,
and a doublet state (

I t, ) and
I $,))„with energy E,

= E, = E~ = D+ H —h. Here we have used the nota-
tion H=H„+H, +H„and h=h, +h, +h, +h, . Further-
more X„„contains three identical 3x3 blocks X
of nonzero elements

hp+h3+h4 D H +Hy H +hy h2 h3+h@

l



ALFRED HULLER 16

TABLE G. Hamiltonian matrix X&& for the pocket states )y&). D is the diagonal matrix ele-
ment. H„, H„, and B, are the overlap matrix elements for 180' rotations around the X, Y, and

Z axes, respectively. The matrix elements for 120' rotations around the 1, 2, 3, and 4 axes

are denoted by h&, hp, hs, and h4. The rotation axes are fixed in the crystal reference system

and are defined in Fig. 2.

hp

h4

hp

Hx

h3

hp

H

h)

hg

h3

hp

h3

hg

h3

hg

hp

h&

h4

h3

hp

hg

h)

hp

h3

hp

H

hp

h3

h4

hg

hp

H

h4

hg

h4

hp

h3

hg

h3

one obtains the same 3x 3 matrix X for the follow-
ing groups of states: ($„$„$,), ((„(„t',), and

($9, (», $»). All other elements of K„„are sero.
The diagonalization of X thus yields a singlet state
with energy E„, a doublet state with energy E~,
and three triplet states with energies E~„E»,
and E» as shown m Fag. 4. E», E», and E,
might be obtained from a diagonalization of X.
Explicit expressions are, however, quite compli-
cated and therefore do not yield much insight.

A general conclusion concerning the relative
importance of H and h may, however, be drawn R = (2H —6h)/(2H —3h) . (3.2)

without explicitly diagonalizing 3C. From the in-
variance of the trace of a matriC under unitary
transformations and from Table II one obtains
ZE, = 12D. Knowing E„and Es one concludes that
the nine T states must be centered at C~=D- —,

' H.
The average transition energy from the A state to
the T states therefore is 2/3H- 2h, and the average
transition energy from the T states to the E state
is 2/3H- h (see Fig. 4). For the ratio of the tran-
sition energies one therefore finds

TABLE HI. Matrix a„& which transforms the Hamil-
tonian X&& into the block diagonal form X». a= 1/2~3,

1 1 1 1c=g) c= g~ E'=g{ 1+ V3t)~ E =g{—1 v3i).

a a a a

a a a a

c c c 0 0

f E' f
E' g E' E

O O O O 0

0 0 0 0 0 0 0 0 c c C c

0 0 0 0 c c c c 0 0 0 0

0 0 0 0 c c

c c c c 0 0

0 0 0 0

0 0 0 0 0 0

c c c c 0 0 0 0 0 0 0 0

a a a a a a a a a a a a

0 0 0 0 0 0 0 0 c c

0 0 0 0 0 0 0 0 c c

o 0 o o c c c c o o o o

EE =0+H-h
/

/,
ly

/ ED ~~ „T2

l EA= D+H+2h

2/3 H-2h

CT= D- ~H
3

FIG. 4. Schematic drawing of the spectrum of the ro-
tational Hamiltonian X». H =H„+H„+H», h =h&+hp+h3
+h4. The positions of E&&, E&p, and E&3 may be obtained
from the diagonalization of X [Eq. (3.1)] . Their center
of mass C z is determined from the invariance of the
trace.
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X= y D (3 4)

Here 0. Ay A2 and y=-h, —h, +2h, . Khas the
eigenvalues

=D -'y+(-' y'+2a')"'
E =D ——'y —(—'y'+2a'}'t'
E =D+ y.

(3.5}

These three eigenvalues in general are nonde-
generate and we conclude that the additional de-
generacy E» = E» in NH, 'C10, is an accidental
one.

Fitting the observed" transition frequencies in

NH, 'Clo, to Eq. (3.5) one obtains the three re-
maining overlap matrix elements: h, = -0.038 p.eV,
and h, =h, =h, =-1.410 p, eV. The equality of h,
with h, and h4 is a consequence of the accidental
degeneracy found in the experiment. The small-
ness of h, at first hand is an astonishing fact. It
shows that the barrier to rotation is quite high for
one of the four threefold rotation axes, and low
for the other three. This observation is at vari-
ance with the idea of one soft and three hard three-
fold rotation axes which has been used for

The experimental value of R can be calculated from
Table I and it is found to be equal to 2 with high

precision for both NH, 'C10, and (NH, '),SnCI,
We thus conclude that

I

HI�

«
I
h

I
and with the lmow-

ledge that the overlap matrix elements are all
negative one finds:

lff.
l I&, l I&.l" It +I.+&.+I I.

Inequality (3.3}is not very surprising. The pocket
state wave functions are falling off rapidly outside
the potential pockets and the overlap matrix ele-
ments should be strongly decreasing with increas-
ing distance between the pockets. The correspond-
ing states for H are 180 apart, whereas the states
for one of the h elements are only 120 apart.

For all practical purposes one may therefore
simplify X by putting H„, H„and H, equal to zero.
For a tetrahedral crystal field, e.g. , in

(NH, '),SnCl, or in phase II of solid CH„all four
elements h, are equal and therefore the three
triplets coalesce into one ninefold degenerate
level at an energy E~=D.

In NH4C104 where a mirror plane is the only
symmetry element of the NH4' site, two of the four
120' overlap matrix elements are equal. If the
orientation of the molecule is such, that the two
threefold roation axes 1 and 2 coincide with the
mirror plane, then h, =h4. Consequently X is
simplified to

D y

NH4'C104 to explain NMR data. ' The latter model
predicts a fourfold ground state and an eightfold
excited state with just one transition frequency.

The observation of threebig and one small over-
lap matrix elements is however in excellent agree-
ment with the structure determination of Choi,
Prask, and Prince. " These authors have deter-
mined the principal axes of rotation of the NH,
tetrahedron together with the librational amplitudes
around these axes: 4,. = 20.8', 11.4, and 10.1". In
a harmonic model the amplitudes 4,. are propor-
tional to the inverse fourth root of the-force con-
stants E,.

~We 25
3 3

(3.6)

B. Proton spin states and symmetry

So far we have restricted ourselves to the ro-
tational wave function of a molecule; the nuclear
spin states have not yet been included into the con-
siderations. There are 16 spin states

I p, p, p, ,p,,)
for a system of four protons. p, l ps2 pr3 and p.4
denote the z component of the nuclear spin of par-
ticle number 1, 2, 3, and 4, respectively. (I )

1 ~
g

=+ —, is denoted by a, and (I,)= —2 by P. All 16
states are shown in Table IV. The Hamiltonian
X = T+ V does not involve the spin coordinates,
and consequently there is also no coupling of the
spins with the rotational degrees of freedom. The
total wave functions

I
0 ) therefore may be con-

structed from products of rotational wave functions
(pocket states) and spin-wave functions

(3.8)
& ~ 01Q2V3Q4

All possible 192 products
I y,.) I p, p, p, p, ,) are con-

tained in Table IV. According to the discussion at
the beginning of this chapter only those wave func-
tions

I
Q ) which are totally symmetric under the

12 symmetry operation of the group, are physically
allowed wave functions. The symmetry operations
R; are the 12 even permutations of the four pro-
tons. If such a permutation is applied to one the

The force constants for rotations around the prin-
cipal axes thus relate to each other as 1:11:18.
Projecting on the rotation axes 1, 2, 3, and 4 of
Fig. 2 one obtains the following ratio of harmonic
force constants around the threefold symmetry axes:

K, :K, :K, :K4 = 16.2: V.4:8.0:8.0 . (3.'t)

Equation (3.7} shows that axis 1 is a hard rotation
axis, whereas the other three axes are soft with
almost equal rotational force constants. Conse-
quently the matrix element h, is expected to be
much smaller than h„h3, and h4. The tunneling
experiment and the structure determination thus
are in perfect agreement with each other.
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TABLE IV. In this table there is one place for each of the 192 products of the type
I rp;&Is&p2psp4& .The symmetry operations only rearrange the products within 16 groups.
The number at each position shows to which group the product belongs.

Spin states
Ip(ptpgv4&

Pocket states lupi&

1 2 3 4 5 6 7 8 9 10 11 12

~nnnn)

IP«o&

IoPoo&

)nnpn&

(nnnp&

l»PP&

IPPoo&

I~PPo&

IPooP&

lnpnp&

IPoPo&

IoPPP&

IPoPP&

IPPoP&

lppp &

1 1 1 1 1 1 1 1 1 1 1 1

2 5 4 3 4 3 2 5 3 4 5 2

3 4 5 2 2 5 4 3 4 3 2 5

4 3 2 5 3 4 5 2 2 5 4 3

5 2 3 4 5 2 3 4 5 2 3 4

6 7 7 6 10 11 10 11 9 9 8 8

7 6 6 7 11 10 11 10 8 8 9 9

8 8 9 9 7 6 6 7 ll 10 11 10

9 9 8 8 6 7 7 6 10 ll 10 11

10 11 10 11 9 9 8 8 6 7 7 6

11 10 11 10 8 8 9 9 7 6 6 7

12 15 14 13 14 13 12 15 13 14 15 12

13 14 15 12 12 15 14 13 14 13 12 15

14 13 12 15 13 14 15 12 12 15 14 13

15 12 13 14 15 12 13 14 15 12 13 14

16 16 16 16 16 16 16 16 16 16 16 16

products
I y, )

I
ii, ii, ii, p,), this product is trans-

formed into another one. The application of all
the symmetry operations on all products
I y, ) I

p, , ii, p, ,ii,) allows a separation of these pro-
ducts into 16 groups of 12 products each. If one
applies any symmetry operation (including of
course the identity operation} to all elements with-
in a group, one recreates each product within the
group exactly once. The membership in one of the
16 groups is denoted by a number m = 1,2, . . . , 16
in Table IV. A sum over all 12 members of a group
m is invariant under each of the symmetry opera-
tions. W'e therefore get 16 totally symmetric wave
functions by summing over the 12 members of each
group:

1
Ixe&= ~12 2 Iv;&I pip2P3p4).

grouy yft

As an example y, is written down explicitly:

lx.&=(1~~12}[+IP«~&(l~t &+I~.)+ I&.&}

+ lop«&(lq, &+In.&+In„&}

+I»Po&(l ~.&+
I ~.&+I e.&)

+
I «~P&(I w, &+

I &.&+
I 9 .&)l.

The states IX ) are no eigenstates of the problem.
It has already been remarked however, that the
Hamiltonian does not involve the spin coordinates.
It therefore does not connect states with different
z components of the total spin I,'=I,'+I', +I', +I',.
Consequently the Hamiltonian matrix is already
block diagonal with an eigenvalue E„=D+H+ 2h
for both the states Ix,) and Ix„), with f,'=+2. For
f'=+1(lx,& Ix.& lx.& Ix,&), and f»f.'=-1(lx„&,
I x„), I x„), I x»)}, there are two identical blocks

D+ 2h

H, + h, + h4

H„+ h4+ h2

H, +h, +h,

Hg+h, +h4 H, +h, +h, H„+h, +h3

H, +h, +h4 H„+h, +h3

Hx+h, +h4 D+2h3 Hg+h, +h,
H3l+ h~ +h3 Ha+ h~+ h2 D+ 2h 4

(3.11}
Each of the two blocks X4 contains the energy
eigenvalues E„, E~„E», and E» which we have
already encountered in Sec. IIIA. For the six
w»«un«ious lx.), Ix.& Ix.& Ix.& l»o& andlx»&
with I,'= 0, one obtains the block X,:
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D+ H» Hx+ Hy hl + h3 h2+ h4 h, + h4 h, + h,

D+ H h2+h4h, +h, h, +h, h, +h4

h, +h3

h, + h

h2+ h4 D+ H H~+ H» h~+ h2

+ h2 H~+ H» D+ H„h3+ h4

h, + h4

h, +h,
(3.13)

h + h4 h2+ h, hj + h2 h3+ h4 D+ H& Hx+H»

h, + h3 ha+ h4 h3+ h4 hz + h2 Hx+ H» D+ H&

X, contains the eigenvalues E+

Eflux

E+2 Eip3 p
and

in addition to .that a doubly degenerate level with

energy E~ = D+ H - h.
The only advantage gained w ith the correctly

symmetrized functions
~
X ), in comparison with

the pure rotational functions
~
y, &, seems to be the

correct result that the A state is fivefold degener-
ate. For the calculation of neutron scattering ma-
trix elements in Sec. Iv the correctly symmetrized
wave functions will however be indispensable.

It should be remarked that the 16 functions
~
X,),

~ X,), . . . , ~X„) have a simple interpretation in terms
of wave functions [i,p, ,i,i,&. Here i, denotes the
spin state of the proton at site (or position) No. 1
irrespective if it is particle number 1, 2, 3, or 4
which sits at this position. Similarly p,„p„and
p4 denote the spin states of the particles at posi-

tionss

2, 3, and 4, respectively. An angular b rack-
et [ has been used to distinguish these states which
def ine the proton spin state at a site, from the

states
~
i,i,i,i,& which define the spin states of

identified parti el es . By definition the functions

[p,p, p, p, & are totally symmetric under the par-
t icle exchange operator. It does not matter that

[p,p, p3p~) is also symmetric under the exchange
of just two particles (odd permutations) because
we have excluded these operations from the start.
Equation (3.10) now becomes simply

i X,& =[Pean& . (3.10')

The step from (3.10) to (3.10') is easily verified
from the definition of the states

~
p, p, p, p,) given

at the beginning of Sec. III B) and from Fig. 3. All
16 functions [p,p, g,p,& are shown in Fig. 5.

The question why we have not started the whole
paper with the apparently very simple wave func-
tions [p,p,p, p,) is now self-imposing. The ques-

tionn

can be put aside with the remark that a 1ot of
intuition would be required to determine the
Hamiltonian matrix (X„X,) directly from the func-

Pl

X&
- [aaaa'&

Pl ~ Pl
)(2 [panties X3=[apna) X&=[aapa) X5=[aanp)

i,~—j ~ pl
X5 =[aapp) X7=[ppad X6= [nppn) X9 [pnnp) X]()=[npnp) X)]= [papa)

FIG. 5. Sixteen totally
symmetric wave functions
[p fp 2p 3p 4 ) which define
the spin states at the four-
particle positions in the
crystal reference system .
The particles in the posi-
tions are not identified.
Open circles denote spin
down, full circles spin up.

sV 4 gv' 9~ gP 8 (V
X)2- [npp@ X]3-[papp) XM, = [ppnp) X»= [ppp4
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TABLE V. Iimtary matrix b of Eg. (3.13) which transforms from the states ~xg = [p~ptpspg to the eigenstates of the
ammonium perchlorate system. It and I,t are the total nuclear spin and its z component. t=1/~12, h=2, s=1/&6.

1 2 4 5 6
m

8 9 10 ll 12 13 14 15 16

1 0 0

0 2 0 0

1 +1

0 4 0 0

5 0 0

3 0 +3t -t

0 0 +2t +2t -t -t -t -t
0 0 0

-t
0 0

0 0 0 0 0

+s -s +s -s +s -s
0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

+3t -t -t -t

0 0 0 0+2s -s -s1 +1 6 0 0

0 7 0 0

-1 8 Q Q

+1 9 0 0

0 10 0 0

-1 11 0 0

2 +2 12 1 0

0 +2t -2t -t +t -t +t

0 0 0 0 0

p 0 0 0 0

0 0 0

+Z ~Z

+h -h -h +h0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

+s +s +s +s +s

0 0 0 0 0

0 0 0 0 0

0 0Q 14 0 0 +s

0 0 0

0 0 0

-1 15 0

-2 16 0 0

+1 13 0 +h +h +h +h 0

0 0 0

0 0 p

+2s -s -s 0

0 0 0 0

0 0 0

+z z 0

0 0

0 0 0

0 0 0

0 Q Q

+h +h +h, +h 0

0 0 1

tions [y, ,p, p, p,,). We have derived it from the re-
lation of the pocket states

~
4&,) to each other.

From a diagonalization of X4 and X, one obtains
the eigenfunctions

~
g ). This diagonaiization is

performed explicitly for a special case that comes
close to the real situation in NH,

' Cl04 . Vfe put
h, = h, = h„and h, = 0. (In ammonium perchlorate
h, is smaller than the other h, by roughly a factor
30-40.) One finds the wave functions

(3.13)

where the unitary matrix b is given in Table p.
The states with e = 1,2 belong to the doubly de-
generate E level with energy E~ =D —382. There
is one triplet (n=3-5) at the energy Er, =D —2h, .
For h, =h, =h, the two triplets (n = 6-6) and (n
=9-11)have the same energy Er, =Ers=D+h, .
Five states (n = 12-16) have the energy E„=D+ 6h,

IV. EVALUATION OF THE NEUTRON SCATTERING
CROSS SECTION

are no correlations between the single-molecule
states

~ g„) and
~ g„, ) for different molecules n,

and n, . Consequently the spin states of two pro-
tons at the sites R„,„and R„,„,are not correlated
if n, W n, . In the neutron scattering cross section
of Eq. (1.1)

x P (g4 IA"&"&e 'e'""~"~lit'4'y)
~1~2~1~2

x(p, 4.,~A»»e'

(4.1)
with Q=k-k', the sum over n, n, y, y, is used in
its interpretation as a double sum over the lattice
sites ny which are occupied by protons. %'ith no
correlations between the spin states of protons at
different molecules, the matrix elements of A"1"1
and A"2"2 may be replaced by averages, if n, 4 n2.
The scattering cross section separates into two
parts:

From the discussion of Sec. II it is clear that
each state

~
4g of the system is a product of single-

molecule states
~
p„). In the initial mixture of

states, characterized by the probabilities P„ there

d2g d20' d2g
d + S

dAdm dAdv dAdco '

with

(4.2)
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=g g p p, 6(&o —&g, &)A' g (p4', ie 'o an||i' p'4'&)(p'4'&ieio a'~ 2nip+, )
N'

(4.3)

-g P p p 6(&u —&u. ..) g (p4', i(A i-A) e '@ a~|xi p'4, .)(p'4, .i(A~2-A)e'u'&~aip4', ).
dA cled

(4 4)

The mean scattering length A is defined by an
average over the spin states

i
v) at the 4N proton

sites:

where P„ is the probability to find the proton at
position ny in the state

i
v). For the unpolarized

sample under consideration one finds

A acth. (4.6}

The scattering due to 0„ is coherent. The elastic
intensity goes into the Bragg peaks, the inelastic
intensity is restricted by the conservation laws of
energy and quasimomentum. We shall concentrate
on o, which is a sum over the individual scattering
intensities from the N molecules. 0, no longer
contains the spin-independent scattering length
a„„. Nevertheless the scattering is coherent with
respect to the protons of a single molecule.

In (4.4) we replace
i 4,) by a product of single-

molecule states
i P„,), the energy difference 5~. ..

by S~ ., and the probability P, by p ~ the proba-
bility to find a molecule in the state

i g ):

where R„„is one of the four equilibrium sites oc-
cupied by the protons of the nth molecule. The ef-
fect of the 5-function approximation for the wave
function is the replacement of the expectation value
(e'o'"~~) in the state

i
y,) by e'o'a@, the value at the

equilibrium position. The approximation is valid
if (Q R )' & 1. In NH, 'Clo, with a librational
a,mplitude of 20" this is the case for Q (1.5 A '.
For larger momentum transfers the form factor
of the cap-shaped density distribution becomes
appreciable and a 5 function no longer is a good
approximation. The theory should then be ex-
tended to include the librational amplitude of the
pocket state wave functions.

The matrix elements B",„,„„for transitions
where the neutron spin has been flipped from up
to down (p, = a, p' = p) are listed in the lower left-
hand corner of Table VI. The ones where the
neutron spin has been flipped from down to up
(p= p, p, '=a) are found in the upper right-hand
corner of the same table. The non-spin-flip scat-
tering involves only diagonal matrix elements
which have been listed in Table VH.

A"„. ~ „ is then obtained from the transforma-
tion (3.13)

where

(4.7)

B".„. „= p' X ~ A""-A e'~'R r y p, . 4 9

In

A""-A =2a„,I[I(I+1)]'i'S I„„
we substitute

S I~=S,I„„,+-,'(S,I„„+SI„„,).
B".„. „is a sum of exponential terms G„:

7

(4.10)

(4.11)

for the calculation of the scattering matrix element
A"„. ~ „,the pocket states

i g, p, p, p,), or equiva-
lently X„)=[p,p, p, p,), are approximated by 6
functions in the equilibrium orientation. It is
then easy to calculate the matrix elements:

(4.12}

Equation (4.V} can now be evaluated. In the limit
of kT large compared with n~ (the splitting in the
ground-state multiplet) the probabilities for the
initial states are all equal: p, = —,', . [In
(NH;) Sncl, and NH, 'ClQ, this is very well ful-
filled with nv/k =0.1 K, and 4& T &80 K.] For an
unpolarized neutron beam P„ is equal to —,

' for both
values of p, . To calculate the intensities in the
different lines, the sums in Eq. (4.V} are per
formed over the initial states

i P ) and final states
i g .) which belong to the concerned energy levels.
The resulting angle-dependent cross sections are
given in Table VIII. In agreement with the experi-
mental results the scattering from the A level into
the E level is not allowed. The intensities for the
reverse processes are the same. The last five
entries in Table VIII refer to the elastic line.

With the definition of G„[see Eq. (4.11)] the de-
pendence of these cross sections on 8 and yz,
the polar angles of the scattering vector Q, is
easily calculated. The angular dependence of
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Spin-flip scattering matrix elements

a~„, =g O'I &X I(A~-&)s'~'"sylX+ li&

r
(g I')

are obtained from this table by a multiphcation of G„=s i '"nr', with 2a„gv3 . Elements

vrhere the neutron spin is flipped down (p' =P, p = o.') are found to the left and below of the main

diagonal, elements where the neutron spin is flipped up (p
' =u, p =p) are found to the right and

above the main diagonal. The non-spin-flip matrix elements b =& „&with p =0' and p =p are
found in Table VII.

Xf X2 X3 X4 X5 X6 X7 X8 Xs Xfo Xff Xf2 Xf3 Xf4 Xfs Xf6

bf Gf G2 G3 G4 0 0 0 0 0 0 0 0 0 0 Xf

Gf b2 0 0 Q 0 G2 0 G4 0 G3 0 0 0 0 0 X

G2 Q b3 Q 0 0 Gf G3 0 G4 0 0 0 0 0 0

63 0 0 b4 0 G4 0 G2 0 0 Gf 0 0 0 0 0 X4

G4 0 0 0 b5 G3 0 0 Gf G2 0 0 0 0 0 0

0 0 0 G4 G3 b6

0 G2 Gf 0 0

0 G3 G, 0 Q

Q G4 0 0 Gf p

0 0 0

b, 0 0

0 bs 0

0 0 bo

0 0

0 0

0 0

0 0

G2 Gi 0 X6

0 0 G4 G3 0

G4 0 0 Gf 0

0 G3 G2 0 0

0 0 G4 p G2 0 0 Q G3 0 Gf 0 0 XfP

0 G3 0 Gf 0 0

0 p 0 p 0 G,

0 0 0 0 0 G,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0

0 G4 Q

0 0 G3

G4 0 G2

G3 Gf 0

G3 0

Gf 0

0 G2

0 G4

bf2 0

bf3

0 0

0 0

0 G2 0 X

0 0 Gf

0 0 G2

bf4 0 G3

bf5 G4 XfS

G3 G4 bf6 X 6

d'&, ld&&~ is pronounced, showing the importance
of the interference terms for the scattering from
the four protons within one molecule. The usual
spin incoherence of the neutron scattering from
protonic samples is due to the lack of knowledge
concerning the proton spin states. For a tunneling
line one has the information about the spins in the
initial as well as in the final state. Therefore the
protons within one molecule scatter coherently.

The effect of spin correlations on ihe neutron
scattering cross section of gas phase methane has
been studied a few years ago."" The influence of
the spin correlations is only appreciable when the
temperature is not very much larger than the level
spacing of the free rotor spectrum. The theoretical
studies have therefore been applied to the some-
what artificial situation of a methane gas at 10 K.
The situation is quite different for strongly hindered
molecules. The Q dependence of their tunneling
lines which is a spin-correlation effect, can be
observed for temperatures that are much larger
than the tunnel splitting. In (NH;), SnCl, , e.g. ,
the splitting is of the order of 0.03 K. The Q de-

pendence of the scattering intensity exists in the
whole temperature where ihe splitting has been
observed, i.e. , up to 80 K.

The angular dependence of the scattering cross
section should be tested in a single-crystal neu-
tron scattering experiment. %hen there is more
than one NH, ' group or CH4 molecule in the unit
cell, as in NH4 Clo, , the contributions from the
differently oriented molecules have to be super-
posed. From such an experiment one may obtain
information about the orientation of the tunneling
group in the crystal. Deviations of the experimen-
tal results from the predictions of Table VIII,
which will occur at high momentum transfers, con-
tain information about the librational amplitudes
in the pocket state wave functions.

A sum over all lines (elastic and inelastic) yields
the total cross section 0„,=4Na„, which does not
depend on Q, as the information about the spine in
the initial and final state is not retained (incoherent
scattering).

To compare the results of Table VIII with ex-
isting experiments on polycrystalline samples the
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TABLE VII. Non-spin-flip scattering matrix elements

B~,~ for @=0.'and p=P differ in sign: B~,~=b~a„,/
vS, and B ~ q=-b a„,/W3.

2
(G„G„»+G„*C„)„=

2 f(2Qpl&3)

if A. =y,
(4.13)

if X4

12

13

15

+Gi+ 6,+ G3+ 64

-Gi+ 62+ G3+ 64

+Gi —62+ 63+ G4

+Gi+ 62 —63+ G4

+Gi+ G2+ 63 —G4

+Gi+ 62 —63 —64

-Gi —G2+ 63+ 64

+Gi —62 —63+ 64

-Gi+ G2+ G3 —64

+Gi —G2+ G3 —64

-Gi+ 62 —63+ G4

+Gi-62-63-64
«Gf + 62 «G3 «64

-Gi —G2+ 63 —64

-Gi —62 —G3+ 64

-Gi —G2 —G3-64

cross sections are averaged over the scattering
angle. If & (with y= 1-4) stands for the positions
of the protons in a tetrahedron that is centered at
the origin, then

where the brackets denote an average over 8+ and fI() ,
the polar angles of Q. p is the distance of the pro-
tons from the center, and

( I)Ill

+1). . (4.14)

is a rapidly converging series in x.
From Table VIII and from E4I. (4.13) the theoreti-

cal cross sections in Table I have been calculated.
The units in Table I are —,'4 Na'„, [1—f(x)], with
x= 2pQ/WS. Thus the radial dependence is the
same for all inelastic lines. The elastic cross
section is calculated from a summation over the
diagonal terms in Table VHI and over transitions
between degenerate states (T, T,). One obtains
o„=~ Na'„, [l9+29f(x)]. A sum over all inelastic
lines yields o„„=1v Na'„, [29 —29f(x)]. The total
scattering intensity otot= oi i+ o i xs independent
of Q and equal to 4%a'„, as it should.

Figure 6 is a plot of the elastic and the inelastic
cross sections. The point where the back scatter-
ing experiment has been performed is marked.

In NH, 'C10, and in (NH, '),SnC1, the agreement
between calculated scattering cross sections and
the measured intensities is very good (Table I).
A comparison between a„and the intensity of the
central component cannot be made, due to a possi-
ble contamination of the central line by Bragg

TABLE VIII. Q-dependent scattering cross section for the elastic and inelastic lines in
units of ~a~, . 6„ is defined in Eq. (4.11).

Transition Levels Cross section

A-T3

A-T2

A-T,

» IG, -G, P

12G4 —G4 —G41

5 13G4 —G4 —G4 —G414

Elastic

T3 Ti

T2 Ti

T3»T2

T3-E

T2-E

Ti-E

A-A

T3»T3

T2-T2

Ti Ti

5 ic, -c41'
2 12G2 —G4 —GJ

12 I G4 —G414

(IG3 GQ P+ 31cg —G21')

(13G4+ G2 —2G4 —2G41 + 31G3 G41 )

(12G4- G4-G4P+ 31G4- C41')

IG4+ Gm+ G4+ G41

35 Ic,+G,l'

4 13G4 —G2+ 2G4+ 2GJ

1 13G4 —5G2 —5G4 —SG41
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2-

2 3 ~ 5 6 7 8

FIG. 6. Angular averages over the elastic and the in-
elastic scattering cross sections of the four protons in a
tetrahedral group. p is the distance of a proton from
the center of the molecule. The dashed lines give the
asymptotic values of +el a d &tne1 The arrow denote~
the value of the momentum transfer of the ammonium
perchlorate experiment (Ref. 18).

peaks. In addition the incoherent scattering from
nuclei other than protons also contributes to the
central line.

V. CONCLUSIONS

In an earlier paper" a pocket state approach has
been developed for the calculation of the rotational
states of molecules in highly symmetric crystal
fields. This formalism has now been extended to
more general problems. The tunnel splitting of
tetrahedral molecules in general rotational poten-
tials has been expressed in terms of a few overlap
matrix elements. Symmetry properties of the
crystal field reduce the number of independent
overlap matrix elements and may lead to degener-
acies. The rotational wave functions have been
combined with the spin-wave functions to obtain the
correctly symmetrized eigenstates of a tetrahe-
dral four-proton system.

The tunnel splitting is given by the overlap be-
tween different pocket states which depends ex-
ponentially on the potential barrier. From the
usual Gruneisen parameters y= 3 one knows that
the potential changes by (10-20) /q when the lattice
parameter is changed by lg. A 10% varia-
tion of the potential barrier changes the tunnel

splitting by a factor 0.5 as can be seen from Fig.
5 of Ref. 22. The tunnel splitting thus is very sen-
sitive to small changes in the potential, and pres-
sure experiments are very well suited to obtain de-
tailed information on the distance dependence of
intermolecular forces.

NH, 'Clo, , with the accidental degeneracy of two

levels, is an especially challenging case. Hydro-
static pressure should lift the degeneracy and

therefore three of the five lines should split into

two components each. From the existing experi-
ment one draws the conclusion that b,E(T„T,), the

energy difference between the almost degenerate
levels, is less than 0.1 p, eV (or 25 MHz). The
spin symmetry of the two levels is the same; it
should therefore be possible to detect the splitting
by NMR methods.

The theory of neutron scattering from tunneling
molecules has been developed on the basis of the
pocket state formulation. For the scattering
problem the pocket states have been approximated
by 5 functions at the potential minima. The theory
can, however, be extended (along the lines that
have been used in the field of structure analy-
sis" ")to realistic pocket states.

The scattering from the four protons of one
molecule is coherent. The angular dependence
of the scattering cross section is predicted, and
single-crystal experiments, to test these predic-
tions, are suggested. Angular averages of the
scattering cross section yield the radial depen-
dence which is the same for all inelastic lines,
but different for the central component. This is
another prediction and it should be tested in an
experiment with variable modulus of the momentum
transfer and a polycrystalline sample. The rela-
tive intensities of the inelastic lines of the experi-
ment on ammonium perchlorate and ammonium
hexa-chloro-stannate are compared with the cal-
culated scattering cross section. The agreement
is very good.
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