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A previously proposed model relating the widely observed linear temperature dependence of the EPR
linewidth to temperature dependence of the isotropic symmetric-exchange integral is discussed in detail and is

applied to the data of several newly investigated layered structures. This model assumes an anharmonic
intermolecular potential for lattice displacement and an exponential form for the exchange energy giving a
temperature dependence in the paramagnetic region. Previous agreement with experimental resultson
K,CuC14 2H,O and some of the layered CuC1, and MnC1, compounds is now extended to include others of
similar type as well as layered compounds of CuBr~, MnBr4, and CuC12Br, . As before, bond strengths are
taken from known tabulated results and overlap integrals are calculated with Slater-type orbitals. Arguments
are presented that indicate the effect of the antisymmetric exchange cannot be the only cause for the EPR
linewidth behavior.

I. INTRODUCTION

Recently attention has been given to the pos-
sibility that the exchange energy may be tem-
perature dependent. This effect has significance
since all magnetic properties are determined by
the sign and magnitude of the exchange constant J.
Therefore, J should be able to be determined ex-
perimentally from any cooperative magnetic effect,
such as low-temperature specific heats below the
transition temperature and EPR linewidth mea-
surements in the paramagnetic region. These two
methods would yield a J in different temperature
regions so that if the exchange constants obtained
from the two experiments are significantly dif-
ferent, this is an indication that J is tempera. ure
dependent. A more precise comparison between
the experimental values of J in a number of layered
compounds as measured by low-temperature spe-
cific heat below T, and magnetic susceptibility
above T, has been made by deJongh, ' however, ex-
cept for (C,H,NH, },CuBr„all cases indicated the
value of J as measured above T, to be smaller than
that measured by magnetic specific heat.

Nevertheless, further support is given by
Kennedy, Choh, and Seidel' and Okuda and Date
who have used the method of EPR linewidth vari-
ation and line separation as a function of tem-
perature in K,GuC1, 2H, O to measure the de-
pendence of J(T). Additional examples of tem-
perature variation that do not seem to be caused
by spin-lattice relaxation, spin-spin correlation,
or antisymmetric exchange suggest that J(T) may
be reflected in the linewidth data in many com-
pounds and may be due to a more basic mechanism
than has been investigated before. Previously we
have calculated an explicit temperature dependence

of J by considering phonon modulation of the ex-
change integral. 4 The model associated with this
calculation is very straightforward. First, the ex-
change integral for two bonded complexes is as-
sumed to be an exponential function of internuclear
distance. Next the thermal average of J over the
vibrational states of the dimer is calculated using
the vibrational states for an anharmonic oscillator.

In Sec. II below we shall look more closely at the
available experimental data and in Sec. III the pos-
sible mechanisms for temperature dependence will
be discussed. Section IV expands on the details of
the calculation and Secs. V. and VI. will compare
and discuss the temperature dependence of Jpre-
dicted by this model with EPR linewidth data for
several metal-organic salts.

II. EXPERIMENTAL DATA FOR J(T)

One of the most striking examples of a tem-
perature-dependent exchange energy is found in
K,CuC1, ~ 2H,O. This compound has two separated
Cu chains with inequivalent Cu sites giving g values
g, and g,. For exchange energies less than J
= —,

' (g, -g,)psH there will be two resolved resonance
lines. ' If g, and g, are known, J can be estimated
from the above expression for the particular mag-
netic field where both lines coalesce. Okuda and
Date' used this method to obtain J for
K,CuCl, 2H, O between 200 and 300'K.

At high frequencies the linewidth is'

g„4s4FI = (1/8J)[(g, g,}P,off]'.

Kennedy, Choh, and Seidel' obtained J in this way
between 77 and 200'K. The temperature depen-
dence of J for K,CuCl, 2H, O from Ref. 2 is shown
in Fig. 1. It can be seen that J changes by a factor
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0.30— mechanism responsible for the temperature-de-
pendent linewidth.
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FIG. 1. Temperature dependence of the exchange in-
teraction in K2CuC12 ~ 2H20. Circles are from the data
of Okuda and Data. The triangles and squares are from
EPR linewidths at 35 and 65 GHz.

of 5 between 77'K and room temperature; also if
J(T) is extrapolated to low temperature, J is ap-
proximately 0.30 K which agrees very well with
low-temperature specific-heat measurements. '
Another class of compounds which appears to have
a temperature dependent J are the layered struc-
tures (C„H,„„NH,),MCl„where M is either Cu"
or Mn", K,CuF„and Cu(HCOO), 4H, O. These
compounds have an exchange-narrowed EPR line-
width which exhibits a linear temperature depen-
dence. For example, Yamada and Ikebe' found a
linearly dependent linewidth for K,CuF4. Likewise,
the layered structures (C„H,„„NH,)guCl, also ex-
hibit this behavior. ' Seehra and Castner explained
the linear behavior for Cu(HCOO), '4H, O by phonon
modulation of the antisymmetric exchange inter-
action. " For several reasons, however, the tem-
perature dependence of the symmetric exchange J
may be an equally important mechanism.

Furthermore, there are compounds that do not
have an antisymmetric exchange interaction, but
still have a temperature-dependent linewidth. Note,
for example, the compounds (C„H,„.,NH, ),MnC1,
mentioned above have temperature- dependent line-
widths, "and since Mn" is an S-state ion there is
not normally a significant spin-orbit interaction.
Recently Richards and Salamon" have explained
the linewidth behavior for S-state antiferromagnets
in the paramagnetic region, but the temperature de-
pendence of J can also be important in these com-
pounds. The paramagnetic dimethyl sulfoxide,
CuC1, 2DMSO, also has a temperature-dependent
linewidth' although it is not known if the depen-
dence is linear as the measurements were only
made at 77 and 300 K. However, isotropy of the
g value indicates that spin-orbit coupling is not
large enough to explain the temperature dependence,
Clearly at least for K,CuC1, 2H, O, CuC1, 2DMSO,
and (C„H,„„NH ),MnC1 there must be some other

III. DETERMINATION OF J FROM EXPERIMENTS

In this section we will discuss determination of 4
from EPR measurements and review the possible
mechanisms resulting in a temperature- dependent
linewidth; in particular, spin-spin and spin-lattice
relaxation. There are two interesting cases when

the spin-spin interaction is included in the
Hamiltonian: the effect of exchange on the rel-
ative separation of two resolved resonance lines
with different g values, and exchange narrowing of
a single resonance line. The first case has been
treated by Anderson' for two lines symmetrically
spaced +~, from an arbitrary center. The ex-
change interaction tends to bring two lines together,
and the shift from &oo is given by «u =+ &u, (A&II/

&,'-1)'~'. lf ~, can be determined from a pre
ferred orientation of the external field, then the
exchange energy h&, can be obtained from a mea-
surement of 4'. This method was used to obtain J
for the compound K,CuC14'2H, O. For a single re-
sonance line, at infinite temperature, Anderson
and Weiss' have show that the resonance linewidth
is given approximately by &~ ~ &a,'/~„where ~~2

is the second moment of the resonance line, and
cu, = J/k. For high temperature, kT» kv„strong
exchange narrowing, ~, » ~„and ignoring the tem-
perature dependence of certain correlation func-
tions, Richards has shown that the linewidth at
finite temperature is given approximately by" »-

&@~2/ur, ZT. Measurement of the quantity gT will
now yield &u', /~„ from which the exchange energy
can be extracted if the second moment of the re-
sonance line is known. Since yT has a negligible
temperature dependence in the paramagnetic
region the above expression does not adequately ex-
plain the EPR linewidth behavior. However, as
noted previously, temperature dependence of the
spin correlation functions in f~„, ~„and XT to-
gether with an appropriate time dependence for the
spin correlation functions does explain the EPR
linewidth temperature dependence for antiferro-
magnets.

Two relaxation processes may contribute to the
observed linewidth: The spin- spin relaxation with
its characteristic time T„and the spin-lattice in-
teraction which has a corresponding spin-lattice
relaxation time T,. If T, »T„4~ is ap-
proximately &v =1/T, +1/2T, and frequently the
second term can be neglected completely so 4 is
obtained in that case from the results of Ref. 5.

By looking at the magnetic field and temperature
dependence of the EPR linewidth, it should, at
least in principle, be possible to determine if ~y
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is related to T, or T,. For example, if the line-
width is linear in temperature and quadratic in ex-
ernal magnetic field, then the Wailer yrocess is
probably the main relaxation mechanism. If it is
then determined that the temperature dependence
of ~ is from spin-lattice relaxation, it is then
necessary to extrayolate the linewidth versus T
curve to O'K where T, is small. For the case when
Tj is not large, diff er ent spin- lattic e relaxation
mechanisms must be looked at. We will pay par-
ticular attention to these which lead to a linear de-
pendence on field as most of the data is of this type.

First consider the Wailer" process: a transition
from state M, = —,

' to M, =-—,
'

by interaction with a
yhonon of energy gp, ~H. This process results in a
relaxation time given by 1/T, -H'T. A typical T,
for copper is 10 sec, and a tyyical T, is 10 ' sec in
the paramagnetic temperature region so that al-
though this process has the appropriate linear de-
pendence on temperature, T, ip too long to affect
the linewidth and experimentally there would be
a field dependence.

Next consider a spin-phonon collision where the
energy loss of a phonon is gp.~H. This is the two-
yhonon Raman process which was also treated by
Wailer. The temperature dependence of T, can be
obtained for two cases. For low temperatures,
KrT«h~a, and 1/T, -T'; for high temperature,
ksT«hn, and 1/T, -T'. A typical 8~ is 100'K so
1/T, usually goes as something between T' and T'
for this process. In the high-temperature ap-
proximation, T, is still about 10 sec at 300'K
which is still much greater than T,.

A shorter T, can come from modulation of the
ligand field" which sets up an oscillating electric
field as a perturbation. This perturbation will
only have a direct affect on the crystal field split-
ting of orbital states, and the spin-yhonon couyling
is a second-order effect that comes from spin-
orbit coupling. For the one-phonon direct process
non-Kramers and Kramers ions, which have in-
tegral and half-integral spin, respectively, are in-
vestigated separately. The ground state of a non-
Kramers ion can split in a crystalline field of low
enough symmetry. Modulation Of the Stark field
then affects the spin through the spin-orbit inter-
action giving a temperature dependence of 1/T,
-H'T. At first, glance it appears as if yhonon
modulation will not affect the ground state of a
Kramers ion. However, Kronig" has shown that
there are matrix elements due to the interaction of
the Kramers state and the Stark field in the pre-
sence of an external magnetic field. For this case
1/T, -H4T. At high temperature then a non-
Kramers ion will have a T, of about 10' sec and a
Kramers ion has a T, of 1 sec for this process,
which is still long compared to T,.
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FIG. 2. EPR linewidths as a function of temperature
for (CHSNH3)2CuC14 at 23 and 10 GHz. The narrower
lines at higher frequency could be explained by the fact
the generally higher quality samples were used at the
higher frequency.

In 1961, Orbach" was able to account for the an-
omalously short relaxation times by a process that
is essentially an indirect transition between two
Kramers states. For this process, the relaxation
time is given by 1/T, -exp( a/ffsT-) subject to the
condition»& kaT. T, is extremely temperature de-
pendent since &»A~T; also T, can be the same
order of magnitude as T,.

There is also a two-yhonon Raman process where
the spin-yhonon interaction comes from modu-
lation of the ligand field. The first process arises
from quadrupole transitions between the two lower
non-Kramers states. The second yrocess is
similar to the two-phonon Orbach process except
that it requires absorption and emission of a
virtual phonon to an excited state which is outside
of the yhonon continuum. Both mechanisms have a
temperature dependence given by 1/T, - T', and a
typical T, is 10-' sec which is also comyarable with

2'

Summarizing the above it seems that no mech-
anisms result in a field-independent, linearly tem-
perature-dependent linewidth, except possible the
two-phonon Orbach process. Using a typical cry-
stal field sylitting for transition ions of ap-
proximately 10"K it is seen that the linewidth
would change by a factor of 104 between 100 K and
room temyerature. Typical of the EPR linewidth
as a function of temperature and frequency are
shown in Fig. 2, in this case for (CH, NH, ),CuC1, .
Note the linewidth is observed to change by only a
factor of 2 or so in this range and is basically in-
dependent of frequency and therefore field. It
would therefore ayyear that the relaxation pro-
cesses in general including the Orbach process
should be ruled out.

IV. PHONON MODULATION OF THE EXCHANGE INTEGRAL

The model previously yroyosed' involves the
direct phonon modulation of the exchange integral
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and was originally suggested by Harris and Owen"
for the case of the temperature dependence of the

EPR linewidths of (NH, ),(lr, Pt)C1,. Also,
Griffiths" expanded the exchange interaction in

phonon operators to explain the anomalous tem-
perature-independent spin-lattice relaxation time
of diphenyl-picryl-hydrazl. More recently,
Kennedy eI, al. ' proposed that this mechanism may
be responsible for the temperature-dependent ex-
change energy in K,CuCl, 2H, Q. Details of the
direct phonon modulation of the exchange integral
for explicit temperature dependence of J are as
follows.

For simplicity consider a MI-, dimer, where M
is metal and I- is a ligand. If M is Cu, there is an
unpaired electron in one of the metal-type mole-
cular orbitals of the ML4 complex. First assume
that the exchange integral has the following form:
J(5R)=J e ~" for displacement 5R of the distance
between the two complexes. This functional form
J(5R) was used by Seehra and Castner" to obtain
the antisymmetric exchange constant, and it was
also used by Griffiths" because this particular
form lends itself very well to expansion in terms
of phonon operators.

The following method mill be used to calculate
(J) as a function of temperature. (&) is a thermal
average over the vibrational states of the dimer,
so these states are found by assuming some form
for the intermolecular potential. In this model,
each MI-, complex vibrates as a single unit. Next,
the matrix elements of the operator, Z(5R), are
calculated for these vibrational states. Griffiths
has calculated these matrix elements ap-
proximately by expanding J(5R) in the series J(5R}
=&,[1-X5R+-,A.'(5R)'=+ ) and Richards" con-
sidered the problem of temperature dependence by

FIG. 3. Morse Potential where Vo is the intermolecu-
lar bond strength and a is the asymmetry parameter
{see text).

finding the thermal average of the operators (5R)'
and (5R)' in the above expression. However, for
typical values of the parameters, the expansion
parameter (A.5R) is approximately 1, so the ex-
pansion is not justified. Therefore, it is necessary
to find matrix elements of the operator e ~~; then
perform a thermal average over the vibrational
states to obtain (J). The dimer model is then com-
pared with the crystal by employing the Einstein ap-proximationn.

Any intermolecular potential can be used but a
Morse function is convenient because the inter-
molecular potential V, is tabulated and also be-
cause it bears reasonable resemblence to reality.
The Morse function is shown in Fig. 3 and is given
by V(r) = Vo(l-exp[(r-r, )/a]P. Here V, is the
bond energy, x, is the bond length, and a is a con-
stant that is related to the anharmonicity and fre-
quency. Only the region where &R «r, is of in-
terest so the potential can be expanded as V(5R)
= V, + V, (5R)'+ V, (5R)', where V, and V, are re-
lated to the second and third derivatives of the
Morse function evaluated at the equilibrium bond
length r, .

To calculate the vibrational states, the last term
in the series expansion for V(5R) is treated as a
perturbation, II' = V,(5R)'. The unperturbed state
is just the harmonic oscillator wave function, and
addition of the perturbation results in the an-
harmonic oscillator problem. The matrix elements
I„=(n ~&(5R) ~n) to second order are evaluated and
are listed in the Appendix. The matrix element I„
contains matrix elements connecting states dif-
fering by more than 6. However, to be consistent
with second-order perturbation results, matrix
elements of the form (m ~&~n) for ~n-m

~

& 6 are
dropped.

%ith each of these terms evaluated, the thermal
average of (J(5R) ) is (J(5R) ) = Z„P„I„,where P„
is the probability of the system being in the nth vib-
rational state;

-EO/or
I' =

e-so/I zs

It is possible to eliminate the anharmonicity para-
meter a by comparing the Morse function with the
exchange energy. Since the bond energy is indeed
closely related to the exchange energy, it is rea-
sonable to assume that both have the same ex-
ponential form. This implies that a = 1/A. , so now
it is only necessary to obtain A, V„and the re-
duced mass of the oscillator. Here it is con-
venient to define the dimensionless parameter F
= Xh/2(2m Vo}'I' or, using the second derivative of
the Morse potential, 1'=A.'5/2m~. Y can also be
expressed in terms of frequency. Note, Y is the
argument of the Laguerre polynomials that result
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TABLE I. Values of A, for divalent-metal-monovalent-
halides bonds. All numbers are to be multiplied by 10

cm ~.

Cl At

s,++

Ti
V++

cr+'
Mn++

Fe+
co+'
Ni
cu+'

3.26
3.47
3.67
3.91
4.09
4.28
4.49
4.70
4.90

2.76
2.97
3.17
3.38
3.58
3.78
3.99
4.20
4.40

2.50
2.71
2.90
3.11
3.32
3.52
3.73
3.94
4.13

2.38
2.58
2.78
2.99
3.20
3.40
3.60
3.81
4.01

2.31
2 $2
2.72
2.92
3.13
3.33
3.54
3.75
3.94

5= g Xg X+A dx

with e "6". We are only interested in the radial
part of 8, so Slater-type orbitals will be used for
g„and g~. The Slater-type orbital for an atomic
orbital is"

gyeflk le (Z+/ n+)r

where r is measured from the nucleus of the atom
in atomic units, N is a normalization constant, n*
is an effective quantum number, and Z* is the ef-
fective nuclear charge defined by Z*= Z-s, where
s is the screening constant. Both n* and s are cal-
culated from the rules given by Slater, "which are
reproduced here for convenience:

(1) For n= 1,2, 3, 4, 5, 6; n~ is given the fol-
lowing values:

n+ = 1,2, 3, 3.7, 4.0, 4.2.
(2) Electrons are divided into the groups in-

dicated in parentheses:
(Is),(» 2P) (3s, 3P)(3d), (4s, 4P)(4d), (4f ),

(5s, 5P), etc.
For any group of electrons, s has the following

contr ibutions:
(a) Zero for any electron outside the group;
(b) an amount of 0.35 for each other electron in
the group unless the group is 1s, then 0.30 is used;
(c) an amount of 0.85 for each electron in a shell
with total quantum number less by 1 and 1.0 for
each electron further in; if the group is d or f, an
amount of 1.0 for every electron further in.
For the case of Cu(II), which has the configuration
(Is' )(2s'2P')(3s'3P') 3d', the shielding constant for
each group inside the d group is 2(1.0)+ 8(1.0)
+ 8(1.0) + 8(.35) = 20.8 and the corresponding Z* is

from the matrix element integration.
Next a value of X is calculated for the appropriate

metal-ligand (M L) bond-. This will be done by
comparing the exponential part of a M -L overlap
integral

R(M-L) =r„+r —0.06

TABLE G. Homonuclear bond strengths, electroneg-
ativity, and bond strengths for metals and ligands.

D(M-I) D(L L) D(M-L)
Bond (kcal/mole) (kcal/mole) &~ &L, (kcal/mole)

Cu-F
CU-Cl
Cu-Br
Mn-Cl
Mn-Br

47.0
47.0
47.0
22
22

37.7
57.9
46.3
57.9
46.3

1.9 4.0
1.9 3.0
1.9 2.8
1.5 3.0
1.5 2.8

78.5
89.0
71.3
70.0
70.0

5.2. This procedure may be used for the other
transition metals and the halides.

Using these orbitals, S can be integrated, but
this is not necessary since only the exponential
part of exp —,( Z-/n -Z~/n~) is needed. Z*/n~ is
given in units of inverse Bohr radii. Z* and n* are
used in the above expression to obtain S for dif-
ferent M-L bonds which immediately yields a value
for the overlap parameter X which are indicated in
Table I.

The bond energy V, is not known for most of the
compounds of interest. However, the bond energy
can be estimated from the postulate of the geo-
metric mean, which was proposed by Pauling. "
For a heteronuclear diatomic molecule, this post-
ulate relates the bond energy in kcal/mole to the
homonuclear bond energy of each atom by the re-
lation: D(M L) = (D(-M M)D(L -L) j'~ + -30(x„—xi,)'.
D(iW L) and D(L-L) are-the bond energies of the
metal and ligand homonuclear diatomic molecules,
and the last term accounts for the extra bond en-
ergy resulting from partial ionic character of the
bond if there is a difference in electronegativity
x„and x~ of the metal and the ligand. The homo-
nuclear bond strength and electronegativity can be
obtained from standard references"; these quan-
tities, as well as D(M L), are listed-in Table II.

The next step is to relate the calculated or mea-
sured bond energy to the bond energy of the com-
pounds. This is done by comparing the metal-
ligand bond length of the particular compound to a
calculated bond length corresponding to the above
energy. For example, if the bond length cor-
responding to the geometric mean bond energy is
less than the metal-ligand bond length of the com-
pound, then the postulate of the geometric mean
gives an estimate of the bond energy that is pro-
bably too high, and a suitable correction will have
to be made.

To be consistent, the bond lengths are calculated
from an equation containing the covalent radii and
the electronegativity difference":
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TABLE III. Covalent radii and bond distances for metal-legand bonds.

16

Bond fr„-xJ R(M-I.) R (measured)

CU-Cl

Cu-F
Cu-Br
Mn-Cl
Mn-Br

1.35.

1.35
1.35
1.18
1.18

0.99

0.63
1.11
0.99
1.11

2.1
0.9
1.5
1.3

2.27

1.85
2.41
2.08
2.21

2.79 (NH4) 2CuC14
2.79 (CH3NH3) 2CuC12Br2
2.79 (C3HgNH3) 2CuC12Br2
2.92 (C6HSNH3) 2CuC14

2.08 K2CuF4
(2.94) (C3HVNH3) 2 CuBr4
2.63 (C3HVNH3) 2 MnC14

(2.78) (C3HVNH3) 2 MnBr4

in units of A. R(M-L) is indicated in Table III for
different metal-ligand bonds, and they are com-
pared with some of the measured bond lengths of
different compounds. Apparently the calculated
bond lengths are too short, which means that the
calculated bond energy is too large, and it has to
be adjusted to agree with the longer bonds. This is
done with an equation proposed by Pauling":

R(n) =R(M L) 0.60-log„n

Here n is the bond number and we assume that the
bond strengths are related to the calculated bond

strengths by

V(n) =nV(M L).

R(n) and R(M L) are the b-ond lengths for the cor-
responding bond numbers. Now if V(M L) and-
R(M-L) are known, the bond strength V(n) can be cal-
culated from Eqs. (2) and (2) and V(n) is the bond
strength for the particular measured bond length.
This bond energy V(n) is used along with A. and
the reduced mass m of the particular oscillator to ar-
rive at theparameter Y. The bond numbersandbond
strengths for several compounds are shown in
Table IV. Tables III and IV also contain the data
for layered structures of Cuar„" and MnBr, ."

V. THEORETICAL RESULTS

As an example, an estimate of Y is now made for
K,CuCl, 2H,O. This compound can be thought of
as an aggregate of K ions, CuCI, H,O molecules,
and Cl ions. The oscillator we will consider is
two weakly bonded CuCl, 2H, O molecules which has
a reduced mass of 1.4x10-" g; A. obtained from
Table I for the Cu-Cl bond is 4.4 x 10' cm '; and V,
from Table IV is 0.61 x 10 "erg. These numbers
correspond to a Y of about 0.02, which in turn re-
sults in a vibrational frequency of 6.8 x 10" Hz.
Since hv = AT at room temperature the thermal
average is over the first 20 vibrational states as
a resonable ayproximation. The family of curves
for (4) versus temperature for the weakly bonded
CuCl, complex was given previously but the sim-
ilar curves for the CuF4 complexes is illustrated
in Fig. 4. In each family the oscillator reduced
mass is a constant, and V, are variables in the
parameter Y. For small Y, roughly between 0.01
and 0.005, (4) has little temperature dependence;
however, the exchange integral becomes very tem-
perature dependent as Y is increased to 0.04
or 0.05. The experimental results of Kennedy
et al. , shown in Fig. 1, agree very well with the
(4) curve for V=0.02 for the CuC1, model. One
mould also expect compounds with a temperature

TABLE IV. Bond numbers and bond strenghts for metal-legand bonds.

Bond
V(1)

(ergs)
V (n)

(ergs)

Cu-Cl

CQ-Cl

Cu- F
Cu-Br
Mn-Cl
Mn-Br

0.10
0.083
0.18
0.18

0.61
0.15
0.13
0.11

6.12x10-42
6.12
6.12
6.12

4.90
5.49
4.80
5.22

0.612X10 K2CuC14' 2H20
0.51 (C6HSNH3)2CuCl4
1.10 (NH4) 2CuC14
1.10 (C3H&NH3) 2CuC12Br2
1.10 (CH3NH3) 2CuC12Br2
2.98 K2CuF4
0.82 (C3H7NH3)gCuBr4
0.63 (C3HVNH3)2MnC14
1.41 (C3H7NH3) 2MnBr4
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only a relatively small range of Y but for most
values of Y has little temperature dependence.
This seems to explain why strongly bonded tran-
sition-metal salts such as MnF, and CuF, 2H, O
show little or no indication of a temperature-de-
pendent exchange energy while the more weakly
bonded (CH,NH, ), MnC1, shows significant de-
pendence. The case of CrBr, has also been stud-
ied" but is rather unique because of the unknown

nature of the bonds so it is not included here.

0 I

IOO

I

200
I

500

FIG. 4. Exchange energy J vs temperature for CuF4.
Solid lines are for Y = A, h/2(2mVp) where A, is related
to the overlap integral and Vp is the bond energy for the
dimer. All curves are normalized to one at O'K.

dependent 4 to exhibit a relatively large thermal
expansion. K,CuC14 2H,O, for example, has a
thermal expansion of 10 ' K ', which implies a 3fo
change in the lattice constant between O'K and room
temperature. The exponential e " then changes by
roughly a factor of 2. This shows good cor-
respondence with the Y=0.02 curve for CuC14.

A suitable model for the manganese compounds
may also be developed. For (CH, NH, ), MnC1, all
the planar Mn-CI bonds are equal and relatively
long compared to the out of plane Mn-Cl bonds; so
each plane is composed of Cl ions and MnC1, com-
plexes. (J(T)) is then calculated for the
MnC1, -Cl-MnCl, molecule, and the results are
shown in Fig. 5. It is also interesting to note that
(4) becomes extremely temperature dependent in

!20—
K' CuF

IOO—

80—

VI. RESULTS AND DISCUSSION

For both K2CuF4 and (C„H2„,&NH, )2CuC14 the pho-
non structures are similar with weakly bonded
CuC14 complexes so the CuF4 and CuC14 dimers
will be the oscillators in the calculation of (J').
From Tables I and II the values for overlap param-
eters and bond strengths for K2CuF4 are 5.4x10
cm ', and 2. 6&&10 ' erg which corresponds of a
Y of 0.02 using the CuF2 dimer. Similarly, the
appropriate bond strength and overlap parameter
from the tables yield Y= 0. 02 for the layered
compounds (C„H2 &NH&}2 CuC14. Figure 6 indi-
cates that 4 has little temperature dependence of
K2CuF4, therefore, the temperature- dependence
linewidth is probably the result of antisymmetric
exchange. The 1/J versus temperature curve for
the CuC14 dimer agrees very well with experi-
mental linewidth measurements on n-polypylam-
monium tetrachlorocuprate (C2N&NH, ),CuC1 indi-
cated on Fig. 6.

I.O

v=,006
60—

(nPtIH ) CuCI
ad'

0

,8—

6—

4—

Y=.O/0

Y= 0/5

) =,020
Y=.025

40—

(CHIVH)

I

IOO

C H (IIIH )Cu CI

I

200- ~00

12

I

IOO

I

200
T( K)

FIG. 5. Exchange energy vs temperature for the
MnC12-Cl-MnC12 molecule. Solid lines are for Y =A, h/
2(2mVp) . All curves are normalized to 1 at O'K.

FIG. 6. EPR linewidth vs temperature for K&CuF4
and several layered CuC14 compounds. The triangles
are for K2CuF4 and the squares, circles, and crosses
are for (nP-NH3)2CuC14, (C~H~NH&)2CuC14,
C2H4(NH3)~CuC14, respectively, and the solid lines are the
calculated linewidths for the appropriate values of the pa-
rameter Y. The theoretical curves are normalized so
that the calculated and experimental linewidths are the
same at 100'K, and the units on the vertical axis are
gauss.
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.08—

lq, 02—

I

loo 200
T(»K)

Q (C~H~NH~ jg AACJ»

I

300

(C„H,„„NH,), CuC1, and related layer series to a
direct modulation of the isotropic exchange energy.
Finally, an appropriate F for (C,H,NH, ),MnC1, is
0.015. The temperature dependence of 4' is com-
pared with the linewidth data for this comyound in
Fig. 7. Here the phonon modulation of the exchange
integral at least partially explains the temperature
EPR linewidth; the remaining temperature de-
yendence can probably be explained by Richard' s
theory.

FIG. 7. Inverse EPH linevridth vs temperature for
(C2H~NH3) 2MnC14. The circles are experimental points,
and the solid line is for F =0.015 from Fig. 6.

Also shown in Fig. 6 are the results for
(C,H,NH, ),CuC1, and [C,H, (NH, ),]CuC1,. Castner
and Seehra have shown that if one considers phonon
modulation of the antisymmetric exchange term,
the linewidth is linearly related to temperature,
4H &4(ng/g)'T For K,.CuF„~ J/k=11. 2'K and

ng/g =0.21; similarly (CH,NH, ), CuCl, has a J/k
and ng/g given by 12.2'K and 0.07, respectively.
Apparently, the slope of the linewidth versus tem-
perature curve for K,CuC14 should be roughly a
factor of 10 greater than for the layered compound;
however, since this is not observed experimentally
we attribute the temyerature dependence in the

APPENDIX

The harmonic oscillator states are calculated
with

H' = Vs(«)~

as a perturbation. In terms of creation and des-
truction operators,

E = i(8'/2m&v)' '(a~ —a)

the perturbation is

3/2a'=-~v, (a a a~ -a~aa -a a a+ a'aa
2tRQP

-aa~a~+aaa~+aa~a -aaa).
Starting with the zeroth-order state ln&, the first-
and second-order corrections to ln) are now cal-
culated. The first-order correction is

k, /, [(n+1)(n+2)(n+3)]"' (n+1)' '
1

n(n+1)' '
I (n- )~

ft tt+3 tt+1 tt n+1 n tt1

(n+ 2)(n+ 1)'~' (n+1) v n n'/' fn(n-1)(n-2)]' '
In+1&+ ~ ~ ln-1&+ ~ ~tt tt+1 tt tt 1 n tt-1 5 tt3

and the second-order correction is

2m(o ' (E'„E„~)(E„E„„)—I (-E„E„~)(E'„-E„„)-
n(n+1)[(n+1)(n+2)]' '

I
(n-1)(n-2)[n(n-1)]'

(Eo E„)(E„E„„)-I -(E„E,)(E„E,)--
(n+ 2)(n+ 3)[(n+ 1)(n+ 2) ]'~' n(n+ 1)[n(n 1)]'I'

(E„' -E'„»)(E„' E'„„) (E„' E',)(E'„E',-)-
(n-l) ~'n I' [n (n-5)]' '

+
(Ea Eo )(Eo E0 )

l" & (E' P' )(e' E' ) l"--
Where v is defined by S~ =E'„,1

The anharmonic oscillator state is now

ln& = ln&+ 14!&+ I /&.

Now the matrix element I„is calculated:

I.= & n I«IIE& ln&+ &It.'l~(»& le.'&+ &y'l~((E& lg&+ 2 & n l«I&E)
I e'&+ 2 & n l«I&E) le'. &+ 2 &e.'l~(«)

I
e'&

Since I„must be real, the following terms are zero:

&.l«»& l~.'&, &It: l~(»& le'. &.
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Each of the other four expressions are evaluated separately in terms of harmonic oscillator states in).
(n i&(6R}in& is already in the desired form; the other two are

+
"' }{"'}] [ {"'}"{"'}{"'3}]

nid 5R
i(P„' E„-)(E„E„'„)—

[ ( — )]' '[(n- )(n-2)+2n']
& i ( )i(E.'- E' 3)(E.'-E', )

[(n -5} n"P~3
+

(n n &(3 3 )(nl~(nnlln —n&),

2tPl(d n 3n3

[(n+ 1)3~'+n(n+ 1)'('3+ (n+ 2)(n+ 1)~~3]3

(E3 E0 }3

( n -1 iZ(5R) in -1)}3

+ ""~ ~, &n 3iZ(5R)in 3&
II II 3

2
{"'}"'[("+)(n+2}(n+3}]'"

(P„' E'„~)(E„-E'„„)

[(n+ 1)(n+ 2)(n+ 3)]'&'3[n3&3+n»3(n+ 1+n3/2(n 1)]+2
{Eo E3 )(E3 E0 } &n -1

i
J(5R) in+ 3)

N N43 N N g

[(n -2)(n -1)~ ~ ~ (n+ 3)]'~3
(E. ~ )(~ ~ )

&n-3i&(6R)in+3)
N N& N N(3)3

&n-1
i
J(5R) in+1&(E„'-E„'„)(E'„-E',)

(3n+ 3)[(n+ l)n' ~ ~ (n -2)]'+2
(Eo Eo )(Eo E3 )

(n+ 1 i~(6R) in —3&

3n'[(n-1)(n 2)]~13
&(n —)(J(()R)~n —3)).

N N 1 N N 3

Next it is necessary to evaluate matrix elements
of the form

&!t iZ(5R) if &,

which is equivalent to the following integral:

I = '! exp{ —v' ——v)H„(v)dv
J, 1 ",x
2"n! ~s „a

for the diagonal matrix element here a = (me/I&'~'.
This can be evaluated:

=j e3 &4() L,(&( !&3/2(33)

and the off-diagonal matrix elements are

Jo X2/402 1
ag

=
2(~P))g2 ) q(2 e 2 0 f ——(0!l!) 2a

for l &k. Li is an associated Laguerre poly-
nomial with a negative argument. The necessary
matrix elements are

&n) J{6R)!n& =J e ~'L'„(-Y),

I.2
&n+1I J(5R)I n+3) =2J,Ye"

(n —1I J(5R)[ n+3) =4J,Y'e"~'
[

1

X j,„n3(-Y)

&n —3[ J(5R)[ n+3) =SJ3Y3e ~3

[

X~nn3(

(n —1[ Z(5R) n+1) =2m, Ye'~' „, L, '„„,( Y),
1

n n+1) '~'
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j.
(n 3i J(6R)[ n + 1):4J Y e

[( 2) ( 1)]

x L,4„(-Y),
1

(n —3[ J(6R)[n —1)=2J,Ye ~'
[ j«,

x L'„,(-Y),

1
(n[ J(6R)( n+6) = 8J Y'e" '

[

xL„'„(-Y),

1
(nI J(~R)l n+2) =2J,Ye"~'

[( +1)( +2)]'

xL'„„(-Y),
1

(n[ J(6R)[ n - 2) = 2 J,Ye"&'

[

xL'„(-Y),

1
(nI J(6R)( n —6) =6J,Y'e"~'

[

x L'„(-Y) .

These integrals are now used in each term of the expression for I„with the parameter I'used as the

variable.

( g„'[ J(6R)( g„') =J,—,
' Ye"~'[~ (n+1)(n+ 2)(n+3)L„+,O(- Y)

+ 9(n+1)'L„'„(-Y)+9n'L„',(-Y}+-,' n(n —1}(n—2)L„',(-Y)j

+ J,~ Ye"~'[ (n+1)'YL'„+-,( Y) nY'-L'„+,-( Y)-
+ —,Y'L'„„( Y)+3(2-n+1)YL'„„( Y) —(n-+1)Y'L„'„(-Y)—nYL'„, (-B],

(n~ J(6R)[ g) =J, —„Ye '(-, 8 Y'L'„„(-Y) +[22(n 1+}'+( n2+)(n+3)]YL'„„( Y)-
+ ~ [ 2n + (n —2) (n —1 )j YL „(-Y) + —,'8 Y L „(-Y)] .
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