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Jennings and Bhaduri have recently derived an expression for the zero-field limit of the orbital magnetic

susceptibility for a Maxwell-Boltzmann gas of electrons confined by a smooth potential. Their expression for

the susceptibility, which represents the two lowest-order terms in its expansion in powers of Planck's constant,

is shown to be, for a certain class of potentials, the two lowest-order terms in its high-temperature expansion

as well.

Jennings and Bhaduri' have recently derived an
expression for the orbital-magnetic susceptibility
in the zero-field limit for a Maxwell-Boltzmann
gas of electrons confined by a smooth potential.
They find

e B~d'~,

where XL is the Landau susceptibility per particle
given by y~ = &P(e)f/2mc)' and U is the potential.
They state that Eq. (1) is the high-temperature
expression for the susceptibility. While this is
plausible, and is true for a certain class of po-
tentials, they show only that Eq. (1) represents
the first two terms in the expansion of the sus-
ceptibility in powers of Planck's constant. Since
the integrals exhibited in Eq. (1) are functions of
temperature, it is not obvious that Eq. (1) repre-
sents the lowest-order terms in the expansion of
the susceptibility in inverse temperature. As a
result of examining the same problem, I derived,
independently, the expression for the susceptibility
given in Eq. (1) and also succeeded in proving that
for a certain class of potentials, Eq. (1) does, in
fact, represent the first two terms in the expan-
sion of the susceptibility in inverse temperature. '
Hence, one can say that the leading term in the ex-
pansion for the susceptibility in powers of Planck's
constant is also the infinite-temperature limit for
the susceptibility, provided certain restrictions
on the potential are met.

We require that the potential become positively
infinite as configuration-space variables become
infinite. This ensures that the electrons remain
confined to some region of space. We also re-
quire that the potential has no poles other than
the pole at infinity. Write the potential as

U(r, 8, y) = g f„(8, y)r",
n=l

where f„(8,p) is positive definite. The proof may
be extended to a larger class of potentials', for

example,

NsLvN

U(x, y, z)= P s„,.x"y'z",
fthm t ~ lS

where n+ f + m «N, L,M with N, the maximum val-
ue of n; L the maximum value of l; M, the maxi-
mum value of m; and a„«, a0», and a«„are posi-
tive definite.

%e proceed with the outline of a derivation of the
expression for the zero-field high-temperature-
limit orbital magnetic susceptibility. Take the
suceptibility to be given by

82F
X = -llma-0 gB2 '

where F is the free energy. Express the magnetic
vector potential in the Landau gauge A = -B(y, 0, 0).
After expanding the partition function to second
order in field strength, performing the operations
indicated to obtain X, and using an expression de-
veloped by Goldberger and Adams' to manipulate
exponential operators in traces, one has that

2

2Mg2Z0

P
2M

Tr dsp ye-& s)B gp ~e 8BZ0
x x

0

(2}

where X„ the zero-field Hamiltonian, is given
by X0= T+ U and Z, = Tre ~0. The above expres-
sion for the susceptibility is quite similar to two
expressions for the susceptibility already extant
in the literature. Kubo's' equation (6.1} is essen-
tially the same as the above —the difference is
that he used the symmetric gauge rather than the
Landau gauge. Jennings and Bhaduri's' expres-
sion (A1) may be transformed into Kubo's expres-
sion by cyclically permuting exponential operators
and changing variables of integration.

Taking the trace over plane waves and commut-
ing p„y through e "" o one has
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+
2 [W„(~,P, y)]+ ' e '"'e '"'-d'Zd'r(1 —s)'

Next, one develops the Wigner-Kirkwood' expan-

sion of e s"& [i.e. , e s(1-P'[T, U]+ ~ ~ ~ )e sr],
where the terms denoted ( ~ ~ } are various combi-
nations of commutators of the T and U operators.
Finally, one proceeds to evaluate the commuta-

tors, carry out the indicated differentiations and

perform integrations over s and K space. One is
then left with an expansion in 8, whose coeffi-
cients are integrals over configuration space of
functions of temperature and the potential U. The
exact form of the coefficients is unimportant for
the purpose of this argument since we shall as-
sume that the expansion in positive powers of
Planck's constant has already been achieved. We
are concerned here only with finding the relation-

r- r'= Pa/"x

p-p'=(P/'2M)"'p= -~&P""&'

O'=PU,

yt py g2g2 g2p2/ N~I2

(4c)

(4d)

where X is the thermal De Broglie wavelength
given by X=(g'P/2M}' '. With the above trans
formations we may rewrite the susceptibility as

ship between 5 and P
We shall first assume that the potential is homo-

genous of degree ¹ this restriction will later be
lifted. Make the following transformations:

p
2/N Try 2g xo+ g p /N Tr dg y g xo y g 8xpe' 8 ~ 8

2Mc Zo ax' a~'

U(r, e, y)= gf„(e,q)r". (6)

Next, make the transformations (4a)-(4d) as in
the homogenous case. We may then write the
transformed potential

fji Pf/ f (8 +)~&+ g f (8 +)P(&-n)/&~n

The first of two terms is independent of tempera-

Wherever -ik appeared in the expansion of Eq.
(3) as the result of evaluating commutators, the
factor -imp' " now appears. For example,

[p,x]= i8[p'-, x''-]= -i&P'/".

Now, except for the overall multiplicative factor
of P' ", the only place where P occurs is with I
in the combination XP' ". Hence an expansion in
powers of 5 is also an expansion in powers of
apl/ N

Next proceed to complete the proof by consider-
ing potentials which are not homogenous. We do
this by comparing the temperature dependence of a
typical term in the expansion of the susceptibility
when the potential is homogenous to that same
term when the potential is nonhomogenous. Take
the potential to be given by

ture and is the only term that would appear if the
potential were homogenous of degree N; the sec-
ond term contains only positive powers of P. It
follows that the leading temperature dependence
of any term in the high-temperature expansion of
the susceptibility, for a potential of the form given
by Eq. (6}, vanishes no slower with P than that
same term does when the potential is homogenous
of order X. This would indicate that for a potential
of the form given by Eq. (6) that )f and P appear
in the expansion of the susceptibility in the corn-
bination g'P"'/"(1+ ~ ~ ~ ) where ( }denotes terms
of order greater than 0 in p, but this is not so. It
could happen that the leading term in P (the only
term present if the potential is homogenous} for
some typical term in the expansion of the suscep-
tibility vanishes when integrated over configura-
tion space. In such a case the relationship of I
and P would be given by if*P""'/s(1+ ~ ~ ~ ), where
c & 0 and ( ~ ~ ~ ) denotes terms of order greater than
0 in P. Thus we have that 8 and P always occur in
the combination g'p"'"/"(1+ ~ ~ ~ ), where ( ~ ~ ~ ) de-
notes terms of order greater than 0 in P and & & 0.
We have then that a term of order 8'" in planck's
constant is also a term of order at least P'+'/" in
inverse temperature.

It is tempting to try to extend the validity of Eq.
(1) to the case of hard-wall potentials (i.e. , the po-
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tentials confining the electrons are infinitely deep

square-well-type potentials). This one may not do.

Consider a potential of the form U(r) = Uo(r/ro)",
where ~Q is some constant and n is some positive
integer. For such a potential the second term in

Eq. (1) becomes (g'P/30M)(PU, /r~)'~ "g(n}, where

g(n) =n(n —l)I'[(n —I)/n]/I'(I/n). If we set n=2,
we recover Jennings and Bhaduri's result for the

isotropic harmonic oscillator; and, indeed, for
any finite value n, Eq. (1) is a valid expression for
the susceptibility. Equation(1), however, is not

valid for the infinite square-well case. (If we take
the n- ~ limit, the potential above becomes an in-
finite square well, but for large n the second term
in Eq. (1) becomes proportional to n' and so di-
verges as n-~. ) The infinite square-well case
for certain geometries has been studied else-
where " It is found that the susceptibility may

be written y =X~[l+O(lfp'~'}], not y=g~[I+O(lf'p}],
as is indicated by the form of the correction term
in Eq. (1). Evidently the operations of taking the
trace and passing to the limit n- may not be
interchanged.

I have derived the expression for the two lowest-
order terms in the expansion of the susceptibility
in powers of Planck's constant for a smooth poten-
tial which is bounded. This expression is identical
to Eq. (1). Bounded potentials more accurately
represent the surface potential seen by an elec-
tron in a metal than do unbounded potentials. The
calculation of the susceptibility is more lengthy
when the potential U is a bounded potential; for
such potentials one may not always cyclically per-
mute operators in traces. ' If one may not cyclical-
ly permute operators in traces, one may not use
Eq. (2) as the expression for the susceptibility,

but the more complicated expression

2 1 1 j.
Tr dye ""~~py g ' +Q — g dg dg e-&j- j.»&pp ye 1 20+p

X =
2Mc2g M

Q Q p 0

One may not cyclically permute the exponential
operators, if the potential is bounded. I have not,
however, succeeded in proving that Eq. (1) is also
the first two terms in the high-temperature ex-
pansion of the susceptibility though such a conclu-
sion seems probable. One may use such bounded
potentials to describe finitely deep potential wells.
If the number of such wells is finite then the sec-
ond-order term in Eq. (1) vanishes by phase-space
considerations when integrations are taken over
all space —this is equivalent to saying that elec-
trons at a high temperature do not feel a finite
number of finitely deep potentials in infinite space.
However, if the density of such potential wells is
finite, then the second-order term in Eq. (1}does
not vanish. Hence, one would expect that Eq. (1}
describes the contribution to the susceptibility due

to impurity atoms in solids or due to alloying of
solids. Equation (1) agrees with a theorem by
Kohn and Lumming' which states that for weak
potentials the correction to the zero-field suscep-
tibility is second order in the potential strength.

In closing, I would like to point out that one
should be able to construct similar proofs for the
relation between 5 and P for other thermodynamic
quantities when classical statistics and potentials
which are smooth and increase without bound as
configuration-space variables increase without
bound are involved.
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