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The efficiency of two different methods for obtaining "special" points useful for Brillouin-zone integrations
of periodic functions is compared. We find that for some Bravais lattices (such as body~tered cubic and

hexagonal), the method suggested by Monkhorst and Pack leads to different and sometimes less efficient
point sets than those previously obtained by Chadi and Cohen. For a two-dimensional oblique lattice, special
points twice as efficient as those suggested by Cunningham are given.

Two different methods, one by Chadi and Cohen'

(CC) and the other by Monkhorst and Pack' (MP),
for generating "special" point sets for Brillouin-
zone integration of periodic functions of wave vec-
tor have been suggested so far. In their paper MP
state that their method gives sets of points identi-
cal to those of CC and additional intermediate sets.
By applying their method to cubic Bravais lattices
which they consider, we find this statement to be
true for the simple cubic and face-centered-cubic
lattices but not for the body-centered-cubic lattice
or for other Bravais lattices such as a hexagonal
lattice. For the latter we find the CC point sets to
be more efficient than those obtained by applying
the method of MP. In the following we briefly re-
view the major features of each method and dis-
cuss the reasons for the difference in the point sets
they generate. At the end of the paper we also give
the special points for a two-dimensional oblique
lattice. These points are twice as efficient as
those given by Cunningham. '

The special points method is related to obtaining
the average over the Brillouin zone of a periodic
function

f$) f++ f A (k),
fn= 1

where

with 0& c + c
y By summing over the inequival-

ent members of the star of k, a periodic function
f (k) can always be made to have the full symmetry
of the Bravais lattice as in (1). The Brillouin-
zone average off (k) is equal to f,; we are, there-
fore, interested in the points k, for which

f,= Q u(f (k()

is a good approximation, with a, being the weight-
ing factor of ki To accomplish this we need

(4)

g (x(A (R) = 0, m = 1, 2, . . . ,N (6)
i =i

for N as large as possible. The special points
have been defined' to be those which result in the
largest N for a given number of points.

The method of CC is based on the idea that if
A (k, ) andA (%,) are equal to zero for certain val-
ues of m denoted by (i}f,}and (M,), respectively,
then a new set of points can be generated' from%,
and k, such that (5) is satisfied for m in both (I,)
and {Mj. The new points are related to k, and Q,

4

R, =k, + T(R„
where T, runs over the point-group operations of
the Bravais lattice. Successive applications of (6)
using the R,. 's instead of %, and a new point R, (in-
stead of%,), which sets A (%,) equal to zero for
values of m not covered by fc, and R„ lead to suc-
cessively larger point sets. The weighting factor
for each point is determined only by the symmetry
of that point, as discussed in Ref. 1.

MP' have suggested another interesting method
for generating special points. Their method re-
duces the three-dimensional problem to three one-
dimensional problems. To show this we write

~ik ' R ~i2+ni+a ei2m n2&84' i2~3~'y (7)

where, if (F„E„7g and( G„G„Gg are the prim-
itive translation vectors in real and reciprocal
space, we have

R=n, t, +n,E, +n,ES, (8)

fr=kaG(+ k((G. 2+ k G3 ~ (9)

To eliminate exp(ik R) from the Fourier trans-
f»m of f (k) by using a sum over points R„ it is pos-
sjble and sufficient to consider the three one-dim-
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ensional problems associated with each exponential
on the right-hand side of (7). If we take

k =(2r N-—1)/2N, r=1, 2, . . . ,N (10)

and similarly for ks( and k&(&), then the sum
exp(i% R) over the points

k„„=ku
" G, + %&is) Ga+ k&i t& G3 i r = I, . . . ,Nc

s=1, . . . ,N&, t=1, . . . ,N„, (11)

is zero for all R for which at least one of the fol-
lowing conditions is satisfied: 0& (n, ( &N, or
0& (u, ( &Nsz or 0 & )n, ( &N„; [the relation between
the n's and R being given by (8)j. The size of the
resulting point set is determined by the numbers
N~, NS, and N~.

For the simple cubic and face-centered-cubic
Bravais lattices, the method of MP outlined above
gives special point sets identical to those obtained
by CC and also additional intermediate sets. For
the body-centered-cubic (bcc) structure, however,
the point sets resulting from the two methods are
different. For example, CC find the two points
(units of 2s/a, where a is the lattice constant)

fact that in picking a "generating wave vector" CC
choose points that set the sum of exp(t'k R} over
related lattice vectors equal to zero, whereas by
construction MP set each exponential term indi-
vidually equal to zero. The latter procedure may
not always lead to the best possible point sets.
For example, for the same accuracy a straight-
forward application of MP's method for a hexagon-
al lattice leads to larger point sets than those of
CC, although it may be possible to modify MP's
method to obtain the same results.

%e now discuss special points for two-dimen-
sional Brillouin-zone integrations. Cunningham
has obtained the special point sets for two-dimen-
sional zones. However, the point sets he gives
for the oblique lattice are not the optimal ones.
Defining a general oblique lattice by the primitive
translation vectors

X, =a(1, 0), K, =a(5, P),
the special points in ascending order of accuracy
are for set 1

%=(I, (1-8)/P) (units of w/2a), a= 1;
(4&4&4)yt (t2 (s&4&4}t

with weighting factors a of —,
' for each point,

whereas the method of MP gives

(12) for set 2 in units of s/2a

k, =(1, (1 —8)/p), %2=(1, (1+8)/p),

%, =(-,', —,', —,'), %, =(-,', 0, 0),
3Q2= g ~

(13)

The first set of points is slightly more efficient
for Brillouin-zone integrations than the second
set; they eliminate the first five nearest-neighbor
shells from the Fourier transform of f (%} as com-
pared to the first four shells for the second set of
points. The larger point sets obtained from either
method, although always different, appear to be
roughly equivalent' in their efficiency: The eight-
point set of CC fails for R= (4, 0, 0)a; the six-
point set' obtained by applying MP's method fails
for R= (2, 2, 2)a. The difference in the special
point sets obtained by CC and MP results from the

a, =a, =~;

for set 3 in units of s/4u

%, =(l, (1-5)/P), R, =(1, —(1+5)/P),
k, =(1, (3 —8)/P), %,=(1, —(3+8)/P),
k, =(3,3(1 —8)/P), R, =(3, —3(1+8)/P),

%, =(3, (1-35)/P), %,=(3, —(1+38)/P),
Q ~ ~ ~ Q l

The last two sets given above have the same ac-
curacy as those given by Cunningham but are a
factor of 2 more efficient. The method of MP can
also be used to determine intermediate point sets
for the two-dimensional case.
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'For the bcc Bravais lattice the star of k points obtained
by applying the method of MP (Ref. 2) contains fewer
points than those of CC (Ref. 1). For functions f(k)
which do not have the full symmetry of the lattice, it
may, therefore, be preferable to use the MP point
sets. Since in an extended-zone scheme the special
point sets for all cubic lattices [whether simple cubic
or face-centered-cubic (fcc) or body-centered cubic]

are identical, the bcc points ofMP can also be used for
other cubic lattices. For example, for the fcc lattice
the points equivalent to thoseyiven in Eq. (13) would

1 1 I 1 1be kg—- (g, g, g), k2=(g, 0, 0), k3=(1, ~, 0), with nf
u2 = o3= f . For the bcc lattice k& aud R& are equivalent
points. For a function having the full symmetry of the
Bravais lattice, the two-point scheme of CC gives
more accurate results than the three points given above.

6For the bcc lattice the expression given by MP (Ref. 2)
for the number of special points in a given set does not
actually apply to the sets derived by applying their
method. It applies correctly, however, to the special.
point sets that can be obtained by transforming the
simple cubic special points into the bcc Brillouin zone.


