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The observed structural phase transitions in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) are

analyzed using a Landau-Ginzburg-type free energy. It is shown that because of a coupling between the

components q, and q, of the wave vector associated with the charge-density wave, the latter is expected to be
nonzero for 38 & T & 47'K, contrary to previous expectations.

The structural phase transitions occurring in
tetrathiafulvalene-tetracyanoquinodimethane (TTF-
TCNQ) have been a subject of extensive experimen-
tal and theoretical study in recent years. ' ' Early
x-ray' and neutron-diffraction' experiments re-
vealed two distinct transitions occuring at T,= 38'K
and Ty —54 'K. Below 38 'K the charge-density wave
is found to be associated with a reciprocal vector
qco~=(0.25a*, 0.295~, 0). As the temperature is
raised above 38 K the component of the reciprocal
vector along the a* direction q, changes at first
discontinuously, but then smoothly until it becomes
q, = —,'a». The satellite reflections disappear at
54 K. In a most interesting recent paper, ' Bak and
Emery have analyzed these phase transitions using
a Landau-Ginzburg approach. They conclude that a
third transition should take place at some tempera-
ture T„between 38 and 54 K, above which the
component q, of the charge-density wave is locked
at q, = —,'a*. For T,&T&T2 the q, component is ex-
pected to vary continuously with T. It then changes
discontinuously at 38 K and becomes q, = 4a*. A
careful examination of the original experimental
data seems to support these predictions with T,
-47 'R. Further measurements' performed with
higher resolution by Ellenson et al. show the tran-
sition T, occurs at 49'k.

In the present paper, symmetry considerations'
are used to construct the most general Landau-
Ginzburg free-energy functional corresponding to
the phase transitions in TTF- TCNQ. Two new
terms arise which have not been considered pre-
viously. The first is linear in q, (the component
of the q vector along the 5~ axis). As will be dis-
cussed later, it accounts for the temperature de-
pendence of the Fermi momentum along the chains.
The second term introduces a coupling between

q, —2a* and q . Because of this coupling, the q,
component associated with the charge-density wave
is predicted to be nonzero for T,& T & T,. Further-
more, for T &T2 this component should vary linear-
ly with q, ——,'a*. Experimental tests of these pre-
dictions should contribute significantly to our un-
derstanding of this interesting but complicated

system.
To start, consider the symmetry properties of

the order parameter associated with the T, =54 K
transition. The symmetry group of the high-tem-
perature phase of TTF- TCNQ is' G, =P2, /c, where
the twofold screw axis is parallel to the 5 axis.
Following Landau, we assume that the order pa-
rameter belongs to one irreducible representation
of the group G,. Neutron-diffraction and x-ray ex-
periments show that the charge-density wave as-
sociated with this transition is characterized by a
wave vector qc» which is found to be equal to q0
= (0.5a*, 0 295b*,.0). As will be discussed later,
the component q, of q~D~ is expected to v~ slowly
with temperature below T,. This variation has not
been observed experimentally. Consequently, the
order parameter which describes the immediate
vicinity of the transition transforms under tran-
slation as

~

y
~ ~+e0.295%i) ~

1 q

or as
~ )t) ~ ~ e0.29585,], ~

In Eq. (2a) the charge-density waves on the two
TCNQ (or TTF) chains which belong to the same

(2b)

q0 (I)

for any lattice vector t =(n,a, nP, n, c), with n„n„
and n, integers. By applying the symmetry oper-
ators of G, to g + one obtains two linearly indepen-
dent order parameters, g+ and g -, which form a
basis for an irreducible representation of G0. To
completely specify the symmetry properties of the
order parameter one must determine how /-
transforms under the symmetry operators of the
group of q„namely, G (the subgroup of G, which
leaves q, invariant). We have G~ =2,. Since the

0order parameter ()jI +, p +) forms a basis for an
irreducible representation of G0, the component
|t- should transform into itself as a basis of an
irreducible representation of the group G+. There-
fore, g- transforms under the twofold screw axis,
either as
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unit cell have the same phase (and the mode is
acoustic), while in E(I. (2b) they are out of phase
(and the mode is optic). The actual distortion
mode has not yet been determined experimentally.
For our purposes, the exact nature of the order
parameter (whether it is acoustic or optic) is not

important since we obtain the same free-energy
functional in both cases. It is, however, assumed
that the order parameter belongs to only one ir-
reducible representation of G, and hence it is not

a linear combination of the two modes. The ap-
propriate Landau-Ginzburg functional associated
with the order parameter (f-, ()(

- ) is the Inost
general form invariant under the symmetry group
G,. Define two real order parameters (p, and (p,
by

f,+=-Q, ~i p, . (2)

To second order in (pI, the free-energy functional
then takes the form

f((,, ;, e ;( ., f=d —e((~''~el+pc+vel+5ee ((4 ;.( =.,.+('.,.,( =,(..

+Iiqq(pl, q(pq, -q (pl, -q(p2, q)l (4)

where (t(I „are the Fourier components of (t(I and

qyp q2p q, are the components of q along the a *, b *,
and c * axes, respectively. The fluctuating field

q +i'p, ~ corresponds to a charge-density wave
with wave vector j,+q. The expression (4) in-
cludes two terms not previously considered:

nq2(41 ~ q42, -q 4'I, -qlm, q) t

5qlq3( pl ~ q pl, q p2, q pq,

(5a)

(5b)

To discuss the effect of these terms recall that the
free energy of the system is given by

E = m1I1(&(. )f ((PI q) ~

As usual, we may assume r-T —T,. For stability
we require P&0 and the quadratic form Q=otqy
+ yq, + 5q,qq must be positive definite (i.e., a, y &0,
ay —5'&0) for T=T,. Then the order parameter
which minimizes the free energy (4) for T, & T&T,
is (PI,-. with (I' =[0, (Il/2P) 5~, 0]. The charge-
density wave is therefore associated with IlcoI&(T)
=qo+q'. Since, by observation, the order param-
eter which becomes critical at T, is associated
with qcow (T=T, ) =j„ the vector q should vanish
at T = T, and hence Ii (T = T, ) =0. We therefore as-
sume g T Ty For T&T~ the vector q' does not
vanish, and the component q, of q~» should become
different from' 0.295b*. The componentq~ is associ-
ated with the Fermi momentum of the electrons along
the b axis, ' and therefore they term represents the
temperature variation for the Fermi momentum.
This variation is very slow, andhas not sofarbeen
detected experimentally. However, in a recent
x-ray study by Kagoshima, Ishiguro, and Anzai, '
it has been reported that the wave number of the
phonon anomaly at 0.41b* does vary with tempera-

ture. %he q term can be used to explain this vari-
ation. At the temperature T~& T, the quadratic
form Q becomes unstable in a certain direction in
the (q„q, ) plane, and another transition takes
place. This transition occurs for ay -5'=0. Be-
low T, (i.e., for ay —5'&0) both components q ',

and q', associated with the order parameter should
become nonzero, and ttcow(T) =Iiq+(q'„0, q', ). By
minimizing (4) for T&T, we find

q's/ql =5/2y, ql-5'- ya.

Therefore q', is proportional to q', for T sT„and
both vary as (5'-c(y)' '-(T, -T)I~*. A model cal-
culation, which takes into account the Coulomb
forces between the charge-density waves, suggests
that the ratio q', c/q', a is of the order of 0.1.'q It
would be of great interest to study the q, component
experimentally and test these predictions.

As pointed out by Bak and Emery, ' one can un-
derstand the nature of the T, transition from a
more microscopic viewpoint as follows: TTF-
TCNQ is composed of linear chains of TTF and
TCNQ molecules. For T,&T&T, only one set of
molecules (apparently" the TCNQ) exhibits charge-
density waves. Coulomb interaction between the
chains favors q, =-,'a* and therefore q', =0. At T = T,
the other set of chains orders. Coulomb interac-
tion between nearest-neighbor chains of different
types favors q, =0. Because of these competing
interactions, the q, component starts deviating
from —,'a* at T,. However, if one recognizes that
the a and c axes are not perpendicular (the angle
between a and c is 104') and considers Coulomb
interaction between next-nearest chains one finds
that the component q, should deviate from zero be-
low T, as predicted phenomenologically.
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At T = 38 'R, qc» changes discontinuously owing
to fourth- and higher-order terms in the free-
energy functional (4). Below 38 'K it is expected
that the component q„ like q„should become
locked and hence be commensurate with the lattice.
The numerical value of q, depends on the exact
mechanism which drives the transition and there-
fore cannot be uniquely predicted from the free-
energy functional (4). There are, however, ex-
perimental indications' that q, =0 for T &38 'K.
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