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The three typical planar I textures in the presence of magnetic fields and currents are studied. Their
texture profiles, energies, and associated magnetic resonance satellite frequencies are calculated. We propose
that the splay t texture is responsible to the transverse satellite observed by Gould and Lee in their magnetic
resonance experiment.

I. INTRODUCTION

The spin triplet, P-wave condensate of super-
fluid 'He-A is characterized in terms of two unit
vectors; l describes the symmetry axis along
which the energy gap is zero, while d describes
the direction of the linear spin momentum' of the
condensate. These two vector fields are influ-
enced by a variety of constraints'. (a) the dipole
energy favors that / parallel or antiparallel to d;
(b) l has to be normal to the surface of the wall;
(c) a, current flow tends to orient l parallel to it-
self; and (d) d has to be perpendicular to a static
magnetic field. The combined effect of these con-
straints gives rise to a particular arrangement of
E and d fields referred to as textures. '

The simplest texture (theoretically, but not ex-
perimentally) is of course the uniform texture
where l and d, parallel to each other, are pointed
in the same direction over the entire sample.
However, this structure is a Priori impossible in
a cylindrical or a spherical container. " It be-
comes imperative therefore to study textures ob-
tained by bending of l or d vectors. There are ob-
tained as the local minima of a free energy that
includes the contributions due to the bending of
these vectors and various symmetry breaking
terms mentioned above. Of the various nontrivial
textures possible, the simplest are the planar
textures or domain walls. These are the bound-
aries between two distinct equilibrium configura-
tions of the ground state.

It is possible to classify the planar structures in
'He-A as (i) pure d (l uniform); (ii) pure l (d uni-
form); (iii) composite The fir. st ease, where l is
fixed either due to walls or flow, has been
studied" in some detail previously. These d
structures, which we call d solitons, can be cre-
ated magnetically. ' A moving d solution carries a
magnetization pulse, whose dynamics is described
by a sine-Gordon equation. For example, the
zero-energy mode associated with translational
motion of d soliton appears as an unshifted satel-
lite frequency in a nuclear magnetic resonance. '

In the third case of the composite structure, which
we call composite soliton, ' is found to be the mini-
mum of free energy when both t, and d are allowed
to move. Indeed, if the surface pinning, which
keeps l uniform, is not too strong, the twistlike d
soliton is unstable towards the formation of a twist
composite soliton. A characteristic feature of
these textures is the coherent response in a nu-
clear-magnetic-resonance experiment. In a uni-
form system, the motion of d vector away from the
l vector produces a constant torque responsible for
the usual Leggett shifts. ' In a nonuniform system,
there exists a coherent motion of d vector, which
gives rise to satellite resonances with lower fre-
quencies than the main resonance with the Leggett
shift. Fur.hermore, the intrinsic spatial inhomo-
geneity contributes an additional linewidth via the
spin-diffusion effects. Recently we have shown
that the composite soliton gives rise to satellite
frequencies both in the longitudinal and the trans-
verse magnetic resonance. In particular, the pre-
dicted longitudinal satellite frequency appears to
account for the satellites found in the longitudinal
magnetic resonance experiments by the Orsay-
Saclay group' and more recently by Gould and
Lee." On the other hand, the predicted transverse
satellite frequency. was a little too high compared
with the observed satellite by Gould and Lee" in
their transverse experiment.

In this paper, we will study planar pure l tex-
tures in detail. In Sec. II, we obtain three typical
planer textures: splay, bending, and twist tex-
tures by minimizing the free energy. Here the
terms splay and bending are used in somewhat
loose sense than are used in liquid crystals, "
since we cannot have pure splay or pure bending
planar structure. %e limit ourselves to the case
where a static magnetic field is applied in the z
direction and a current flows in the y direction for
simplicity. In this case three possible configura-
tions mentioned above are shown in Fig. 1. The
static magnetic field fixes equilibrium d andi vec-
tors within the x-y plane, while the current deter-
mines l vector asymptotically (i.e., far from tex-
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tures) in the y direction. In the present analysis the
equilibrium d vector is assumed uniform and in the y
direction. We have calculated analytic profiles for /

vectors, the texture energies and associated satel-
lite frequencies in nuclear magnetic resonance in
Sec. III.

As opposed to a pure-d structure, where the
splay soliton is of lowest energy, the twist struc-
ture is found to be the lowest-energy structure for
pure-l case. However, the twist l structure is lo-
cally unstable toward the formation of the compos-
ite soliton, unless the flow is rather strong. On
the other hand, the splay l texture appears as a
natural product, if the static magnetic field is ro-
tated by 90' from parallel to perpendicular direc-
tion to the cylindrical axis (and if twist composite
solitons are in the cylinder in the beginning). Ow-

ing to the uniform current along the axis of the
cylinder, the splay / textures appear to be stabil-
ized in spite of their higher energy than the twist I
textures. Furthermore, the calculated transverse
satellite frequency associated with the splay l tex-
ture agrees beautifully with the observed satellite
in their transverse experiment by Gould and Lee."
Therefore we believe that in the Gould-Lee experi-
ment, two completely different textures are in-
volved. The longitudinal satellites are due to the
composite solitons as already proposed, while the
transverse satellites are due to the splay / tex-
tures. The present identification may be easily
verified, if a similar experiment is done with a
rf field perpendicular to the cylindrical axis. In
this geometry we expect that one will see the lon-
gitudinal satellite associated with the splay l tex-

(aj

(b}

FIG. 1. Various planar textures studied in this
pap~~: (a) splay; (b) bending; and (c) twist. '/he arrow
indicates the direction of / vector. The d vector is uni-
formly in the y direction.

ture and the transverse satellite associated with
the composite soliton.

II. TEXTURE PROPERTIES

In the superfluid 'He-A, the nine-component
complex order parameter is given by A;~ = L;d,
where

Here 60 is the amplitude of the order parameter;
5,„5„and l (=—5,x5,) constitute the orthogonal
triad of unit vectors in real space; and d is a unit
vector describing the spin configuration. The free
energy E „;„associated with the spatial variation of
the order parameter has been derived by
Ambegaokar et aL.":

+ k&&
= 2 d P K~B)A ]at B~ A ~

Oi
+ K2B)A)at B~A*.~

J"
k,„=&K d'~ 3 V ~ '+ V xg '+ 2 g ~ V d '

and

+ l~ I
'(I g ~

d"I' ~
I g x d"I')] (3)

with N being the density of 'He atoms and m* the
effective mass of the quasiparticles. There are
pure divergence terms associated with Ek but for
our calculations, they cancel themselves to zero.
In order to discuss textures Ek;„has to be supple-
mented by the nuclear dipole energy which takes
the form~

(4)

where X„ is the normal static-spin susceptibility
and 0& is the A phase longitudinal resonance fre-
quency. To include the effect of the strong mag-
netic field Hells, we assume that d=y and

l = sinxx+ cosxy, (5)

where X is a function of space. The vector order
parameter Z, consistent with Eq. (5), is then
given by

7 = (b.,/vY)e' (-cosyx+ sinxy+iz),

with 4 to be specified later. To obtain the texture
profile, we substitute Eq. (6) into Eq. (3) and then
minimize Eq. (3) with resp'ect to y. A general
planar solution can be obtained by assuming X =X
X(s) and 4 =4 (s), with s=k ~ r, where k is a unit

+K,s;A)~B)A*,„].

In the Ginzburg-Landau regime (T near T,), and
with the assumption of the weak coupling (where
K, =K, =K, =K), we have
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vector normal to the domain wall thus obtained.
An intrinsic phase current of the form ks4/es is
obtained. However, this intrinsic current disap-
pears if the spatial inhomogeneity is along one of
axes of our coordinate system. In the presence of
an external current, C takes a form 4 = qy in our
geometry, where p is related to the velocity of
Cooper pairs carrying the supercurrent by q
= 2Mv„just as in the case of superconductor. It
is true, in general, that the total current is ex-
pressed as the sum of the three components; VC,
Mermin-Ho term due to spatial change of l, 4 and
curl l. However, for the planar texture discussed
here the second contribution vanishes identically.
Furthermore curl l does not contribute to the total
current in the y direction. Therefore we may
simply assume that q is proportional to the super-
flow in the y direction. The inclusion of a flow
term by 4 = qy, gives rise to, in Eq. (3), an addi-
tional energy, which favors alignment of l vector
in the y direction. Therefore, in the following we
will concentrate on pure l asymptotically parallel
to the y axis [i.e., y (~),y (-~) = 0, v, . . .].

In the following we limit ourselves to three typi-
cal pure l textures.

A. k =~ (bending)

Substituting Eq. (6) with C = qy and y =y(x) into
Eq. (3), we have

p—=pA.
o'x

dx [(1+2sin'y) y„'

+2q' sin'y +4) ' sin'y], (7)

x 1, , v2 tang+ I
&2 tang —1

where A =
& KA,' = 4 X„C', C~ being the spin-wave

velocity, $ = C~/0„ the dipolar coherence length,
and the subscript on X represents derivative with
respect to x. We note that in pure l texture the
current adds a term proportional to q'sin'X, while
the last term in Eq. (7) arises from the dipolar en-
ergy.

After minimization with respect to X, the texture
profile and the corresponding energy are obtained
as

I.O

v(x)

0.5—

0.0 -2.0 —I.O 0.0
I

I.O 2.0
x/(

FIG. 2. Potential V(x) =cos2y for the bending texture.
The solid line represents the exact potential, while the
dashed line represents the variational approximation.
The latter is used for the calculation of satellite fre-
quencies.

y 1,~ 1+ v-, tanhg
1 —~3 tanh8

with

cosy = (I/W2) sinh9

(12)

Equation (8) is rather difficult to invert for the so-
lution of y(x). Since it is necessary to know y(x)
in order to study the NMR frequency, we have
tried a simple variational solution to Eq. (7) in a
form cosy = tank (qx) with q being the variational
parameter. In Fig. 2, we have plotted cos'y [re-
ferred to as V(x) since cos'y is the potential in
NMR frequency calculation] as obtained from Eq.
(8) as well as the variational solution with ti

=2& '—, $ '. The agreement is rather encouraging.
The energy for the variational approximation is
found to be

A

F„/g„ = 0.764 f
which is very close to the exact result of Eq. (9).

B. k =y (splay)

For this case, a,ssuming that y =y ( y), we have

oo

dy [(1+2cos'y) y„'+4) 'sin'y] . (11)
0'y

The q-dependent term can be easily included as
before by replacing $

' by $ '+ —,q'. The texture
profile and the energy are given by

cosP = W cosy „ (8)

and

F/g„=2[1+(3/v2) sin 'v —', ]A) '—= 0.756f, (9)

where f"=8A) ' is the surface energy of pure
(twist) d soliton. ' We shall use f for reference.
In the above treatment we have neglected q-de-
pendent terms, since the effect of the q' term is
easily included by replacing 4$ ' by 4g '+2q'.

F/cr, = 2 [v 3 + (1/W2) In(v 2 + v 3 )]A $

= 0.6356 f (13)

The energy is smaller than the bending texture
energy. Again a variational approximation of the
form cosy = tanh(gy) is tried. The comparison be-
tween exact cos'X and variational one is shown in
Fig. 3. The energy is minimized for g =2M(
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FIG. 3. Potential V(y) =cos2y for the splay structure.
Solid line, exact solution; dashed line, variational ap-
proximation.

where f and g are space-dependent functions, we
can expand the spin part of the free energy up to
terms of order f' and g'. The diagonalization of
the second-order term, referred to as fluctuation
free energy, yields the NMR frequencies. Al-
though, in general, a term linear in f appears in
the free energy, this term can be eliminated by
modifying the equilibrium configuration slightly
since the quadratic term is positive definite. In
any case, the presence of the linear term does not
affect the response frequency of d vector. In the
following we will discuss the NMR frequencies for
three configurations separately.

A. Bending

with

F„/g, = 0.645 f" .

C. k =z (pure twist)

For this case, Eq. (8) reduces to

(14)

The fluctuation free energy due to d fluctuations
is given by

5I'
=

2 A dx [fA~f +g A,g],0'x
Oo

where

dz (y', + 4&
' sin'li) .

Oz

The analytical solution of Eq. (15) is given by

(15)

and

A& f = -28„[(1+cos'X)f„j

+4& '(cos'X —sin'X) f (20)

and

lt =2 tan '[exp(2z j&)] (16) A,g = -28„[(1+cos2X)g, j

+4] 'cos'Xg. (21)

F/a, =44) '=0.5 f' . (17)

As noted earlier in the Introduction, the energy
of pure twist domain wall is the lowest. (See also
I'ig. 4.)

III. MAGNETIC RESONANCE

As the d vector moves away from the / vector, it
experiences the dipolar torque. In nuclear mag-
netic resonance this dipolar torque provides the
I,eggett shifts in the resonance frequencies. In a
nonuniform texture like a domain wall considered
here, there are regions where the effective poten-
tial energy for d vector oscillations is weaker.
The result is that for textures, a normal mode of
oscillations exists that is localized at the domain
wall and the characteristic frequency is less than
the usual I.eggett shifted resonance frequency.
Such effects then should be observable in a mag-
netic resonance experiment. The relation between
the NMR frequencies and the eigenvalues associ-
ated with the d vector Quctuations has been de-
scribed in a previous paper. ' In this paper we
present the eigenvalue calculation of d fluctuations
in pure l textures.

Assuming that d is now given by

d =fx+ (1-f'-g')'i'y+gz, (18)

The eigenvalue equations are given by

Af = ,'$'Aifand -kg= —,'$', Agg, (22)

respectively, for the longitudinal and the trans-
verse satellite; respectively, where ~,=y, H is
the Larmor frequency. In order to solve Eq. (22),

1.0

v(z)

0.5—

I

-2.0
I

0.0 I.O 2.0
'/c.

FIG. 4. Potential V(z) =cos g for the twist solution.

0.0 —I.0

respectively. The above equations have one bound
state each, which gives rise to satellite resonance
in the NMR experiment. The satellite frequencies
are given in terms of the eigenvalues A and A~ as

&u, /Q„= (X&)'i and (e, —&o ) l'/Q&= (Q)'/
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first, we approximate cosy by a variational solu-
tion, cosy = tanh(qx) with q = 2v & h '. The result-
ant potential for the transverse mode V(x) o.- cos'X
is shown in Fig. 2, together with the exact result
for comparison. Second, we determine the eigen-
value variationally by assuming that

f ~ [sech(qx)]', go- [sech(qx)]",

with v and ]L( being the variational parameters.
The results are

(24)

e, /Q„= 0.3413, (&u, —e,') '~'/Q~ = 0.829 (26)

for longitudinal and transverse satellite frequen-
cies.

Comparing the potential V(x) for the l texture to
that of d soliton, the potential has the same depth
but the width is roughly & smaller. Therefore we
can conclude that the above are the only bound
states associated with l texture.

B. Splay

The corresponding operators A& and A, are now
given by

A&f =-2s, [(1+sin'y) f, ] 4+) '(cos y —sin'X) f,
(27)

A~g= -28, [(1+sin'X)g, ) +4) ' cos'yg, (28)

respectively. Again we have used a variational
form for X in order to solve the eigenvalue prob. -
lem. The variational potential cos'X is plotted in
Fig. 3 for comparison with the exact potential.

The eigenvalue equation (22) with new A~ and A,
given in Eqs. (27) and (28) is solved variationally
by assuming that

f ~ [sech(gy)]', g~ [sech((;y)]" . (29)

We find now

A~=0. 1559, v=0.675, A~=0.6835, p, =0.435, (30)

respectively.
The corresponding satellite frequencies are now

given by

xz =0.1165, v= 0.855, A = 0.6873, p. = 0.48, (25)

implying

peared at (m, —&uo)
~ '= 0.83Q~ (with no discernible

temperature dependence). There was however a
crucial difference between the two experiments.
For longitudinal resonance the static as well as the
rf fields mere axial to a cylinder, while in the
transverse experiment, the rf field is axial but the
static field was rotated to be perpendicular to the
cylinder axis.

The value of longitudinal resonance frequency
agrees very well with the predicted frequency in
the presence of composite solitons' (+, =0.73Q„).
We propose here that the transverse satellite orig-
inates from the pure l splay texture. Not only the
l texture accounts for the transverse satellite fre-
quency [compare Eq. (31) with the observed value
0.83Q„] but also we can show that in the case of a
cylinder, if we start mith pure twist composite
solitons in the longitudinal geometry as described
above, and if the static magnetic field is rotated by
90', splay l textures are the end products.

For this purpose, we note that we need three vec-
tors to characterize experimental situation Hp,
asymptotic direction of l, a;z(.t k the normal vector

A

of the domain wall. Furthermore, l IHp always
A

since d+ Hp in the equilibrium configuration. In
the longitudinal geometry in a cylinder, where H,
is parallel to the cylindrical axis, the composite
solitons with k

~~ H, is the most stable configura-
tion; k is parallel to the cylindrical axis. If we as-
sume that the spatial inhomogeneity is locked in the
cylinder, this implies k is always parallel to the
axis. Then if we rotate H, in the direction perpen-
dicular to the axis, l rotates accordingly. In the
presence of a Qow along the axis of cylinder, l
becomes parallel to the axis in the transverse
geometry. In this situation k ~~l, implying the splay
texture. It is possible to test the present identifi-
cation experimentally. If the rf field is applied
perpendicular to the cylindrical axis, assignment
of textures for longitudinal and transverse experi-
ments is reversed. In this experiment, the satel-
lite frequencies should be

w, /Q~ = 0.3948, (v', —~,')'~~/Q„= 0.8944

if our identification is correct.

C. Twist

u), =0.3948Qg, ((u', —(a&,')'~'=0. 8267Q~, (31)
In this case we have

for longitudinal and transverse resonance, respec-
tively.

These numbers are of particular interest in view
of the recent observations of Gould and Lee.' They
observed satellite resonances in NMR experiments
with relatively open geometry. Their longitudinal
satellite appeared at 0.74Q„(with a weak tempera-
ture dependence) and the transverse satellite ap-

A&f = -4f„+4) '(cos'X —sin2y) f,
A~g = -4g„+4$ ' cos' Xg,

(32)

(33)

where cosy = tanh(2z/g).
The corresponding eigenvalue equations are ex-

actly solved with
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X~ = 2 &3 —2 = 0.4641,

f =[sech(2z/g)]' ' ' ' (34)

g = 2 (~2 —1)= 0.828,

g= [sech(2z/$)]&~ '~~'

implying

(35)

IV. CONCLUSION

We have studied three possible configurations
(textures) of the spatially inhomogeneous l vector
with the d vector held uniform over the entire
sample. The three textures can be described in
terms of relative orientation of three axes: the
direction of spatial inhomogeneity k (direction nor-
mal to the domain wall surface); the static ma, g-
netic field Hp and the current Qow direction that
determines the equilibrium direction of the l vec-
tor J. Furthermore, we limit ourselves to the
case H, iJ. The three textures are then: k ll J
(sp»y)» &IIJxHO (bending), and Ill H, (twist). En-
ergy calculations indicate f „&f, &f, „,. Ana-
lytical profiles for each texture have been ob-
tained as the minima of the free energy.

Perhaps the most interesting result appears in
the calculation of nuclear-magnetic-resonance
frequencies. Each texture is found to have char-
acteristic satellite frequencies, lower than the
usual Leggett shift in the uniform case. In partic-
ular, the transverse satellite appearing in splay

(u, /0„= 0.6812, ((o, —(o,')~~'/0„= 0.9102 . (36)

However, as we will show in the appendix, the
twist l texture is unstable toward formation of the
composite soliton, unless current is rather large.
Therefore, this last solution may be of little rele-
vance to reality.

structure has a frequency identical to the one ob-
served recently by Gould and Lee. In the Introduc-
tion as well as in Sec. III, we have presented argu-
ments as to how a splay structure could be found
in their experiment. However, it has to be borne
in mind that at the time of writing, we cannot
eliminate the possibility that they may be due to
the splay composite soliton rather than pure l tex-
tures. We expect that the splay composite soliton
has almost identical satellite frequencies as the
splay l texture discussed here.

The characteristic satellite frequencies for
known planar textures (d soliton, composite soli-
ton) are summarized in Table I, together with the
result of the present analysis for / textures. In the
table, R& and R, are the normalized resonance
shifts defined by 8, = &u, /Q„and R& = (uP, —e',)' '/
0» with ~, and co, being the transverse satellite
frequencies. We include in the table the half width
of resonances, which is given by I'=2D(le l'),
with D the spin-diffusion constant, since the spin-
diffusion term dominates the relaxation at least in
the vicinity of T,. Here f is the normalized bound-
state wave function associated with the satellite
and the angular bracket means the integral all over
space. In more general situation, D has to be re-
placed by an appropriate component of the spin-
diffusion tensor in superfluid He-A. Substituting
D measured by Wheatley" (extrapolated to T = T,)
and $ = 1.85x 10 3 cm, we have D$ 2=8.8x103
sec '. Then this gives the half width (hu&, ) for the,
longitudinal satellite associated with the composite
soliton (b.~,) -=1.3x 10' Hz, which is compared with
the one deduced from the Gould-Lee experiment
(he, ) = 4.5x 10' Hz. The predicted width is roughly
a factor of 3 smaller than the one observed. How-

ever, taking into account ambiguities in extracting
6+, from the experimental data, we may conclude
that the spin diffusion accounts for most of the

TABLE I. Summary of characteristic satellite frequencies for known planar textures.

Ao

d soliton Splay

Bending

Twist

f/(8X(-'j

i
3

. 1

6
1

6

Qcu /(jg( )

3
1

6
1

6
Ps

E texture Splay

Bending

Twist

Composite Splay

Soliton Bending

Twist

0.635

0.757

0.5

i/W5

0.395

0.34i

0.68

0.722

0.826

0.829

0.90i

0.894

0.46

0.23

O. i5

0.i45

0.20

0.i2

0.06

0.07
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width observed.
We note that the planar E structure may also be

realized at the wall of the container, if a static
magnetic field is applied normal to the wall. In
this case a bending l texture with k parallel to the
static field appears pinned at the wall, if the static
field is sufficiently strong. In this case, we expect
that the satellite resonance as calculated for the
bending texture appears. However, since in the
present geometry the static field lies in the plane
where l and d are confined, assignment of the
longitudinal and the transverse frequencies has to
be interchanged; in the present geometry the ex-
pected satellite frequencies are +,/0„= 0.829 and
(oP —aP)it /A~ = 0.341.

Note addedin proof. We have now successfully
completed calculations for the composite splay
and bending solitons; their profiles, energies,
and NMR frequencies. In particular, the com-
posite splay soliton consists of the l vector in a
splaylike configuration and the d vector in a bend-
like configuration. Its NMR responses are
A, = 0.635, g, = 0.823. Furthermore, the composite

splay soliton has lower energy than the corre-
sponding pure-l texture. We believe that it is the
composite splay soliton that is responsible for the
transverse satellite resonance in the Gould-Lee
experiment. These and a proposal for an experi-
ment to further test the soliton hypothesis will be
published separately. "

APPENDIX: STABILITY OF TWIST I textures

d= (1 -g')"((1 (')-"i+4~)+gz,

l = (1 —8') 't' (cos Xy + sinXx) + 8z,
(A1)

where g, g, and 8 are assumed to be small. Sub-
stituting this into Eq. (2) and subtracting the equi-
librium value [i.e., g= (=8 =0, and X =X,(z)
=2 tan 'exp(2z/g)] for pure twist structure we
have

Here we will study the stability of twist l texture
against small oscillation in both l and d vectors.
Assuming d and l are given by

5 2z 2g—=-,A, -8$ ' dz tanh —sech —g(z)+o, «$X."+4(.'+4k '[1 —2cos'X.(z)](X'-0)'+8'+4g'

+4& *[cos'y, ]z]6*+E' -2 cosy, (z}8g]}), (A2)

where X'=X -Xo(z).
We note that the fluctuations are separable into

two modes [(X', g) and (8,g)]. (X', f) mode can be
f~rther simplified by introducing new variables by

Then the eigenvalue equation for v

X,v= =', v,.+4) '[1 —2 sech'(2z/$)v]

is easily solved as

(A5)

u=X+4]I] and v=X —f. (As) X„=[—,'(2~11 —7)](4$ ') = -0.077(4$ '),
Then the quadratic terms in X, g are transformed
as

with

v ~ [sech(2z/$)]&~ '}t' (A6)
~f (x', 0)

=-,'A dz —,'.u,'+-', v,'+4) ' 1-2 sech' —v'

(A4)

The oscillation in v has a negative eigenvalue,
which indicates that pure-l twist texture is unsta-
ble towards the formation of the composite soliton
at least in the absence of current.

*Work supported by the NSF under Grant No. DMB76-
21032.
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