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Dielectric theory of interacting excitonic resonances
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The dielectric function is developed for two interacting excitonic resonances with spatial dispersion. The
longitudinal-transverse energy splitting and the reflectivity of these resonances depend very strongly on the

energy separation between the resonances. It is shown that simple interpretations of reflection spectra of
degenerate resonances split by external fields may yield incorrect oscillator strengths or polarizabilities and
resonance frequency shifts. The energy versus wave-vector polariton dispersion relation is obtained and
plotted for the materials CdS and ZnO as examples. Effective refractive indices are derived to be used in
the generalized multilayer Fresnel formula for oblique incidence of light polarized parallel and perpendicular
to the plane of incidence.

I. INTRODUCTION

Spatial dispersion, the effect of the wave-vector-
dependent dielectric function of excitons, has been
treated originally by Pekar' and Hopfield and Thom-
as 2 Most of the work carried out in this field,
however, concentrated on the case of one single
excitonic resonance, since the problem then re-
duces to an easily tractable one. Exceptions are
limited to the case of normal incidence of light"'
or to resonances without spatial dispersion. '

The present work treats the general case of two
interacting excitonic resonances including non-
normal incidence of light, spatial dispersion, and
an additional exciton-free surface layer. The inter-
action is the Coulomb interaction which changes the
longitudinal-transverse energy splitting of each
resonance. The present work is necessary to de-
scribe, for instance, reflectance spectra of two
excitonic transitions with small energy separation
as in CdS and particularly Zno. This theory
leads further to a considerable improvement in in-
terpreting reflectance spectra of degenerate re-
sonances split by external fields and in extracting
polarizabilities and energy shifts of resonance
frequencies from experimental spectra.

II. DIELECTRIC FUNCTION

Polarizabilities 0. of the following form charact-
erize insulating crystals for given wave vector k
and frequency &o (Ref. 2):

a ((o k)= 0
up& T —(d + p&k —z+r&

with Q.
p& being the polarizabilities of each exciton-

ic resonance j at ~=0 and k=0, ~» the transverse
resonance frequencies at k =0, and rz the empiri-
cal damping constants. The influence of spatial
dispersion is described by Pzk' =(Kur&r/Mz)k',
where Mz is the effective exciton mass and I is

Planck's constant divided by 2m.

The quantum mechanics introduces the oscillator
strengths f& instead of the polarizabilities no&.
Then, one has to replace a»H&r by f&no&q'/M&
in' Eq. (l) (n, &. density of oscillators; q: elemen-
tary charge).

The frequency is chosen in this paper near two
particular resonances A and 8 in Eq. (1), and the
sum over all other oscillators is lumped into a
frequency- and wave-vector-independent back-
ground polarizability a„:

a((o k) =a + Q

4 ~T —GP+ Pgk —zQ)r

OB BT' H„- H+P, k'- r,
The relation EKOE ZoE+ oE between the electric

field E existing in the crystal, the permittivity of
vacuum &„ the polarizability o. , and the dielectric
function & leads to

&((o, k) =a +
0 CO

op —co'+p„k —' r

OB

up —op+p k'- ' r
where &„ is a frequency- and wave-vector-inde-
pendent background dielectric constant (c =t' for
(g 00),

Eq ation (3) contains the polarizabilities a»
and apB, which are not directly determined by
experimental data for a given material. The long-
itudinal resonance frequencies, however, are of-
ten known from absorption and emission experi-
ments.

The dielectric function c of two excitonic reson-
ances vanishes at these longitudinal resonance fre-
quencies &o„~ and &us~, and is given then (&o»
v(o ) by
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IV. INTERACTION BETWEEN THE RESONANCE

FREQUENCIES
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FIG. 3. Transverse and resulting longitudinal reson-
ance frequencies for given polarizabilities of two inter-
acting resonances. The dashed and dotted lines give the
longitudinal frequencies for the following sets of para-
meters: Dashed line: no&= ~0~-—8 x 10 Po, dash-dot
line: up~= 4 x 10 &0' cYog=12 x 10 c 0' dash —double-dot
line: ~Ox=12 x10 ~0' &Ca= 4x10

A. Longitudinal-transverse frequency splitting

The dielectric function c is given in Eqs. (3) and

(4) by different sets of parameters. Both equations
show the same behavior of an excitonic system,
but from different points of view. The description
which has to be used depends on the respective
known parameters.

Equation (3) contains the transverse resonance
frequencies ~» and (d» and the polarizabilities
a, A and n,B. Setting e(~, k) = 0 leads the longitudi-
nal frequencies of this oscillating excitonic sys-
tem. The resulting longitudinal-transverse fre-
quency splitting of each resonance depends on the
given polarizabilities and above all on the energy
separation between the two transverse frequencies
because of the interaction between the resonances.
Equation (3) is advantageously applied to a material
where the two transverse resonance frequencies
and the excitonic polarizabilities are known.

On the other hand, Eq. (4) contains the two trans-
verse and two longitudinal resonance frequencies
of the A and 8 excitons. These frequencies may,
for example, be found by absorption or emission
experiments. Such measured longitudinal reson-
ance frequencies already contain the interaction
between the two resonances. This interaction is
taken into account by the additional factors in Eq.
(4) which cause e =0 if cu = sr~ or &o = &osz (k.=0,
I'A=I'B =0). Therefore, the dielectric function of
Eq. (4) applies best to a material where all four
resonance frequencies are known.

The interaction between two resonances is shown
in Fig. 3. The transverse resonance frequencies
&oAT and urB T change (full lines), whereas the pol-

arizabilities n0„and @0~ remain fixed. The dashed
and dotted lines show the longitudinal resonance
frequencies resulting from Eqs. (3) and (V) with
k=0 and no damping. The L-T splittings of well-
separated A and 8 resonances are not equal because
they depend on the absolute value of the respective
transverse frequency.

A decrease of the energy separation between the
two transverse resonances alters the longitudinal-
transverse frequency splitting of each resonance.
This change of the L-T splitting does noI; result
from a change of the (classical) polarizability or
of the (quantum-mechanical) oscillator strength,
but is merely a consequence of the interaction
between the two resonances.

B. Reflection spectra

Investigations of energy splittings of one single
resonance into different components under external
fields are important tools to evaluate excitonic
properties. The increasing energy separation may
be described by the present model of two excitonic
resonances starting from one single resonance
(~AT B T) '

Reflectance experiments are sometimes the only
feasible technique under external fields. Unfor-
tunately, only the longitudinal resonance frequen-
cies are (approximately) given by the ref lectivity
minima in reflection spectra, whereas the trans-
verse resonance frequencies cannot be determined
easily. Thus, the energy shifts of the longitudinal
resonance frequencies are used for the analysis
of many experiments of field-induced energy split-
tings. As shown in Fig. 3, the change of the longi-
tudinal frequencies, however, is not the same as
that of the important transverse resonance fre-
quencies, which was pointed out also by Skettrup
and Balslev. '

An improved fit of field-induced splittings is
possible using the model of this paper. Figure
3 shows directly the splitting of the transverse
frequencies, if that of the longitudinal frequencies
is known. Certainly, this approximation is better
to obtain energy splittings originating from exter-
nal fields than the approximation by simply using
the ref lectivity minima.

Oscillator strengths or polarizabilities of dif-
ferent components of excitonic transitions in ex-
ternal fields can provide much information about
the band structure of semiconducting materials.
Most of the data are obtained in this field by re-
flection experiments. However, reflection spectra
and ref lectivity amplitudes do not inform directly
about polarizabilities. The most important influ-
ence on reflection spectra is given by the longitud-
inal-transverse energy splitting. First of all,
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FIG. 4. Calculated reflection spectra with different
transverse resonance frequencies, but given constant
polarizabilities. All the spectra are calculated with
+ 0A +08 8" 0 &0 &~=-2

tivity amplitude of this extra resonance increases
with the magnetic field.

Several authors deduced from this increase a
field-dependent ratio of the oscillator strengths
of the two split resonances. ' This conclusion led
to essential statements about the electron-hole
exchange interaction.

The lower part of Fig. 5 shows reflection spectra
calculated using the model of this paper. The pol-
arizabilities e,A and Qt,~ of the two split reson-
ances are set equal in each spectrum. The com-
mon value 0(,„=n» is changed from one spectrum
to another because of the magnetic field. The com-
parison of the theoretical spectra (lower part of
Fig. 5) with the experimental spectra (upper part)
shows good agreement. The extra resonance
emerges at the high-energy side. The ref lectivity
amplitude of this extra resonance increases also
in the calculated spectra, although the ratio of the
oscillator strengths of the two split resonances
is taken independent of the magnetic field. There-
fore, the earlier conclusions' about the electron-
hole exchange interaction are incorrect because
the oscillator strengths ratio is in reality field
independent.

These exemplary spectra of InP show how care-
fully one has to be in taking oscillator strengths
or polarizabilities from reflection experiments
whenever two resonances have nearly the same
energy.

V. GENERALIZED FRESNEL FORMULA

this splitting (for more than one single resonance)
depends on the energy separation between the re-
sonance frequencies, whereas the polarizabilities
carry less importance.

Figure 4 shows calculated reflection spectra
with varying transverse resonance frequencies
but constant polarizabilities. (For details of cal-
culation see Sec. V.) The ref lectivity amplitudes
of the two resonances depend very strongly on the
energy separation between the two transverse re-
sonance frequencies according to the interaction
between the resonances. The polarizability or os-
cillator strength, however, is the same for all re-
flection spectra of Fig. 4.

Let us consider for illustration one special ex-
ample for incorrect conclusions about oscillator
strengths deduced from reflection spectra. Fig-
ure 5 shows experimental reflection spectra (up-
per part) of the 1S exciton in lnp under different
magnetic fields for w polarization. An extra re-
sonance emerges with the magnetic field addition-
ally to the shift to higher energies. The reflec-

sing& = (n, /n&) sin8. (8)

We consider the two polarizations of light paral-
lel and perpendicular to the plane of incidence.

This section derives generalized Fresnel form-
ula to calculate reflection or attenuated total re-
flection spectra including exciton-free surface
layers. We consider the general case of non-nor-
mal incident light reflected from a crystal having
two excitonic resonances with spatial dispersion.
The angle of incidence is 8, the electric field am-
plitudes of the incoming and reflected light waves
are EI and E„, respectively, and n, is the refrac-
tive index for the medium in which the incoming
wave travels.

The incoming light wave excites in general elec-
tric field amplitudes E& in the crystal of three
transverse (j = 1,2, 3) and two longitudinal polari-
ton modes (j=L1,L2). Equations (6) and (7) with
Eq. (3) or (4) yield the respective refractive indi-
ces n~ (n~ = c,) .

The angles of refraction p& are given for each
transverse or longitudinal wave j by Snell's law
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FIG. 5. Upper part: ex-
perimental reflection
spectra of the 1S exciton
in InP with different mag-
netic fields in r polariza-
tion. Lower part: calcu-
lated reflection spectra
with polarizabilities n~

The transverse
and the longitudinal reso-
nance frequencies are
marked. tALL other pa-
rameters were taken from
F. Evangelisti, J. U. Fisch-
bach, and A. Frova, Phys.
Rev. B 9, 1516 (1974)l.
All the spectra are mea-
sured and calculated for
normal incidence of light.
[The experimental spectra
were taken from D.
Bimberg, K. Hess, N. O.
Lipari, J. U. Fischbach,
and M. Altarelli, Physica
8 81, 19 (1977).l
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A. Light polarized parallel to plane of incidence

In this geometry, three transverse and two lon-
gitudinal polariton modes are excited. The con-
servation of the tangential component of the electric
field amplitudes may then be written

EI Cosa+ Eg COSe El COSTI)l+E2 COS$2+E3 COS$3

noE~ —nQ„= n,E, + n, E~ + n,E~

(Eq —Es)no =Eg( g nn2+Fnp+n, F p). (13)

The longitudinal modes carry no magnetic field.
Equations (10) and (13) yield the reflection coef-

ficientt

or

+EIl 8in/ ~l + E~ sing
~E A~ —cos8/no

fp
Ez A~+ cos8/n, ' (14)

(Ez+Es) cos8 =E,[B,+F„B,+F„B,
+ Fr~ cos8(no/nr~)

+ F~, cos8(n, /n~)],
with

(n,', , —n', sin'8)'~'
1~ 2y3

1p2 ~ 3

F~,~ =E2/E„F~, = tan8(E~, /E, )

Fs,q=E, /E„F~~ =t na(8~E 2/E).

(10)

(11a)

with

A~ =(B,+F~,~B2+F„~Bs+F~,n cos8/n,

+Fz n, cos8/n~}(n, +n,F»~+n,F„)'. (15)

Comparison of Eq. (14) with the Fresnel formula
for non-normal incidence of light polarized parallel
to the plane of incidence,

cos8/n, «~ —cos8/n,
cos8/n, «~+ cos8/n,

The magnetic field is already tangential in this
geometry, therefore yields the angle-dependent effective refractive
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B. Light polarized perpendicular to plane of incidence

Three transverse and no longitudinal modes are
excited in this geometry. The conservation of the
tangential component of the electric field ampli-
tude requires

Eq+ Es = E,(1+F2„+F»~), (20}

index n, «~ for light polarized parallel to the plane
of incidence:

n' =[1+ (1 —4A2~n20 sin'8)' ']/2A& . (17)

The sign has to be chosen such that Im(n„,~) &0.
In case of spatial dispersion there are more

than two unknown electric field amplitudes at the
boundary, whereas the Maxwell boundary conditions
yield only the two, Egs. (10) and (13). Other equa-
tions are necessary to solve the system, the so-
called additional boundary conditions (ABC}.
There has been a long discussion in the literature
about the ABC's beginning with papers by Pekar'
and Hopfield and Thomas. ' This discussion is
still continuing. '

The ABC determines F»~, F»~ and E», F~
which connect the electric field amplitudes of the
upper two transverse and the longitudinal polariton
branches, respectively, with that of the lowest
transverse branch. Most of the formalism devel-
oped in this paper is independent of the special
ABC which is chosen. One has to use only the re-
spective relations of F»~, F3gp Fl» and F~.

%'e use the ABC proposed by Pekar' and Hopfield
and Thomas' and derived more generally by Zey-
her, Birman, and Brenig." They claimed that the
excitonic polarizability vanishes at the surface.
This ABC is originally valid for one single reson-
ance and must be expanded to two resonances. '
Then, the polarization contribution of each reson-
ance A and B to all polariton branches j vanishes:

+~ E +~ +~ ~ +~

6] Ej + Ep KI2+ E3 ZJ3+ EgjZJLy + E/2E~ Oy

with

g AgB ORB +~Br
uP~s r - uP + P~s(uf /C')n', —i(OI'~s

(18)
Splitting the electric field vectors of Eq. (18)

into components parallel and perpendicular to the
boundary yields a system of four linear equations.
Herefrom, the unknowns F»~, F3yp Fgy and F~
may be determined.

magnetic field amplitude yields

(EJ —Ez)n, cos8 =E,(n,B,+ eP2F», + n,B~F»,}.
(22}

The resulting reflection coefficient is

r, =Es/Ez = (n cos8 -A, )/(no cos8+A, ),
with

(23)

n, cos8 —(rP„„—n', sin'8)' ~'
(25}

yields the angle-dependent effective refractive in-
dex n, f fB for light polarized perpendicular to the
plane of incidence

n ~~, =A'+no sin'8. (26}

The electric field is already tangential in this
geometry. Thus, the additional boundary condition
is

6& + 6& F»s+ 63A A A

B B B
C~ +Kg F»s+ 3F3$s

(2'f)

The two cases (Secs. VA and VB) yield gener-
alized Fresnel formula. The effective refractive
indices n,«~ and n,«, describe the optical behavior
of a crystal having two excitonic resonances with
spatial dispersion. They are similar to those of
one single resonance. "

C. Multilayer system

The use of these effective refractive indices in
their general form is not restricted to the direct
reflectance at the boundary of a medium with ex-
citonic resonances. They may be used in this
form in any Fresnel formula, even of a multilayer
system. " The angle of incidence 8 on the spatially
dispersive medium and the refractive index no
have then to be replaced by the angle of incidence
o. on the first additional layer and the refractive
index n of the upper half space:

A, = (n,B,+ n,F»g~ +n, F»Q, }/(1 +F», + F»,)
(24)

Comparison of Eq. (23) with the Fr'esnel formula
for non-normal incident light polarized perpendicu-
lar to the plane of incidence,

no cos8 —ne«B cosp
+s

no cos8+ nef fB coscjb

with n, sin8=n sina. (28)
F„,=E,/E„F„,=E,/E, . (21)

Conservation of the tangential component of the
In this case 8 may be complex also. The only

condition is that the sequence of the layers is non-
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spatially dispersive media-spatially dispersive
media.

The generalized Fresnel formula of two excitonic
resonances with spatial dispersion facilitate strong-
ly the calculation of reflection spectra with exciton-
free surface layers" or of attenuated total reflec-
tion spectra of excitonic surface polaritons includ-
ing exciton-free surface layers. "
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