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The temperature coefficient of the resistivity, a, of metallic glasses is calculated starting from the same
formalism which has been used to calculate the resistivity in liquid transition metals, An explicit equation is
derived for the temperature dependence which includes both effects due to the decrease in the static structure
factor as well as those due to phonons. The magnitude as well as the explicit temperature dependence of a is
in good agreement with experiment.

I. INTRODUCTION

In many metallic glasses and disordered alloys
the temperature dependence of the resistivity p
is anomalous in that over a wide range of tempera-
ture the resistivity decreases with increasing
temperature. This is in contrast to the normal
behavior for ordered crystalline metals, where
the temperature coefficient of resistivity a = (I
p)(8p/8 T) is large and positive. There have been
a number of theories attempting to explain this
behavior. However, it has been quite difficult to
get a quantitative estimate for the size of 0.. In
this paper the temperature dependence of the re-
sistivity will be calculated using a formalism'
originally derived for simple liquid metals by
Ziman~ and extended to include liquid transition
metals by Evans et al.&' That this theory could
also be applied to metallic glass alloys was origin-
ally suggested by Sinha. ' In applying this theory to
the glass the temperature dependence is included,
as in the case of the liquid, by taking into account
the change in the shape of the structure factor,
S(k), as T is varied In or.der to get an estimate
of the importance of this effect on the resistivity,
a calculation must be made starting from a micro-
scopic model of a glass. In a liquid, S(k) will
depend quite strongly on temperature and can be
calculated using the Percus- Yevick equations. '
A similar model has been used to describe the
glass. ' However, in the solid the change in S(k')
should be calculated as due to the vibration of ions
around their equilibrium positions. We will derive
an expression for this change which will involve the
inclusion of the Debye-Wailer factor. ' When this is
done not only do we get an estimate for the mag-
nitude of a, but also get the explicit dependence on
T, which is in excellent agreement with available
data.

For a transition-metal system the resistivity can
be expressed as'

30~'a'
p =, , sin'[q, (E~)]S(2k'),me*k'r E

II. TEMPERATURE DEPENDENCE OF THE STRUCTURE

FACTOR

The equilibrium structure factor is

Ss(k)= —g e'
N (2)

where 1, is the equilibrium position of the ith atom
and N is the total number of atoms. At a tem-
perature T the atoms will be displaced from their
equilibrium positions to R& =1,+u, and the struc-
ture factor is given by

(k) jS ($ -Ig) Ih (mg-I g)
1 ~0

T e
N (3)

The problem is to calculate the effect on the
.resistivity of having finite displacements u, . Care
must be taken to include not only the decrease in
the intensity of the structure factor but to include
the phonon terms as well. Both processes con-
tribute substantially to p and represent competing
effects. The first will decrease the resistivity as
the temperature is raised and the second will in-
crease it.

We expand the displacements at each site in
terms of the 3N real normal modes f, ,„:

ut= ~

usaf

(4)

where A. labels the polarization and e labels the
mode. If we keep all terms to order ~u, ~ ~', we
can expand Eq. (3) and find

where k~ and E~ are the Fermi wave vector and en-
ergy, respectively, and 0 is the atomic volume.
g, (E~) is the d-wave phase shift describing the
scattering of the conduction electrons, of energy
E~, by the ion cores which each carry a muffin-tin
potential. In this expression, the temperature de-
pendence of p will be determined by the temera-
ture dependence of S(2k~).
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(5)S,(k) = S,(k) — Q (k u.i)' Z s" ' '
2N

Ln order to simp i y is exprd t 1'f th expression we define a transformation relating the normal modes to plane waves:

f, , = f sq'e, ,„%e' =fs'q fisq [c(,q) e, +,„c(e,)e, ,]e%'. (8)

This form of T, ~ is determined by the fact that f, „was assumed to be reaL By substituting Eq. (8) into

Eq. (5) and retaining only terms that include C,„(q)C*„(q) we have

s„(e)=s,(e)-P (u u.,)' s, (e) fees (e e) [c,(q)[')

=s (e)e' '"'+ Q fees (e q)[c (e)['()e.u )',
~a 1

where W(T) =-,' k'Q „}u~}'. The first term contains the usual Debye-Wailer factor and the second term

represents the phonon contribution. For a crystal the second term reduces to Nk'}u, }'.
This expression can be rearranged to give

s,(e)=) ~ [s,(e) (]e'"'"i g ()e .,)*fs'q[s, (e q) [c.,(q)['-(] (8)

(k}

kp

(a)

k-kp &

(b)

(c)

FIG. 1. Schematic diagram of the weighting of ~qe

around q=O involved in the sum in Eq. (8). In (a) a
typical structure factor for a liquid or glassy metal is
shown. In (b) (for k =k&) and (c) (for k &k&) the shading
represents the weight given to the term

~ qs, ~

t near q = 0.
'The shading is proportional to $& (k -q).

The wave vector in which we are interested, 2k~,
is large in metallic glasses and is comparable'
to k~, the position of the first peak in S(k). There-
fore, 2k~-q»0 for all values of q near q=0.
Except near k = 0, Ss(k)» 0 as seen in Fig. 1.
Therefore, the sum in Eq. (8) will be some weight-

ed average of qtlf values of }u „}'and will always
include some significant fraction of terms near
q=O. The factor }C „(q)} reflects the fact thatq
is not a good quantum number of the system
(especially for large values of q). This factor has
the effect of replacing Ss(k —q) by an effective
structure factor, Z, }C „(q) }'Ss(k—q), which is
even more smeared out than the original one.
Actually this will strengthen the assumption we are
about to make so we will take the most trouble-
some case where C,„(q) = 5, , We have shown this
case schematically in Fig. 1. We have shownwhat
the weighting looks like near q = 0 for two values
of k: k =k~ and k &k~. The shading represents the
height of S(k —q). The heavier the shading at a
value of q, the more heavily }u ~}'= }u, }' is
weighted in the sum. Even at low temperatures
where only long-wavelength phonons are excited,
there is strong scattering at large values of k.
This is the remnant of umklapp scattering for
large k in a crystal. However in the glass, as
distinct from the crystal, there is always some
term in the sum which will bring k back to q = 0.
Thus, the phonon contribution to resistivity is
never frozen out in the glass. The relaxation of
the requirement of momentum conservation in the
"dirty limit" in dilute alloys" also changes the low-
temperature resistivity behavior in a similar man-
ner.

Since all values of q are included and since even
at k=ka, essentially all values of }q } are weighted
equally we can, to a first approximation, neglect
the last term. The majority of the phonon con-
tribution is already included in the first two terms.
fn addition the presence of the factor } C~(q) }'
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will further smear out the structure factor. The
result is a very simple and compact expression'.

Spk) = 1+ [Ss(k) —1]e 'vier) . (9)

Qnly a know1edge of W(T) and the magnitude of

S(2k+) is necessary to calculate the temperature
dependence. This approximation is very good at
high temperatures since in the Einstein model ~u, ~

is independent of q and the average value of S(k) is
1. In this range of temperature the experimental
structure factor is fit quite well" by this express-
ion. At low temperatures the error becomes more
serious, but the approximation is still reasonable
because of the arguments presented above; that is,
the phonon contribution never gets frozen out.
The above expression also appears to be physically
reasonable. Since the average value of Sr(k} is 1,
one would expect that upon changing temperature
only [Sr(k) —1] should be multiplied by the Debye-
Waller factor. Equation (7) also yields the cor-
rect high-temperature limit S~„(k)= 1.

We have neglected in this derivation any explicit
mention of the inelastic component to the scatter-
ing. This could be important at low temperatures.
However, if we include energy-transfer effects
we find that they enter into Eq. (8) only through
Ss(k —q) and therefore do not enter into Eq. (9) at
all. This term we have argued is already very
small in the glass and the inclusion of inelastic
scattering will only be a small correction to it.
The resistivity in the glass is dominated by elastic
scattering.

30 'e'
p(T) =, , sin'[q, (Er) ]

x(I+[S (2k ) I]e 2lw O) w(0)l)' (10)

The temperature coefficient of the resistivity can

III. COMPARISON WITH RESISTIVITY DATA

Equation (1) has been shown to give very good
agreement with the experimental values of the re-
sistivity for a number of liquid transition metals. "
It is perhaps surprising that the agreement is so
good considering some of the criticisms of it that
hhve been raised. " It should also be noted that in
many of these materials the mean-free path of an
electron is so short that it is questionable whether
perturbation theory using a t-matrix and a struc-
ture factor can adequately describe the system
since the scattering is obviously strong. Despite
these objections we will analyze the temperature
dependence of this model using the results of Sec.
II. Again good agreement will be found with ex-
periment.

The resistivity as a function of temperature can
now be expressed

be easily calculated:

1 SP 1- Sr(2k~) s W(T)

p sT S(2k) aT

We can get a quantitative estimate of the mag-
nitude of a. In the Debye approximation it is well
known'4 that

W(T}
2 k + '-1 +

2
zdz,

M a o e— (12}

W(T) = W(O)+ 4W(O) l v'(T/e)', T «e
w(0) + 4w(0) (T/e), T ~e; (13)

where W(0) = 3PPk'/8Mkse
For a typical metallic glass we can make the

following estimates, |)~300 K, M=-70 x(mass of
proton), and 2k' —= 3A '. Zener" has tabulated the
values of the integral in Eq. (9). Using this table
and the above estimates we find

Ap(300 K) p(300 K) —p(0 K)
p(0 K)

0 04
Sr(2k r) —1

Sr(2k ')
(14)

For 2k+ near k~, the maximum of S(k), the experi-
mental data" shows that Sr(2k+) —= 3. We expect
for this case hp(300 K)/p=-0. 03. This corre
sponds to the maximum decrease in resistivity that
we can expect for this system with the above pa-
rameters. In addition, from Eq. (10), we expect
the resistivity to vary as T' at low temperatures
and as T at high temperatures. Experimental data
supports these conclusions.

in the studies of Tangonen" on (Pd, „Cu, ), ,P~„
the resistivity was found to vary quadratically at
low temperatures and linearly at higher tempera-
tures Further. more the largest value of &p(300 K)/
p found was -0.03 for (Pd,Cu, )O,PO 2. For other
compositions the temperature dependence was less.
Oberle et al. ,"have pointed out that this decrease
in n as more Cu is added to the system is what
is to be expected if 2k~ approaches k~. They ob-
serve that the composition region in which n is
large and negative in this system is consistent
with data on liquid metals which has been interpret-
ted in terms of the Ziman theory. In Fig. 2 we
compare the resistivity data for (Pd, ,Cu»}, ,P, ,

where 6 is the Debye temperature, M is the atomic
mass, and k~ is the Boltzmann constant. Since
sw/BT&0, n is negative if Sr(2k') & 1, and pos-
itive otherwise. If 2k~ is near k~, the first peak
of S(k}, then a negative temperature coefficient of
the resistivity is expected just as in the case of
liquid

The asymptotic temperature dependence of W(T)
is
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FIG. 2. Resistivity of (Pdp. gCup 5)p 8Pp. 2 as a function
of temperature normalized to the resistivity at T = 0.
The open circles are the data of Tangonen (Ref. 17).
The solid line is the theoretical prediction using the
estimates of M, 2k+, and e mentioned in the text.

with our model. The agreement is quite good.
Hasegawa has studied a variety of metallic glass-

es. He concludes" that the normal temperature
dependence is quadratic at low T and linear at high

T as we have found. For (V,Ni»Pt„)»P» he found"
ap(300K)/p= —0.015. For the Cu: Zr glass (onethat
contains no metalloids} Szofran ef al. ,"and Mizo-
gouchi et al . ,

"have found &p(300 K)/p= -0 03 with

again the same explicit temperature dependence:
quadratic at low T and linear at high T. Sinha, '
who interpreted his data in terms of the Ziman
theory, also found a negative value of a for some
compositions. For the system (Ni~, Pt~,},»P, „
he found hp(300 K)/p=-0. 02 and Cote" found
d p(300 K)/p= -0.01 for Nio»P~».

It is clear that this theory for the temperature
dependence of the resistivity agrees quantitatively
with much resistivity data on metallic glasses.
The magnitude and sign of n is easily explained
by the appropriate placement of the Fermi wave
vector with respect to k~. This theory can there-
fore predict an e of either sign. This is in con-
trast to theories"" which give rise to only one sign
of e. The explicit temperature dependence is also
in agreement with the data both for alloys that
have a positive as well as a negative temperature
coefficient o..

In some glasses, n &0. This could be due to
several causes: (i) The value of 2k+ could be too
far away from b~ to produce a negative a. (ii}
There could be other competing sources for elec-

tron scattering, s-d scattering and electron-mag-
non scattering in magnetic systems.

In one ferromagnetic system, Fe:P, the resisti-
vity was measured'4 both as a function of tempera-
ture and concentration. In all cases it was found
that the resistivity could be fit to the following
form: p(T}= p, + a lnT+ b T' for temperature up to
80 K. An important result was that the coefficient
b varied systematically with composition and had
a pronounced minimum at the eutectic composition.
A recent electronic theory of metallic glass forma-
tion'" has associated the eutectic composition with
that composition for which 2k~=—k~ in the alloy. The
contribution of the Debye-Wailer factor in decreas-
ing the resistivity as we have described above
should also be most pronounced with 2k~=-k~ and
should thus act to decrease the coefficient of the
T' term at that composition. Although some other
mechanism, possibly spin-wave scattering, pro-
duces a large positive contribution to b in this
ferromagnetic alloy the fact that there is a min-
imum in b at the eutectic composition is evidence
of the validity of the electronic theory.

Finally, a word should be said about the correla-
tion between p and n discovered by Mooij." By
confining his attention to only those systems that
had a relatively small temperature coefficient of
resistivity, he found that the resistivity tends to
be larger in systems which have a smaller value
of n. A similar effect can be seen in the model
described above. As 2k~ approaches the peak in
the structure factor, the resistivity should in-
crease and the temperature coefficient of resistivity
should decrease, becoming negative when 2k~ is
sufficiently close to the peak. This raises the pos-
sibility that this model can also be used to under-
stand the resistivity in interstitially disordered
alloys when Bragg peaks are no longer visible as
well as in glasses.

ACKNOWLEDGMENTS

I would like to thank A. N. Bloch and Morrel H.
Cohen for many stimulating discussions and sug-
gestions for improving the manuscript. I am also
grateful to P. M. Horn, K. Levin, and J. Tauc
for many enlightening conversations, and to
D. Markowitz for sending me a preliminary ver-
sion of his paper prior to publication.

*Partial support of the Materials Research Laboratory
by the NSF.

~For a comprehensive review of these theories and ex-
perimental data of liquids, see, G. Busch and H.-J.
Guntherodt, in Solid State Physics, edited by H. Ehren-
reich, F. Seitz, and D. Turnbull (Academic, New

York, 1974), Vol. 29, p. 235.
2J. M. Ziman, Philos. Mag. 6, 1013 (1961).
3R. Evans, D. A. Greenwood, and P. Lloyd, Phys. Lett.

A 35, 57 (1971).
4R. Evans, B. L. Gyorffy, N. Szabo, and J. M. Ziman,

in Proceedings of the Second International Conference



1698 S. R. NAGEL 16

on Liquid Metals, 1972 (Taylor and Francis, London,
1973), p. 319.

A. K. Sinha, Phys. Rev. B 1, 4541 (1970).
N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83
(1966).

YL. V. Meisel and P. J. Cote, Phys. Rev. B 15, 2970
(1977).

P. J. Cote, G. P. Capsimalis, and G. L. Salinger [in pro-
ceedings of the Second International Conference on
Amorphous Magnetism, Troy, New York, 1976 (un-
published)] have assumed a phenomenological equa-
tion which is similar to our final result. Our analysis
will show how this equation can be derived and what
assumptions are involved. D. Markowitz )Phys. Rev.
B 15, 3617 (1977)], has simply multiplied the entire
resistivity for a crystal by an average Debye-Wailer
factor. Our result is different from his and can give
rise to positive as well as negative values of n.

S. R. Nagel and J. Tauc, Phys. Rev. Lett. 35, 380
(1975).

' I. A. Campbell, A. D. Caplin, and C. Rizzuto, Phys.
Rev. Lett. 26, 239 (1971); D. L. Mills, ibid. 26, 242
(1971).
P. Andonov, J. Non-Cryst. Solids 22, 145 (1976).
K. Hirata, Y. Waseda, A. Jain, and R. Srivastava,
J. Phys. F 7, 419 (1977).
N. F. Mott, Philos. Mag. 26, 1249 (1972).

'4J. M. Ziman, Principles of the Theory of Solids (Cam-
bridge U.P., Cambridge, 1969), Chap. 2.

~C. Zener, Phys. Rev. 49, 122 (1936).
' See, e.g. , B. C. Giessen and C. N. J. Wagner, in

Liquid Metals, Chemistry and Physics, edited by S. .Z.
Beer (Marcel Dekker, New York, 1972), p. 633.

' G. L. Tangonan, Phys. Lett. 54A, 307 (1975).
R. Oberle, H. U. Kunzi, and H.-J. Guntherodt, Phys.
Lett. 58A, 272 (1976).

' R. Hasegawa, Phys. Lett. 36A, 425 (1971).
R. Hawegawa, Phys. Lett. 38A, 5 (1972).
'F. R. Szofran, G. R. Gruzalski, J. W. Weymouth,
D. J. Sellmyer, and B. C. Giessen, Phys. Rev. B 14,
2160 (1976).
T. Mizoguchi, S. von Molnar, G. S. Cargill, III,
T. Kudo, ¹ Shiotani, and H. Sekizawa, in Proceed-
ings of the Symposium on Amorphous Magnetism,
Troy, New York, 1976 (unpublished).
P. J. Cote, Solid State Commun. 18, 1311 (1976).

4J. Logan and M. Yung, J. Non-Cryst. Solids 21, 151
(1976)~

S. R. Nagel and J. Tauc, in Proceedings of the Third
International Conference on Liquid Metals, Bristol,
U. K., 1976', edited by R. Evans and D. A. Greenwood
Qnstitute of Physics and Physical Society, London,
1977), p. 283, Series No. 30.
J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).


