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Theory of the intraband magnetoabsorption is derived in the quantum li~t for imperfect semiconductors and

mixed semiconductors with composition fluctuations. Both band edge and effective mass are regarded as

position dependent. All harmonics of cyclotron resonance appear in Faraday configuration (for both cyclotron-

resonance-active and -inactive polarizations). The efFective-mass fluctuations give "steps" at the harmonics of
cyclotron resonance on the magnetoabsorption curve for E II A.

I. INTRODUCTION

Many semiconducting alloys can be prepared
with composition varying over a wide range. Typ-
ical examples are alloys whose hvo components
have similar crystal structure and lattice con-
stants, e.g. , Hg, Cd,Te or Cd, Zn, S. When the
composition of such a mixed crystal is not uniform
[i.e., v=v(r)], band parameters (energy gap, ef-
fective mass, etc.) are position dependent, ' '
which leads to a number of interesting phenomena.
Variation of the energy gap produces a difference
between fields acting on electrons and holes (so-
called guasielectric fields') and strongly modifies
several physical effects. The effective-mass
gradient leads to nonlinear free-carrier effects
both at the optical" ' and at lower" frequencies.

The effective-mass gradient may also influence
the cyclotron motion of free carriers. ' This phe-
nomenon was studied in detail for uniform effec-
tive-mass gradients. " A uniform band-edge
gradient (i.e., the electric and/or quasielectric
field) was also taken into account. A nondegener-
ate parabolic and spherical band was assumed,
and spin effects were neglected. Carrier concen-
tration was assumed to be low enough to neglect
plasma effects. The modified Landau levels and
the intraband magnetoabsorption was calculated.
The effective-mass gradient (but not the band-
edge gradienti) was shown to change the selection
rules of cyclotron resonance, allowing transitions
with 4n =+2.

In the present paper we are interested mainly in
mixed semiconductors which are macroscopically
uniform but have microscopic Quctuations of com-
position. An unavoidable reason for the existence

of microscopic fluctuations in an alloy is the fact
that the atoms of one component substitute the
atoms of the second component more or less at
random (this gives rise to the so-called "residual
resistance" of alloys). However, large micro-
scopic Quctuations of composition may be due also
to, e.g. , fluctuations of temperature during the
crystal growth, if the segregation coefficient dif-
fers from 1. As we will show, the intraband mag-
netoabsorption can be used as a tool to study these
microscopic fluctuations of composition in detai1.

To this end, we adopt all the assumptions of the
Ref. 11, but we allow for the most general form of
the position dependence of the effective mass and
band edge. In Sec. II the radiation-induced intra-
band transition rates are calculated and it is shown
that in the presence of composition fluctuations
there are no selection rules for magneto-optical
transitions. In Sec. III we restrict our considera-
tions to the quantum-limit case and calculate the
magnetoabsorption for he & 2 and for the radiation
electric field perpendicular or parallel to the ex-
ternal magnetic field. It is then shown that there
exist some effects due only to the effective-mass
fluctuations. In Sec. IV we discuss the results
and we present some numerical examples.

It should be mentioned that our results apply not
only to mixed semiconductors with Quctuating
composition but also to, e.g. , doped semiconduc-
tors which are not alloys. Of course, in the latter
case only the band edge fluctuates (the effective
mass is constant). In Sec. IV we present results
of the calculation of the intraband magnetoabsorp-
tion for a semiconductor with ionized impurities.

Our results may be applied also to crystals with
internal strains. In this case, both band edge and
effective mass may fluctuate.
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I
m* '(r} =m,* '+m» ' g(q) exp(iq. r),

q
(2)

IL MAGNETOAPTICAL TRANSITION RATES

The effective-mass Hamiltonian for an electron
of the charge -e will be written in the form

X =-,'$-ikV+(e/c)A(r, t)]', I/m»(r)),

+ U(r) -eQ(r, t),
where [ ~ )+ denotes the anticommutator. (With-
out symmetrizationX is not Hermitiani' ') m»Qr

and U(r) are the position-dependent effective mass
and conduction-band edge, respectively, A(r, t) is
the vector potential, and Q(r, t) is the scalar po-
tential of an external electromagnetic field.

The form (1) of X is a natural generalization of
an effective-mass Hamiltonian for mixed semi-
conductors derived in the "virtual-crystal" ap-
proximation in the absence of magnetic field."
In the latter case relativistic and spin effects were
neglected, and a nondegenerate parabolic and
spherical band at 1 point was assumed for the
high-symmetry crystal. An important assumption
was that the effective mass and conduction-band
edge change slowly on the dimensions of the unit
cell. The over-all change of the effective mass
and conduction-band edge on the electron wave-
length was also assumed to be small. Recently,
the effective-mass Hamiltonian of the form (1) was
derived under the same assumptions for the case
when an external magnetic field is present. ""

In this paper we are interested in the effective-
mass and band-edge fluctuations due to the fluctu-
ations of composition and to the crystal imper-
fections. Therefore, it is natural to expand the
position-dependent inverse effective mass and
band edge into Fourier series:

= (2s/L )Q (a =x, y, z), (4)

where Q„are integers. To keep m* and U real we
have to assume

I(-q) = p*(q) ~

v(-q) =v»(q) .

(5)

(8)

To justify the Hamiltonian (1) it is necessary to
assume that p. and v are smalL We assume
also p, and v small enough for nonexistence
of electron bound states. Moreover, the
contribution to the calculated physical effect given
by q & q„~ should be negligible. By q„~ we mean the
electron wave number at which the nonparabolicity
of the conduction band becomes important.

We consider the case of static uniform magnetic
field H, parallel to the z axis. We use the dipole
approximation, i.e., we assume a uniform oscil-
lating electric field of radiation of the form

Re[ E exp(-i(ut)], (t)

where E is a complex vector. Az should be smal-
ler than the energy gap. The vector potential is

A(r, t) =(O, H Ox) ( +/acr) I (mEe
' '), (8)

and the scalar potential vanishes:

P(r, t) =0 . (9)

In the weak-radiation approzimation, using Eqs.
(2), (3), (8), and (9), the Hamiltonian (1) can be
written in the form

X Xo + Ãf + Xp + Xpf (10)

m,* ' and U, are the average values of the inverse
effective mass and band edge, respectively. The
summation runs over all qe 0 allowed by a period-
icity box:

U(r) =U, + v(q) exp(iq r) . (3) where

8' s a ' 8'x —— + +U2m+ w' ~' ey az'

x'
Xf » p (q) exp(iq r) a +iqV ,' q ' + 2i——, ——q—„,——,+ Z—v(q)exp(iq r)

0 q

eX,= i Im(E-, e ' ') +Im(E e —' ') i + —+—Im(E e ' ')—
A2 ay Bz

~1
X,f = iM-p(q) exp(iq r) 2Im(E, e '"')—

(12)

(13)

+2Im(E e ' ') i —,+—+2Im(E, e ' ')—+iIm[(E q)e ' ']
Bz

(14)

and X =(eii/eH)~2 is the usual magnetic length.
In the present paper we are not calculating transitions which are allowed in the absence of fluctuations,
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i.e., the cyclotron resonance transitions. In fact, we will assume &o & ~„, where (d„=eII/c)n,* is the cyclo-
tron frequency for the average value of m* '. %e are interested in the contributions to transition rate
proportional to (E(' and of not higher than the second order in p and v. To calculate the intraband mag-
netoabsorption we can use the second-order perturbation calculus, as it is done in the theory of free-car-
rier absorption in the absence of effective-mass fluctuations and magnetic field. (See, e.g. , Ref. 14.)
However, there is one important difference. Namely, the first-order matrix element of the time-depen-
dent perturbation does not vanish in our case because of 3C,i. Moreover, it is of the same order in (E(
and p as the second-order terms given by products of matrix elements of X& and X„. Therefore, some
interference of the first- and second-order perturbation contributions will appear due only to the effective-
mass fluctuations. To take this into account we use the general formula for the transition rate calculated
up to the second order of perturbation.

ln our problem this formula reads (see Appendix)

— r 1((j,& (,' „&=,(& ——(() '„—() „))

x &k„k,n [X,[k„k,n)+
apg» yf"

Sa" "~A' '5 N

&k„'k,'n')3C~[k„"k,"n')&k„"k,"n"[3C, [k„kgn)(g~.„—gg, „) '

k»n» ~k ff
S g

2

&k„k.n )X,)k„k:n )&k„"k."n')X, [k,k, n)(g,,„„-g, „)-'

for g),&„.& g» „. The transition rate for transitions in the opposite direction is the same. (k„k,n) is a
Landau function, i.e., an eigenstate of X„of the form

( k„k,n) = (I g,) '~' exp [i(k„3) + k,z )]f„(x-x,), (16)

where f„ is the nth harmonic-oscillator function of the characteristic length A. , n =0, 1, . . . , and xo = -l).'k„.
g~ „ is the energy corresponding to )k„k,n)

g~ „=%a„(n+-,') +(k'k,'/2m*, ) .
k„and k, have the form

k„=(2w/L„)K~ ((y =y, z), (18)

where K~ are integers. If the electron is in the periodicity box, -&L, ~x, & &L,. This yields a condition

L~/2l(. ' & k-„~I ~/2l(.

The operator X, is

Ne 8 . x 8 8
X+ =- E,—+E„z—,+ —+Eg-

Nlo ~ 8$ A. Qp 98

I 8, x 8 9+ p. expiq r E —+I-„ i —,+—+Eg —+ 2iE q' ax' "
A.
'

ay
' az

The matrix element of X& between two arbitrary Landau states is

(k„+q„k,+ q, n' ~Xi ~ k, k,n) = g exp(-is'k„q, )
ax

x (v(q)E(n', n, q„,q, )+-if&u„p (q)[[2n +1+-,'X'q'+A. 'k, (k, + q, )]E(n', n, q„q„)
+ (~~}' 'X{q„iq,)F(n', n —1-,q„,q, )

(20)

+[2(n +1)]'i' X(q +iq„)E(n', n +1,q„,q,))), (21)
where summing over q we omit q, =0 if q„=q, =0. E is defined as

)"( ', », »,.q.) ff (v z*q, )e" f(x=)d„. '
(22)

This integral is equal to"
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F(nP n q q )
2-)I' ))i /2(n i/n) i)»tn{N'-)))/2

n'-nlx exp(- —,'ix'q, q j[iiq, +sgn(n' -n)Xq„] " " exp(--,'X'q', )L "„{ )(2&'q J) (23)

where sgn(n'-n) =(n'-n)/[n'-n[ (and equals 0 for n'=n). We have also denoted

q, =q. +q„,
and L,' (x) is the Laguerre polynomial

(24)

(25)

(26)

where we have used the notation

As we are not interested in the contributions to the transition rate of higher than the second order in p

or v, in the second-order perturbation terms of Eq. (15) we keep only p-independent part of the matrix
element of X, which equals

(k„+q„k, +q, n'iX+(k„k, n)„., = (ffe/m-o(())5„5„(iZ, k 5„„.+(1/X}[n'/'Z, 5„.„,—( n+1) '/Z5„. „„]},

Z, =2 '/'(Z, aiZ„) . (27)

In the following we restrict our considerations to the case when for the initial and final states we have

n' -n) 1

and g&,„i)g~ „. For such n and n' the matrix element of the full operator X, is

&k, +q„k. +q, n'iz, ik„k.n&i„, „i„

(28)

exp( i&'k„-q, ) p(q)( ,i(E -q+2 Zk, )F( n', n, q„q,)+(1/A)[n' 'Z, E(n', n —1,q„,q, )mo~

-(n+1)'/'Z E(n', n+1, q„,q, )]j . (29)

The second-order perturbation contributions to Eq. (15) are visualized on Fig. 1. There also exists, of
course, a first-order contribution which is not depicted on this figure.

As we want to calculate the absorption, we need only the value of Wl&& „& l&+, &+, „li averaged over all
k„. We will denote it by W& „,«, „.&. To obtain Wwe use Fig. 1 and we insert Eqs. (17}, (21), (23), (26),
and (29), into Eq. (15). Making use of the functional relations between Laguerre polynomials, and of the
formula

Q exp[i|].'(q,' —q, )k„) = *," 5, ,

(strictly valid for L„ 2/' vX/, a =x, y, being integers), we find after some algebra

(30)

1 ge nt
W(k. , n;q„q„n') =5 (d —~(@,„„—k,.) „,i2

q

co

L,„'"(-,'»*»*,) t»t»„(»*q,*+»'+» ~ 2) ~ ', [» — .,(»'- )]*+ -co Sqg~

, (v[(n'-n)(()+(n'+n)u, J +L„","(~X'qf)» n'&()(d„

+ ",* &*
" L"„"(g&'q~) &),', (& (.('q,'+)n'+n+1) +(d'+ &," [{()—v„(n' n)]'-

co co g gq2

(31)

—„, , a)[(n'+n}(d+(n'-n)(d, J +L„","(,'X'qi), , n'cu-'
A. qi C 8 j. L g2q2

yg'-fl 1+i ' ' L"„"(X'qi~)({), ( X'(q0,'+in'+n+1} — ', [(()' —{(),' (n' n}']}
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In this formula L,'(x) should be replaced by zero if l is negative. It follows from Eq. (31) that in the pres-
ence of effective-mass and band-edge fluctuations there are no selection rules for magneto-optical transi-
tions: any change of k» k„or n is allowed.

III. INTRABAND MAGNETOABSORPTION IN THE QUAN TUM LIMIT

We restrict the following considerations to the quantum-limit case at 0 K. In other words, we assume
that the electrons occupy only all 'he states with n =0 and I k, I

& k,v, where

(32)

and N, is the electron concentration. The condition of the quantum limit reads

k(u~0) g kgb/2)n~~ (33)

or

(34)—,'X'k' &1.
Power absorbed per unit volume because of transitions from all occupied states (of n =0) to all empty

states of quantum number n'(n'& 2) will be denoted by P„.. Using Eq. (31) (for n =0) and replacing the sum-
mation over k, by integration we obtain

~km' ~ cp
Puffs 6 4) 4)gPS 2 g

Zekg — kg+2(& —&On')&1)I I kg@+kg+2(u) —)d, on' }))(gihgf)"

CO ucp trop 47

-', g)q) ) *,*;"sa„(xh'e,' ~ n' ~ 2) ~ ', (z — „n')' —,, ' (u v„))Sq, ' Aq,

47 Sqg
(35)

where by definition e is equal to 1 if the indicated inequality is fulfilled, and equals zero otherwise.
It should be noted that the wave vectors IqI » ~n'/A. give practically no contributions to P„.. Therefore,

our assumption q & q„~ is fulfilled if only m Scan, p&8 p where S„~ is the electron energy at which the non-
parabolicity of the conduction band becomes important.

If p(q) and v(q) are random variables, we can replace in Eq. (35) IPgj)1', I v(q)1', and p(q)v*(q), by their
average values (I p(q)1'&~, (I v(q)1'),„, and ( p(q) v~(q)&,„.We use the notation

&I u(q) I'& =L.LP.&I ~(q) I'&, ,

& Iv(q)1'& =L.LP.&I v(q) I'&.. .

(&(q)v*(q)) =L„L,L, (&(q)v*(j)).,

(35)

(37)

(38)

We can then replace the summation over q in Eq. (35) by integration.
For circularly polarized radiation in the Faraday configuration we obtain P„., if E, W O, E = E, =0, i.e.,

for CRI polarization (cyclotron resonance:nactive), and P„. if E e 0,E, E, = 0, i.e., for CRApolarization
(cyclotron resonance active), where
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i o 28$&i' tl (81T II (d(id% &d~&&)

x Q'q ~A, 'q' ""exp -&A, 'q
+1

tm+—,((v(q)~') + —s)„(-,'X'q,' +n'+ I)+ g', ((u —(u„n')'+ (u —,, n'(u~(+ )0
kq,' $2q 2

x Re(utes*(i)) ~ —,
'

(a.,( &*q,* ~ n' ~ 1)

m* 2

+ ', ((g —&g„s')'v ~ —,, n'(ue(+1)0) ((ii(q)~'} (39)

(4o)

(41}

Deriving Eq. (39) we have used relations (5} and (6), and we have denoted

q„=~k,r —[k,'„+2(mg/I)(& —&„n')]' '),
q„=k,r + [k,'~ +2(moi'/g)((u —&u„n')]'~' .

For radiation polarized linearly along the magnetic field (E, E =O, E, oO) we obtain in a similar way

'0 2m+ n'(16v'k '

d'if (-,'A'q')" exp(--,'X'q,')

x 'yq, q. , (l~($I*),r ~.,(,-z*q,*,~,i):,(~* ~.*,~ *)) R~(„tep %)
gl

+-' ~.&(k~'&.'+ii'+1) — '& (~'-~.'.s") &Iu(q}1'}
kq,' (42)

It is interesting to observe that the expression P„—[(~++„)/(~—+,0}]'P„i, does not depend on (~ v(q)~').
For &o = n'~„ the expression (39) has a, divergency. Close to &u = s'~„, i.e., for

i (u —(u„n' [/(u„« ,'X'k,'r—,

there is

(43)

g 2 2 2

n'nsw'n'( '+ s)*a'(a., I w —u.,n'I)

d'q -'X'q' ""exp --,'A. 'q~ —, v qi ' + " 1+2m' 1 — » & p1)0 Re p. q~ p*q,

2nl 2

+ —'m,' 1+2n' 1 —,, e(wl)0) (ig(q~}i'}
A. q~

(44)

where

q, =(~.,e„O) . (45)

P ~i has no divergency [see Eq. (42)] ~ However, its derivative with respect to ~ has divergencies at
=I'e„—(kk,'r/2m, *) and at &u =n'&u„. The former corresponds to the square-root shape of the absorption
edge for the considered indirect transitions. Close to the latter point, i.e., for u fulfilling the condition
(43), there is

e 2m,*
n'il —

I .I I |6v4 l2k3
CO

x d'q~ &X'q~" exp -&X'q' Re p q~ v* ~ +~A„n'+1 p q (46)
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c).
The function v(r) can be expanded into Fourier

series
~l

v(r) =v, + Z p(q) exp(fq r),
Q

where

p(-q) = p*(q) .

(49)

(50)

From Eqs. (2), (3), and (47)-(49), we obtain the
relations

(Ii (q) I'& = ~!& I p(q) I'&,

Re& p(q) v:(q)& = ~.(P. r.-q') &I p(q&I'&,

&lv. (q&l'& =(p. r.q-')'&I p(q)I'&,

(51)

(52)

(53)

FIG. 1. Second-order perturbation contr ibutions to
the transition rate [Eq. (15)] for transitions n

Vertical transitions are due to radiation and the oblique
ones to fluctuations.

1/m*(r) = I/m,*+(I/m, *)a, [v(r) —v,],
U, (r) =Uo+ po[v(r) -vo]+roa[v(r) -vj,

(47)

(48)

where n„P0, and y„are some constants given
for the composition v, . m,* ' and o,, can be de-
termined from the measurements on uniform
mixed semiconductors. Of course, the expression
(48) involves the position dependence of the band
edge due only to the fluctuations of composition,
and not to, e.g. , potentials of ionized impurities
or defects (we have indicated this by the subscript

The expression (46) is symmetric with respect
to the point e = n'e„. Therefore, there is a "step"
on the function P„.„(+). This "step" is independent
of &Ivy)l'). It is due only to &I p(q)l') and

& p(q) v*(q)). If there are no strains in the crystal
&I p(q)l') is given solely by fluctuations in compo-
sition. To &p,g) v*gj)& only this part of band-edge
fluctuations contributes which is correlated in

phase with these composition fluctuations. Such
band-edge fluctuations follow from the dependence
of the band edge on composition, but may be due
also to correlation of the concentration of impur-
ities, defects, etc. , with composition.

We are interested in mixed semiconductors of
the type A, ~i,&B„t», A, „i»B„&»C, etc. , [0 ~ v(r)
& 1]. The average value of v(r) will be denoted by

v, . For small Ivr -vol and in the case of a non-
degenerate spherical and parabolic band minimum
in the F point of a high-symmetry crystal there
is'

p(q) =(L,L„L,N) 'Z exp(-iq R)ea (54)

where the summation is over all Bravais lattice
sites R in the volume L,LQ„N is the number of
unit cells per unit volume, and 8R is a random
variable of the values 0 or 1 for the unit cell cor-
responding to R being of the type A, AC, etc. , or
B, BC, etc. , respectively. The random variables
8„ fulfill the condition

vo =(L,L„L,N) 'Z ea ~

R

Using Eq. (54) and (55) we find (for qx0)

&I p(q)l'& =vo/N+(L, Lg,N )

exP [fq(R'- R)]&ea e-„&„.
R'R

(55)

(56)

In particular, for a perfectly random alloy (and
sufficiently large L,L+,) we have for R'x R

&eR'eR & ~ = &ea'&i, &ea& -"0

where (I p(q)l'& is defined in the same way as
&Ip(q)l'& [see Eq. (36)].

Let us note that the terms of expression (49)
corresponding to lql of the order of reciprocal-
lattice vector are meaningless, as the unit cell of
the mixed semiconductor is always of the type A
or B, AC or BC, etc. It was already mentioned,
however, that such high q values do not contribute
to P„..

To calculate p(q) for lql much smaller than the
reciprocal-lattice vector we use Eq. (49) and as-
sume that v(r) =0 in the unit cells of the type A,
AC, etc. , and v(r) =1 in the unit cells B, BC, etc.
Strictly speaking, the exact form of v(r) is unim-
portant if only the integral of v(r) over a unit cell
A, AC, etc. , is equal to zero, and that over the
unit cell B, BC, etc. , is equal to 1. We obtain
(for qe0)
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&I p(q}1'& =(I/N}c.(1 -cd (58)

As it should be, (( p(q)('} vanishes for both vo =0
and ep =1.

IV. DISCUSSION OF RESULTS

Summarizing our results we should note, first
of all, that for any polarization and frequency the
absorption coefficient is nonvaniphing, contrary to
the intraband magnetoabsorption in an ideal crys-
tal, but similar to the free-carrier absorption in
a nonideal crystal in the absence of magnetic field.
Second, all harmonics of cyclotron resonance,
i.e., absorption peaks at & =n'+„, should appear
in both cyclotron-resonance-active and inactive
polarizations in the Faraday configuration. These
peaks are due to the Quctuations of both the ef-
fective mass and the band edge.

The most striking effect is the appearance of

the "steps" at z =n'+„on the absorption curve for
E(( H, due only to the effective-mass fluctuations
(with an influence of the correlated band-edge
fluctuations). This effect offers a method of de-
termining the composition fluctuations in a mixed
crystal from the strength of peaks on the deriva-
tive-of -absorption curve. To avoid superposition
of peaks at v =s'&u„and at &u =n'&u„—gk,'r/2mo~,
one should have &A,'k,'~ not too close to either 0 or
1.

To estimate the order of magnitude of the ex-
pected effects, let us assume that the band-edge
fluctuations are due only to the composition fluc-
tuations and that yp =0. Moreover, we will as-
sume a perfectly random alloy. From Eqs. (42),
(51)-(53}, and (58), and from the relation between
P, „and the absorption coefficient K„i„, i.e.,

X+tg = (8$/CK "IE,I')P tg (59)

(s is the dielectric constant of the crystal), we ob-
tain

K'„i„=[e'v, (1 eg/v'c-ffN~' 'X']e(X~ 1 —Y)(ajX')((K —1+Y)' 'Y' '(~3 Y+C) +(X —1+Y)' 'Y' '(1+CY+C')

+(X' —1)Cln{(X—1(' '/[Y' '+(X-1+Y)' ']j) . (60)

We have used here the notations

X=(u/s (o 0

Y = (1/2s') A,~her,

C =1+(I/n')(I+2PJ~, ~,J .

(61)

(62)

(63)

Let us now assume the following material pa-
rameters which correspond roughly to the n-type
Hgo»Cd»Te at low temperatures: v0=0.25, N
=1-5x10"cm ', &=10, mp*=0. 0278py Rp 10' and

pp 0.5 eV. We assume also N, =6.8x 10"cm
andH =50 kG, and we will discuss the case of n'
=2. Plasma effects should not be important for
the normal incidence on a semiconductor plate,
as g~~ = 21 meV (&u~ is the plasma frequency) and
Sco„=29 meV. The assumption n'@g„&g~ will
also be fulfilled if the band gap is of the order of
200 meV (as in Hg, »Cd, »Te} or larger. The
quantum-limit condition is fulfilled as —,'A. 'k,'~ =0.5.
The magnetic length A. =115A. We have Y=0.25
and C= -0.23.

It can be seen from the formula (60) that positive
C corresponds to "downwardS steps, " and negative
C to "upwards steps. " Note that for our param-
eters C is positive for n' ~ 3.

K'„( vs X is plotted on Fig. 2. Its derivative
dK„~/dX is shown on Fig. 3. The "step" on Ka~
curve is weakly visible while the divergency of the
derivative dK', ~~/dX should be rather easily ob-
servable.
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0

FIG. 2. Absorption coefficients due to composition
fluctuations (Q (() and to ionized impurities (X2' (() vs
frequency for the numerical example discussed in the
text.

As already mentioned, the actual Quctuations of
composition in a mixed semiconductor may be
much larger than those in the perfectly random
alloy. Consequently, K'„.„may be much higher
than this given by Eq. (60).

Our general formulas, e.g. , Eq. (42), can be
also used to calculate intraband magnetoabsorp-
tion in imperfect semiconductors (which are not
necessarily alloys). Let us study perhaps the most
interesting case of a semiconductor doped
highly enough to have all the impurities
(donors) ionized. Of course, only((v(r)('} con-
tributes to magnetoabsorption in this case. One
can observe from Eq. (29) that the first-order
perturbation to the transition rate vanishes. For
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simplicity we will neglect screening of impurity

by free electrons. H& is given by the charge
density

tion is over the random positions 8& of the impur-
ities (N, /Z impurities in a unit volume). Using the
Poisson equation we obtain

(64}d(r) =eZZ 5(r-R, ) -eN, ,

where eZ is the impurity charge and the summa-

(~ I (q)]') =16v'e'ZN, /It'q' .

From Eqs. (42) and (59) we have

(65)

Skg~ 48 ZNe(a)co
(d 4) pR

mp CK S.g uP

"(-()"((-'*&*~!.)" ~m(-*'&'q!.) K (-l&'0!.) —(l&*e!,)" exP(l&*e!,) K (-l&'I!,)
n'

p (-() -
() -()(((-.'e.d"- -(- e. ,)"- )), (66}

where the exponential integral function i8 defined
(for x&0} as

Ei(x) = — —e dt .
"1

~g
(67)

We have stated already that there is no diver-
gency at u =n'e„of the absorption coefficient for
E

~~ H, and that if tI(q) =0, the derivative of the
absorption coefficient is also finite. In fact, the
derivatives of K„l(( are finite up to the (2II'- I)-
fold one.

Assuming Z =1 we have calculated K'„, for the
values of parameters used in the previous ex-
ample. The result is plotted on Fig. 2. K2]] is two
orders of magnitude higher than Ks) (for a perfect
random alloy) but has no peculiarity near (() = 2&()„.

It was already stated that the magnetoabsorption
coefficient for cyclotron-resonance-active and
-inactive polarizations (in the Faraday configura-
tion) has logarithmic divergences at ~ =n'&()«[see
Eq. (44)]. These divergences do not vanish for
ttgl) =0, i.e., they will exist also in a semiconduc-
tor with ionized impurities, which is not an alloy,

and will be proportional in amplitude to the im-
purity concentration [see Eq. (65)]. It is interesting
to note that relatively strong absorption peaks at
harmonics of cyclotron resonance have already
been observed in n-type InSb, " "and were in-
terpreted as transitions involving plasmon emis-
sion. "" One can speculate if these harmonics
are not due, at least partially, to the mechanism
described in the present paper, corresponding to
electron-ionized impurity interaction.
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APPENDIX

Suppose some quantum system is perturbed by
the operator

0.2
XI cos&t + X, sinet + X3 (A1)

where X„X„andX, are Hermitian and time-
independent operators. We are interested in tran-
sitions between two eigenstates of the unperturbed
system ~a) and ~b), of different energies (6, e h~).
Let us define

X~ —X~ + zX~ (A2)
I I I I I I

0.7 0.8 0.9
and assume that we have two small parameters ~
and P in our problem. Suppose that for all eigen-
states (c) there is

FIG. 3. Derivative of absorption coefficient due to
composition fluctuations with respect to frequency vs
frequency for the numerical example discussed in the
text.

(c ( x, ( d) ~ a if 8, = (g, ,

(d(X, [c) a if S, =S, ,

(5(X,(c)(c[X„,[a) ~ a'P,

(A2)

(A4)

(A5}
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and that there is

&dlx, lc) ~ al8 if h, =8, and g„=g~ (A6)
W. ,=, 5 I~--(S, -S.)I &hlX, ln)

and

X cxP. (A7)

By the relations (AS)-(A7) we mean that the cor-
responding matrix elements are at least of the in-
dicated order. %e assume also that if

g &hlx. l.&& ix, l.&(h. -~.)-
C

~c~~b

2

&&IX.Ic&&clX,ln&(&, —&.) '
C

~c~ ~a

8, x h. , &hl x, Ic) ~ o. ,

then

(A8)
(A12)

The transition rate in the opposite direction is
the same:

h(ox*(8, —h, ),
respectively. If

8, v 8„&clx, la& ~ a,
then

R~e+ (8, —8,),

(A9}

(A10)

(A11)

+a~ b +b~a

Let us now establish the correspondence:

X, cosset + X, sincut = X„~X„f,
X3 Xf

(A13)

(A14)

(A15)

(A16)
respectively.

In the transition rate 8', b we neglect the terms
of higher than the second order in P, and we keep
only the terms proportional to z'. Up to the sec-
ond order of perturbation calculus we have for
g &gb

p =
I ~(q)1, (A17)

The eigenstates of the unperturbed Hamiltonian
are the Landau functions. The assumptions (A3)-
(All) are fulfilled and for the transition rate we
obtain the formula (15}.
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