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Electron-spin double resonance by longitudinal detection.

II. Signal dependence on relaxation times
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The line shape of the longitudinally detected electron-spin-resonance (LODESR) signal is studied as a function
of the relaxation times of the considered spin system. Assuming low saturation as an approximation, analytical
expressions of intensity and linewidth are obtained for the signals due to some main harmonics. These results
are compared with experiments performed on different spin systems in solids. Direct measurements of
microwave field strength in the resonant cavity have been obtained by a new technique using the field-induced
shift of the resonance frequency of a spin sample. Comparison of LODESR method with some other double-

resonance effects is discussed. Finally, it is shown with experiments that the LODESR method provides in a
simple way an immediate measure of variations of longitudinal relaxation times.

I. INTRODUCTION

In a, previous paper' (hereafter referred as I) we
considered an electron-spin system irradiated with
two transversal waves at angular frequencies &„
and co„both near to the resonance frequency coo

of the system; in I we showed that the longitudinal
component of the magnetization oscillates with an
angular frequency

~
~„~,

~

and its multiples.
Then, longitudinal detection of electron-spin reso-
nance (LODESR)' could be used to resolve super-
imposed paramagnetic spectra in a mixture of dif-
ferent spin systems.

In fact, the response of spin species having slow-
er longitudinal relaxation is enhanced over the
spin systems with fast relaxation times. Note that
such a behavior is just the opposite of what occurs
in usual electron paramagnetic resonance when
saturation is reached.

However, detailed implications of the theory of
I were only numerically developed. In this paper
we present new analytical derivations concerning
some phenomena of actual experimental interest.

In Sec. II we consider the theory regarding the
LODESR signal leading to analytical formulas re-
lated to such topics as linewidth, saturation, in-
tensities of harmonics, shape, and dependence on
relaxation times.

In particular we offer further evidence about the
main advantage of the LODESR method, that is,
the linear dependence on longitudinal relaxation
time T, of the first harmonics of the detected sig-
nal. From a practical point of view, this allows a
straightforward and direct measurement of the
variations of T, in contrast to the usual saturation
method.

In Sec. III we present some new experimental
techniques to improve the apparatus used in

LODESR signal detection. In particular we suc-
ceeded in measuring the e.m. field intensities direct-
ly inside the resonant cavity. Information about the
field amplitude is derived from the shift of the ESR
signal detected with one e.m. wave, while another
wave irradiates the sample with a varying level
of power. Such a procedure turns out not to depend
on relaxation times.

Section IV contains experimental results con-
firming theory, and a thorough discussion.

II. THEORETICAL SECTION

The response of a spin- & system at paramagnetic
resonance transversally irradiated by two e.m.
waves is thoroughly considered in I, to which we
refer for more details. In our treatment we use
second quantization to describe e.m. fields; the
operators acting on the total system (fields plus
spins) are represented on the basis

where m is the spin z-component quantum number
and e„, n, are the photon occupation number of the
two waves.

The total Hamiltonian can be written

+S ++8 +I'
Assuming 5=1, the Hamiltonians of the isolated
spin system and of the radiations are

Kq ——cooS

and

respectively, while the interaction Hamiltonian is
given by
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~+ 2, n„—1,n, —+1),
~

—&, n„—l, n, +2), . . . (2)

labeling them with. . . —2, -1, 0, 1, 2, 3. . . .
The label 0 corresponds to the state ~+ „n„,n, ).

I.et us write the density operator for the total
interacting spin-radiation system as p = pp+D,
where D contains the full effect of the relaxation
mechanism, and pp is the density operator at
thermodynamic equilibrium. It is shown else-
where'4 that the operator D obeys the relation

R~ I
Tr[exp —p(x, +x,)] '

where we introduce ~ as the relaxation superop-
erator; P =1/kT is the usual Boltzmann factor.

In order to estimate the kth harmonic of the
longitudinal component of the magnetization M,
with respect to (~„&u,) we have just to calculate
the statistical average'

(gpsS at'a')/n*'n" =gp, sTr(DS, a~~a')/n*"n».

(4)

n„and n, are the expectation values of a„and a,
on their coherent states.

Equation (3), if represented on the basis system
(1) labeled as in (2), becomes a linear algebraic
system for the matrix elements D;, .

We note that due to the high number of photons
n„annd, the states ~m, n„, n, ) and ~m, n„+1,n, —1)
are physically equivalent. This implies the recur-
rence rule

D,. &
=D,.+»~&+2

Thus, from (4) and (5) we get

2'~(DO 2 D~ q)+c c

for the first harmonics (i.e. , k = 1) in (v„—to,),

2 g p, ~(DO ~
—D~ 5) + c.C.

for the second one, and for the nth harmonics,

(5)

x =x"'+x"'= ( „/2v)'"( '„+ „)s„
+ gp, ~(~,/2V)'~'(a, '+a, ) S„.

In the above equations, &0=g p, ~Hp; a„a„and
a~, a~ are the annihilation and the creation opera-
tors for the two waves, respectively, t/' is the
volume in which the e.m. waves are contained and

jlj, ~ is the Bohr magneton.
In order to obtain the response of the spin sys-

tem we need only consider a nearly degenerate
manifold of eigenstates of the Hamiltonian X~+X~.'
The states (1) which we consider here can be
ordered in the succession

0, 2n 1,2n+1 '

Moreover, we obtain from (3) the basic equations
for the matrix elements of the operator D:

(i/ T) D„=X„(D, „, —D „)
+A.,(D, „—D „, ) —nh D „, (7)

(L/T2)DO 2 y 2X Do 2~ 2X Do

—[6,+(n —1)b~]DO 2„~+X,(u, A,

(8)

(i/T, ),D, = 2A.„D, ,„,+ 2X,D, ,„
+ (h~ —ng)D~ 2„—A.„(u„A. (8')

In the above equations A,„and A., are the matrix
elements of Kl for the x and s wave, respectively;
h, =e, —v„b2=&, —+„, and A is zero where
nW1, and otherwise is p/p, where p the number
of the states [Eg. (1)] which are considered.

We can estimate A.„and X„ through a classical
representation of the fields H„"' =2H', ' cost@ t(n
=r, s), to give (for a spin- —,

' system)

1 (r)
A,„=—,gp, ~H,'"' and A., = —g p. ~ H,"'.

Note that the matrix elements D»„ taken be-
tween states with the same spin g-component
quantum number contribute to the longitudinal M
component (6), while the matrix elements D, ,„„
and D»„ taken between states with Am =+1 con-
tribute to the transverse component of M. By di-
rect inspection of Eq. (7) it is clearly seen how

relaxation processes couple the transverse and
longitudinal components of M.

Assuming A., =X„=X, the lowest-order approxi-
mation gives D» and D» linear in X, D, „D»,
Dp 2 and D» quadratic in

In general, in the lowest-order approximation,
the terms Dp 2n and D, ,„„areproportional to ~'",

1
2gws&(D0, 2n-Di, 2m+i)+c c

~

N is the number of spins in the unit volume.
We specify the 1/v superoperator assuming

[(i/T)D], , = (i/T, , )D, &, with T;,,
= T„if the matrix

elements D;, is taken between two states corre-
sponding to the same spin eigenvalues (i —j is an
even number) and T; & T, o—-therwise (i —j is an odd
number).

In order to solve the linear algebraic system for
D. ..we point out that

~j —i
~

is the number of pho-
tons involved in the transition between the state i
and the state j, as is apparent by direct inspection
to the succession (2).

We then neglect the elements D, , with
~

i.—j ~

larger than the greatest number of photons detect-
able in our actual experiment.

Using this approximation and (5), we obtain
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To simplify notations, let us define D„=D, ,„and
D „=D,*,„. By substitution of Eqs. (8) and (8')
in (7), a bit of algebra yields

D„=—S(I +S) '(D„,+D„„+C„) (io)

with $=4X'T,T„ I.=i+(~, &u')'T,'+S, ~'=-,'(~,
+ or,), and C„=O if ~n~ -2, 2C, =2C, =C, = —&u'A.

We now compute (10) for n =K, that is, we ne-
glect processes involving more than 2K photons;
by consistently omitting in Eqs. (7), (8), and (8')
terms going as X'~" and successive powers, we
find, for the last considered terms,

D» l = $(L+s) '—(D» 2+C» 1»--
D»= S(L —S) '(D», +C»).

Finally, Eq. (11) and repeated use of Eq. (10)
give the term contributing to the first-harmonics
component of M, for K&1

D, = —S(I, +S) '(Do+ f (K)D, +C,). (i2)

The function f (K) appearing in (12) is real and
depends on the value of K; analytical expressions
for f (K) are easily obtained giving, for instance,

f (2) =0, f (3) = —S/(L+S).
Note that because of approximations (9) all the

terms D„obtained through Eqs. (10) and (12) turn
out to be real.

Now we consider in more detail the terms con-
tributing to the first- and the second-harmonics
components of M, . An approximation with six
photons (K=3) is usually sufficient; thus from (10)
and (12) one gets C'

D, = —SC,(I. —S)/[(L+S) —3S ],
D, =s'c, (I. s)/[ (r. +s)' 3s'(r. +s)). (i3')

In particular, for low values of the saturation
factor (S«1), Eq. (13') becomes

while the terms D, ,„„andDy 2 2 go as A'"".
The matrix element D, ,„ involves a 2n-photon

process and directly contributes to the nth har-
monics in g of the longitudinal magnetization.

If, on some physical basis, one chooses a num-
ber 2K such that processes involving more than 2K
photons can be neglected, it is possible to obtain
separate recurrence rules for the matrix ele-
ments of D contributing to longitudinal and trans-
versal M components.

Let us now look for solutions of Eqs. (7), (8),
and (8'). We limit ourselves to cases which can
be actually realized in laboratory practice, that
is we assume that the following conditions hold:

~K~,~«1/T, , ~K~,
~
«i/T, .

D, = SC,[1+ (co, co')'T', ]-'. (13")

Equation (13") shows how the LODESR signal is
proportional to the product T,' T,. In the same
approximation, one has for the higher-order har-
monics

D„=( s)"c,(r. s)-". (14)

(uo = (u' + (S —1)'~'/T, . (i6)

Note that for &u, given by Eq. (16), D, =-'C,
whatever S is. In the same way, from (13) the
full width at half amplitude for the signal due to D,
is given by

6, ~,
——(2/T, ) Ls($+2)+[(S+I) —S']' 'j' '

(i7)

III. EXPERIMENT

We refer to I for the description and details of
our experimental apparatus. Here, we discuss
only new features and improvements that have
been introduced in performing the measurements
presented in this paper. First, the range of fre-
quency lock between the two klystrons has been
increased to the whole bandwidth of the resonant
cavity; second, the harmonic products in the beat
frequency have been considerably reduced (70 dB
instead of 20 dB below carrier for the second
harmonics). Finally, we have set up a new tech-
nique to measure the amplitude of microwave mag-
netic fields inside the resonant cavity. This is
particularly important when measuring the relaxa-
tion times by the saturation method, which is
noticeably affected by inaccurate measurement of
the field. In fact, the field amplitudes are usually
derived once the impinging microwave power and
the merit factor Q of the resonant cavity are
known. However the presence of dielectric or con-
ducting materials in the cavity can remarkably
modify the distribution of the fields. For instance,
inserting a quartz Dewar for low temperatures in

Thus, if S «1, only one maximum can appear
in the line shape of every harmonics. Moreover,
from Eq. (14) it can be seen that the higher n, the
narrower is the line shape. In particular the val-
ue of D„reaches half of its maximum value when

&u, u&' =a(2'~" —1)'~'/T, .
The dependence of D, on the static magnetic

field can also be inferred from Eq. (13), and it is
easily seen that, when S & 1, only one maximum
appears, which occurs at co, =&'. Taking coo

= ~', D, increases with S as D, =$C,(1+4$+,$') ',
and reaches its maximum when S =1. Then, for
greater S, D, decreases and in its line shape
versus (do two peaks appear for
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a standard ESR cavity increases the field ampli-
tude on the sample by about two times. '

To overcome the above difficulty, we succeeded
in determining the amplitude of the microwave
field through a direct measurement of the radia-
tion-induced shift of one ESR line. To do this, we
detect the transverse paramagnetic resonance of
the sample placed in the cavity at the frequency
ur', at the same time the sample was irradiated
with another wave with frequency ~. These two
microwave fields at frequency co' and & were
parallel to each other and both frequencies were
kept fixed; only the power of the wave with fre-
quency &' was varied. In such condition the mag-
netic field of resonance is shifted by an amount
which is given by'

with

X =g p, ~~/2h.

In Fig. 1 we show the amplitude of microwave
magnetic field 2H, versus the shift of paramagnetic
resonance 5=h(e, &u')/gp, s. The sample used in
the experience of Fig. 1 was a radical system ob-
tained by electrolytic deposition of oxypyrrol; its

relaxation time is T, = 3.1 &&10 ' sec. The wave of
frequency & was produced by a klystron VA197%,
frequency locked to the resonance frequency of the
cavity. The other wave was produced by a kly-
stron X13 and its frequency was kept at a differ-
ence of 1.88 MHz from the frequency .

IV. RESULTS AND DISCUSSION

In this section we discuss some experiments by
which we applied and tested the theoretical results
reported in Sec. II.

In Fig. 2, the LODESR signal due to the first
[Fig. 2(a)] and the second [Fig. 2(b)] harmonics
of the oscillations of M, are shown. The differ-
ence between the frequencies of the two impinging
waves is h, /2m = 80 KHz. . In the case of Fig. 2 the
spin system was supplied by Mn" ions in MgO
crystal. The static magnetic field H, was directed
along the [111]crystal axis.

Since Mn" has S=—', and I= —,', 30 resonance lines
are expected. ' In Fig. 2 only the part of the spec-
trum corresponding to m = —,

' is reported. The cen-
tral line corresponds to the transition M, = ——,

'

-M~ =+ 2, the intermediate lines to the transitions
M~ = w —,

'
M~ = + & and the other lines to the M~

M~ =wg,
The different widths of the resonance lines in

Fig. 2 are due to internal stresses of the crystal.
The direction [111]of the static field H„has been
chosen in order to minimize these effects. '

As it is apparent from Fig. 2, the signal is ob-
tained in nonderivative shape; moreover it shows
linear and quadratic dependence on the saturation
factor for the first and the second harmonics, re-
spectively.

The reader should have noticed that the theoreti-
cal findings of Sec. II hold for a spin-& system.
8 S 0 & the matrix elements of the field-spin inter-

(a)

FIG. 1. Amplitude of microwave magnetic field 2H&
vs 6 =@(coo—(d )/8 pg as measured inside the cavity.
The quantities 6 and 2H& are in gauss.

FIG. 2. (a) First- and (b) second-harmonics LODESR
signal for Mn~ in MgO. The reported curves correspond
to m =2 and to the static field Ho along the [111]direc-
tion.
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action Hamiltonian Xi, between a state with spin
quantum number M~ and a state with spin quantum
numbers M~ al, (M~ ~XI~M~ +1), are obtained
from the corresponding matrix elements for 8= —,',
just by multiplying them with the factor [S(S+1)
—M(M+ I)]'i

In our case, the theoretical amplitudes of the
lines of Fig. 2 are in the ratio 8:5:9:5:8 for the
I ODESR first harmonics. For the second har-
monics, the ratios are the square of the previous
ones.

In Fig. 3, using the same sample as before, we
show the dependence on the saturation factor S of
the linewidth, for the first [Fig. 3(a)j and for the
second [Fig. 3(b) j harmonics, corresponding to the
transition M~ = —2-M~ =+&, m, =2. More exact-
ly, in Fig. 3 we plot the quantity A, defined as the
ratio of the above linewidths with the unsaturated
first harmonics linewidth. In Fig. 3(a), the solid
line represents the theoretical result obtained
from Eq. (17). Use of Eq. (15) yields the ratio ap-
proximately 0.64 between the linewidth of the
second and the first harmonics, for low values of
the saturation factor S (look at Fig. 3 for the
agreement with experiment). Note that as other
authors report, ' in the usual transverse detection
of transitions involving 2n+ l photons, the line-
width decreases as (2n+1) '. In contrast, we ob-
tain by I.ODESR, and deduce using Eq. (15), that
the linewidth has a smoother decrease as the num-
ber of photons involved increases. The main rea-
son for this result in our case, is that we use two

waves both with an angular frequency =&0 In
other methods using transverse detection, just the
sum of the energies of the photons involved is

equal to the energy of the transition considered.
In Sec. II we have shown that the signal due to the
first harmonics has the characteristic two-peaked
shape when the saturation factor 8 & l.

Similar effects occur in several fields of the
spectroscopy. In the Autler- Townes effect, "in
optical pumping, " in spin-tickling experiments of
nuclear magnetic resonance, "or also in micro-
wave-double-resonance spectroscopy" the typical
system of interest has three levels ~a), ~b), and

~c). The system is then irradiated by an intense
wave of frequency nearly resonant with the transi-
tion

~
a) -

~
5). In turn, detection is made by means

of a further wave whose frequency is nearly reso-
nant with the transition ~b)- ~c). Once an edge in
the intensity of the first wave is reached, the sig-
nal appears with the typical two-peaked shape.
The two peaks are symmetric only if the first wave
is exactly resonant with the irradiated transition.
Note that, in our case, the relative symmetry of
the peaks is independent of the distance between
the frequencies, and only requires equality of the
intensities of the two waves.

The distance between the two peaks of the first
harmonic signal is plotted in Fig. 4 as a function
of the saturation factor. The solid line represents
the theoretical results given by Eq. (16). Experi-
mental points in Fig. 4 were obtained using as
spin system a sample of electrolytical radical of
oxypyrrol.

The relaxation times of the system are strongly
affected by the presence of oxygen in the electro-
lytic bath and by the current intensity and tempera-
ture of the bath. Also in standar'd conditions we
found it very difficult to always obtain samples
with the same physical characteristics, and the
repeatibility of measurements is seldom achieved.

1-
p 5

0 0 0 0

0. 1

FIG. 3. Linewidth for the {a) first- and (b) second-
harmonics LODESR signal versus the saturation factor
& for the transition M =2 —M'= —2, m =2 of Mn + in
MgO. A is measured in units of unsaturated first-har-
monies linewidth.

FIG. 4. Distance between the two peaks measured in
gauss, for increasing values of saturation factor. The
solid line represents the theoretical results given by
Eq. (12). The experimental points are obtained with a.
radical of oxypyrrol.
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The sample of Fig. 4, had T, =1.23 &&10 ' sec and
T2=3.1 && 10 ' sec at room temperature.

We wish now to comment about experiments of
second-harmonics generation by Boscaino et al. '4

The two peaks they discuss are shifted apart by
the same amount as required by our Eq. (16).
Such an agreement between our result and the one
by Boscaino et a/. is obtained if we take into ac-
count processes up to six photons, as are included
in Eq. (16). On the other hand, the theoretical re-
sults of Ref. 14 are obtained in the two-photon ap-
proximation. If we too make the same approxima-
tion, our theoretical line has then only one peak.
By going to a four-photon approximation we obtain
a line shape with two peaks, but their distance is
now given by d = 2T2'[S(2)' ' —1]' ', which is great
er than the one deduced from Eq. (16).

The LODESR phenomenon, as discussed here and
elsewhere' shares many characteristics with
second-harmonic generation, which however is
unfavored by its low probability of occurring.
Harmonic generation, in fact, involves only pro-
cesses of second-order or higher in the spin=field
interaction, while the effect we study here is due
to two separate first-order processes. Due to
this, the amplitude probability of harmonics gen-
eration is reduced by a factor of order
(K~) '~(Kz) ~' or greater, thus requiring experi-
mental apparatus at very low temperatures, with

I

very high powers, and with samples containing a
high density of spins. Using harmonic generation
in standard paramagnetic resonance studies turns
out to be very difficult.

How powerful our method is in measuring the
variation of the longitudinal relaxation time can be
realized from Fig. 5. Here, in the lower part, we
report the usual ESR signal received from the
system Mn(NO, ), in 0.05-mole% H, O solution at
different temperatures. " In the upper part of the
figure the first harmonics of the LODESR signal
is reported for the same sample at the same tem-
peratures. It is apparent that in the ESR signal,

2000 G

FIG. 5. ESR (down) and LODESR (upper) signals of
Mn(NQ) 2 in 0.05-mole % H20 solution at different tem-
peratures: 182'K (A), 163'K (B), 143 K (C), 104'K (D).

the variations are only due to the factor kT. On
the contrary, the LODESR signal, far from sat-
uration, is proportional to the product T, T,; thus
the variation of T, can be directly inferred from
variations of the detected signal. From LODESR
measurements in the high-temperature range, de-
pendence of T, on T ' is revealed. This can be
explained through two-photon Raman processes. "

In conclusion, we note that above experimental
technique is remarkably simpler and cheaper than
pulse-saturation method, as a procedure to obtain
variations of relaxation times. In fact, the usual
pulse technique requires high power and very
speedy electronic apparatus, and does not apply
very well to the case of high temperature. On the
contrary, the measurement method presented here
works quite well over a large temperature range.
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