
PHYSICAL REVIEW 8 VOLUME 16, NUMBER 1 1 JULY 1977

Stochastic model for classical bath variables and its influence on line-shape expressions
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A stochastic theory of hyperfine spectra is presented in which the coupled nucleus-ion system is treated

quantum mechanically, and the interaction between the ionic spin and its surroundings is taken into account
via effective fluctuating fields. The theory treats in detail a larger subsystem than the one considered by
Clauser and Blume, and it is shown that the Clauser-Blume results can be obtained from the more general

result given here, when the rate of fluctuations in the surrounding bath is much faster than the frequencies of
the radiating system. A perturbative calculation also enables us to establish a connection between the
stochastic- and the many-body-theory results for the line shape. The theory is worked out for Mossbauer line

shape but can be applied easily to other related problems in atomic and nuclear spectroscopy. Application of
the results derived here to analyze specific experimental situations will be dealt with elsewhere.

I. INTRODUCTION

Among the various stochastic-theory treatments
of relaxation effects in Mossbauer line shapes that
have appeared in recent years, the most general
one so far is due to Clauser and Blume' (here-
after referred to as CB). In this theory, the quan-
tum-mechanical nucleus-ion system is treated ex-
actly, while effects of ionic relaxation are intro-
duced via terms in the Hamiltonian which have ran-
dom properties. The theory is simple, and yet
has the same general validity as do most practical
applications of ab initio treatments. '

The CB model assumes the presence of a bath
which drives fluctuations into the system, and these
fluctuations are assumed to occur on a time scale
much faster than the characteristic frequency of
the radiating system (see Sec. IIIB). This physical
assumption is incorporated mathematically by as-
suming that the radiating system (nucleus plus ion)
is subject to random pulses of extremely short dur-
ation. This assumption is equivalent to the impact
approximation used extensively in the theory of
pressure broadening of spectral lines in gaseous
atoms. The impact approximation assumes that
the duration of a collision between atoms in the
gas, that:is, the duration of the perturbation, is
negligibly short compared to the mean time between
collisions. In between two collisions, the atoms
are supposed to be free. The impact approxima-
tion or the CB assumption of short-lived pulses
yields a relaxation matrix in the theory which is
independent of the frequencies of the resonating
system. '

While the impact approximation appears to be a
reasonable description for binary collisions in a
low-density gas, its applicability to fluctuations in
solids, where the nucleus-ion system is continually
under the influence of perturbations due to the sur-

roundings, is in question. Indeed, recent experi-
mental evidence has demonstrated the inadequacy
of the CB model to treat a class of Mossbauer re-
laxation problems where the relaxation rate of the
fluctuations in the bath is comparable to the un-
perturbed frequencies of the resonating system,
and therefore, where the frequency dependence of
the relaxation matrix is important. ' Using tech-
niques of many-body theory, we have earlier pre-
sented a calculation in which one obtains a fre-
quency-dependent relaxation matrix, and which
gives a satisfactory account of the Mossbauer data
in a system where the spin-spin relaxation rate due
to dipolar interactions between paramagnetic ions
is comparable to the hyperfine frequency. '

The theory presented in Ref. 5 and similar theo-
ries' have the advantage that the elements of the
relaxation matrix are specified in terms of some
correlation functions which contain detailed in-
formation about the variables which are external
to the nucleus-ion system. In practice, however,
it is very difficult to calculate these correlation
functions, and some phenomenological assumptions
are usually made regarding their nature. ' In Bd-
dition, the method treats the interaction between
the radiating system end its surroundings in sec-
ond-order perturbation theory, and calculations
beyond second order, which involve higher-point
correlation functions, are indeed quite complex.
The stochastic theory of CB, on the other hand,
does not require at the outset that perturbations
be small. Furthermore, stochastic theories af-
ford us, in some cases, greater physical clarity
and insight into the assumptions which make pos-
sible a tractable many-body calculation. ' For this
reason, it is very useful to generalize the CB mod-
el to situations where the relaxation rate of the
fluctuations in the bath is comparable to the unper-
turbed frequency of the radiating system. We pre-
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sent such a calculation in this paper.
As in the CB model, we assume that the ion that

contains the Mossbauer nucleus is coupled to its
surroundings through effective fluctuating fields
whose fluctuations occur as sudden instantaneous
pulses. But in contrast to the CB theory, the un-
perturbed system in our model is taken to be a
larger one, comprising the nucleus-ion system
plus an effective field coupling of the ionic spin to
its surroundings. This is expected to be a more
realistic description of fluctuations in solids where,
as stated earlier, the ionic spin is continually un-
der the influence of its environment. In the theory
presented in Sec. II, we replace the degrees of
freedom of the bath external to the nucleus-ion sys-
tem by certain stochastic variables. ' With an ad-
ditional assumption about the transition matrix
which governs the stochastic modulation of the
Hamiltonian, we show in Sec. III that the average
over the stochastic variables can be performed in
a closed form. The resulting expression for the
line shape [contained in Eq. (19) below] can be
easily handled on a computer. Finally, the results
of Ref. 5 and of the CB model are also obtained as
limiting cases from perturbative calculations in
different regions of relaxation times, starting from
Eq. (19).

II. THEORY

We adopt a physical picture in which the combined
nucleus-ion system is assumed to be subject to
fluctuations due to the coupling of the ionic spin
with the surroundings. The Hamiltonian is written

x(~) =x, + g v,.f,.(~),

where &o contains all the interactions for the res-
onating system, e.g. , magnetic hyperfine interac-
tion, nuclear and electronic Zeeman interactions,
nuclear quadrupolar interaction, ionic crystal-
field interaction, etc. The Vf's are quantum-
mechanical spin operators for the ion that contains
the nucleus, and f&'s are random functions 'of time
which can be chosen to take appropriate values
corresponding to the different forms of the Ham-
iltonian. ' Thus, for example, we may have

X,=ai'0,

describing a magnetic hyperfine interaction be-
tween the nuclear spin I and the ionic spin S, and

V5=B 8, V6=-H 8,

f = r'(I +f)(f ' - 4) (f ' - 9),

f, = ~ (1 -f)(f —4)(f —9),

f, = ,(2 +f)(1 -f )(f —9),

f =h(2 —f)(1-f )(f 9)—
f = re(2+f) (f ' —1)(f —.4)

f.=k (3-f)(f'-1)(f'-4),

(4)

where 2 is a nuclear operator for emission or
absorption of radiation, p = —j~+ —,'1, with 1 the
natural linewidth of the resonance, p„, is the den-
sity matrix for the nucleus-ion system governed
by the Hamiltonian X„and Z(t) is the so-called
time-development superoperator for the system.
[The meaning of ( ),„ is discussed below in Eq.
(10)]. In our model we have

eu(g) = (ei @pe tl q'gi Kns(t2-ii)

(t3-t2) &&, ~ ~ g g +ne(t-ts) (6)
where

Kne xox+ vf F)

where the stochastic function f(])) is assumed to
take values 1, -1, 2, -2, 3, and -3 at random. '
Equations (3) and (4) then describe a situation
where the ionic spin experiences an effective field
that changes its magnitude and direction at random
between the +x, +y, and +z axes. Such fluctuations
may arise, for example, due to spin-lattice inter-
actions, ' coupling of the ionic spin to the conduc-
tion electrons, spin-spin coupling between the ion
containing the nucleus and its surrounding ions due
to dipolar or exchange interactions, ' etc. Obvious-
ly the theory can be generalized easily to situations
where more than just six forms of the Hamiltonian
can occur.

The model can now be summarized as follows.
At random instants of time the coupled nucleus-ion
system is subject to pulses which instmstaneously
change the form of the Hamiltonian [see Eq. . (9) be-
low]. This will happen, for example, if the effec-
tive field at the ionic spin jumps from x axis to
y axis, in the above illustrative example. As in
the CB model, the pulses are assumed to be ran-
domly distributed with a Poisson distribution, and
in between pulses, the system is assumed to be
unperturbed. However, unlike the CB model which
assumes the unperturbed Hamiltonian to be gov-
erned by Ko only (as is expected to happen in free
gaseous atoms in between collisions), the unper-
turbed Hamiltonian in our model describes a lar-
ger system.

The Mossbauer line shape is given by'

e(p) =re J d(e "V ( p [(eve( ))eW-]],e(5),„



160 S. DATTAGUPTA 16

(a(r,.~b) = 5.,5.,
The stochastic indices a and b correspond to the
different values assumed by the random function

(8)

is the Liouville operator corresponding to X„„and
F& is a matrix defined by'

f(t). [Thus in the example of Eqs. (3) and (4), a and
b run from —3 to 3.] The matrix (a~1'~b) or 9',

~ is
the probability that a pulse takes the system (in-
stantaneously) from a stochastic state ~a) to ~b).

From (6)-(8), the matrix of ~(t) in the stochastic
space can be written

(a~~(t)~b)= g e' ~""!'(v' e'~"'""&!'.-'(& v e'!~o+ "&I'.-"&."r e'«0+4&«-(. &

gC CQ eb
+e 0 ~

(9)

Equation (9) has the following interpretation. At t= 0, the system "sees" a Hamiltonian K, + V„with the
effective field at the ionic spin in the stochastic state ~a). The quantum-mechanical state of the system
then develops in time until t, with the appropriate time-development superoperator e'~~o'~a~'&. At t„a
pulse hits the system which has a probability 1;, of throwing the system (instantaneously) into a stochastic
state ~c) governed by the Hamiltonian K, + V,. Its quantum-mechanical state then develops in time under

K, + V, until t, at which time another pulse makes it jump into a stochastic state ~d), and so on. Since we
have to consider all possible intermediate stochastic states we sum over the stochastic variables c, d, . . . .

The average we seek in (5) is obtained by summing over the final stochastic states ~b), averaging over
the initial states ~a), and averaging over the type and location (in time) of the pulses, thus

()0 t ts t2
(ii(i)).,„=Q P,(t) difdi, f,d,i, id(i„. . . , i i, ) g P, (a„~((iiit, , . , i„ t)( ), d

0 0
(10)

where p is the a Pro~i probability of the occur-
rence of the initial stochastic state ~a), and P,(t) is
the probability that exactly s pulses occur in time
t. For random occurrence of the pulses, this is
given by the Poisson distribution'

P (t) = [()dt)'/s!]e "',

where v ' is the mean time between pulses. ' In
this model, v can be interpreted as the relaxation
rate of the fluctuations in the surroundings (see
also Sec. IIIA). Also W,(t„.. . , t„ t) is the proba-
bility that, given that s pulses occur in time t,
these occur at t, in dt„ t, in dt„respectively.
Since the points are randomly distributed,

W =s'/t' (12)

The average over the stochastic variables g and
b in Eq. (10) marks the crucial step which is dif-
ferent from the CB model. In the CB model, the
effect of a pulse is taken into account only in an
average sense through an effective transition oper-
ator 7„. -This inherently assumes that fluctuations
in the bath system are much faster than the hyper-
fine frequency (see also Sec. IIIB) so that the aver-
age over the bath variables factors out into pro-
ducts of uncorrelated averages. We make no such
assumption in our model and the full average over
the degrees of freedom of the bath (i.e. , the sto-
chastic variables a, b, . . . ) is taken into account in
(10).

The subsequent mathematical development is
identical to that of CB, and the final result for the
Laplace transform [cf., Eq. (5)] of (V(t)),„can be
written

-1
( (d )),iiQ(„a=d(P -i d„" —di Q &, ~ vd(1-"d') i).

ab

(»)
The solution for the line shape [Eqs. (5) a,nd (13)]

therefore involves the inversion (or diagonaliza-
tion) of a matrix whose dimension is(2I, +1)(2Id+1)
(2S+ I)'n, where I, is the nuclear spin in its ex-
cited state, I, is the nuclear spin in its ground
state, S is the effective spin of the ion, and n is
the number of different forms of the Hamiltonian
[six, in the example of Eqs. (3) and (4)]. Clearly,
the computational labor is increased, since the so-
lution now requires the inversion of a matrix lar-
ger than the CB matrix which has a dimensionality
(2I + 1)(2I + 1)(28+ 1)'. However, as we shall show
next, by making a special assumption about the
matrix &, the stochastic variables can be com-
pletely eliminated, however large n may be, thus
reducing the problem to the same level of (compu-
tational) complexity as the CB solution.

It is appropriate here to make a few remarks re-
garding the interpretation of (13). The static case
(v=0) yields

(~'(P)),„=gP, (P —tK," —tV,":)-', (14)

using Eq, (8). This corresponds to a situation in
which the ion finds itself in a static internal field.
The line shape now is a superposition of spectra
corresponding to a distribution of internal fields
at different parts of the system, each weighted by
a factor p,.[cf. Zq. (14)]. However, since [K„V&]
c 0, in general, the static case does not necessari-
ly lead to a "relaxation-free" case. The "relaxa-
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tion-free" case in this model has to be obtained by
setting V,. = 0 (corresponding to the situation in a
dilute paramagnet, for example, in which the di-
polar spin-spin interaction vanishes) in Eq. (13).
In that case, we obtain

(e(p)),'*," = Q p.(al (p - ix," + v —v v') 'l b)

correlation function. The details of the RPA re-
sults are given in Ref. 10. Here we merely quote
them.

The RPA assumes

~ab P b&

which is independent of a, where p, is the occupa-
tional probability for the state lb) [ci'. Eq. (10)].
This form of the K matrix obviously satisfies the
detailed balance of transitions at finite tempera-
tures:

~a+ah ~b ~ba' (18)

Now, we have

p + V -&X()
Following Ref. 10, the solution for the RPA model
can be written

ab abc

=P p. =l,

Using

Qp. (~l~'lb) = Q p.(~l~lc)(el&Id)" (el ~lb)
(&'(p + v)).,( (P) ., —

1 (into(

where

(e'(p + v)),„=Q p, [(p + v) iX,"-—i V,". ]-'. (20)

(15)

since the left-hand side measures the total prob-
ability of transition from any stochastic state le).
Therefore

(18)

the expected result. This distinction between the
static case and the "relaxation-free" case is not
present in the CB model.

III. 9 MATRIX IN THE RPA

We assume that the probability of transition of
the Hamiltonian from one form to another does not
depend on the initial stochastic state from which
the Hamiltonian makes a jump. This means that
the new state to which the Hamiltonian jumps is
completely uncorrelated to the old state, and so
we may refer to this as a random-phase approxi-
mation" (RPA). Admittedly, the RPA is a crude
description of the dynamics of the system. How-

ever, it is to be noted that the RPA is applied only
to the dynamics of the system exterior to the cou-
pled nucleus-ion system, and the latter of course
is treated exactly. Since the Mossbauer nucleus
is only an indirect "obser'ver" of the dynamics of
the surrounding spin system, it is.not expected
to be too sensitive to the detailed nature of these
fluctuations. In terms of many-body perturbation-
theory calculations of the line shape, where the
theory involves two- and higher-point correlation
functions, ' the RPA affords a suitable decoupling
scheme in which the higher-point correlation func-
tions are expressed back in terms of the two-point

Perturbation-theory calculations

1. Intermediate ease ofrelaxation: v )V", v -Ko

This case corresponds to.a strongly exchange-
or dipolar-coupled system or to a system where
the spin-lattice relaxation is very fast. In such a
situation, the relaxation rate is larger than the
instantaneous strength of the effective field at the
ion (v& V& ). However, v can be comparable to the
hyperfine coupling X, . Using a result given in
Ref. 10, we have in this case,

-1
(e()t)),„=(p -ix", +g p, v,")p ~ v-)ac", )-'v,".

(&(p))., = [p -ix."+&(p)] ',

where

(21)

(22)

The superoperator ('K(p)),„ is thus given entirely
in terms of (Lo(p + v)),„which has a dimension of
(2I, + 1)(2I + l)(28+ 1)'. A knowledge of the matrix
":.lement of (%L'(p+ v)).„then determines the line
shape [cf., Eq. (5)].

It should be emphasized that in cases where the
RPA assumption is not expected to be valid, one
can still go back and use Eq. (13) for the line shape.
This of course requires a reasonable model for the
& matrix, depending on the physical situation at
hand. The RPA, however, in addition to giving
mathematically simpler results, also leads to the
existing line-shape-theory results"' in a quite
straightforward manner. We discuss this below.
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It(p) =g p, V,"(p+v-fX,")-'V,". (23) —1 1 0 0

2. Very fast relaxation v ) Vx v )Fox

In this case, it is assumed that the relaxation
rate v is much larger than both the effective field
at the ion as well as the hyperfine interaction.
From Ref. 10, we then have

(25)

up to second order in V&x.

Following the notation used by CB, we write (25)
as

(&(P))., =(P -f36." -~) ', (26)

where the relaxation matrix%, in this limit, is
independent of „and is given by

~ =-gp,
(yX)2

(27)
f

since the term p in the denominator in (27) can be
neglected in this regime of relaxation.

Thus we find that in this limiting case, the hyper-
fine interaction has no influence on the relaxation
processes, and the relaxation matrix is indepen-
dent of frequency [cf. Eq. (27)]. This is sometimes
referred to as the white-noise case. '

To demonstrate the equivalence between the above
results and those of the CB model, we specialize
to the case of ionic spin S= —,', assume Eq. (24),
and also assume p~ = ~ (the infinite-temperature
case). Then, we have

'VV = —(H'/3v) [(S„")'+(S,")'+ (S,")']. (28)

Using the matrix elements of 8= —, Liouville oper-
ators, "the matrix vP can be written (the rows and

11 1 1 1 1 11columns are labeled by —,y, —;——„—,——„-—,—„
respectively)

It is to be noted that the relaxation matrix R(p)
depends explicitly on the unperturbed Hamiltonian
3C,. This frequency dependence has been found to
be extremely important in the experimental sys-
tem studied in Ref. 5. If we now consider the ex-
ample of Eqs. (3) and (4), and specialize to the case
of cubic symmetry, i.e. ,

(24)

the R matrix in (23) reduces to a result obtained in
Ref. 5. A comparison of the two results enables us
to interpret II as the rms field at the ion, and v as
the relaxation rate of the fluctuations in the sur-
roundings of the ion. The results obtained in
ab initio treatments' of the Mossbauer line shape
are also essentially contained in Eqs. (22) and (23).

1 —1 0 0

0 0 —2 0

(29)

0 0 0 —2

This is exactly the matrix given by CB in Table II
of their paper, if we make the identification

H'/v =W(sin'-,'h),„, (30)

where in the CB notation 8 is the (dimensionless)
measure of the strength of the pulses that "hit"
the ionic system and A.

' is the mean time between
successive pulses. For a general spin (Sg ~), the
equivalence between (25) and the CB solution can
be shown, order by order in perturbation theory,
by extending the result in (25) beyond the second
order. We do not do this here, however, because
the general result, valid for arbitrary strengths of
H, is already contained in Eqs. (19) a.nd (20).

A few comments are now in order Eq.uation (30)
gives a microscopic meaning to the CB parameters
A, and h (also see Ref. 2). Second, even in this re-
gime of relaxation, H'/v, and hence A, , can still
be large compared to the hyperfine frequency, and
therefore motional narrowing can still be discussed
within the framework of the CB model.

In concluding this section, we should remark that
even in cases where the RPA model for the 1 matrix
is not applicable we can still carry out perturba-
tion calculations as above, on the general result
in Eq. (13)." Of course, the form of the E matrix
in such a case has to be specified (as dictated by
the nature of the problem) before any useful result
can be given. The T' matrix must also satisfy the
requirements that probability is conserved [cf. Eq.
(15)], and that detailed balance is preserved for the
transitions [cf. Eq. (18)].

IV. CONCL'USION

The stochastic-theory model of Clauser and Blume
has been generalized to cover cases where the fre-
quency of the-radiating system is comparable to
the rate of fluctuations in the surrounding bath.
The solution is given in terms of a transition ma-
trix which contains information about the random
properties of the Hamiltonian. A special assump-
tion about the transition matrix is shown to sim-
plify the calculations considerably, and the re-
sulting solution is amenable to computer study.
Perturbative calculation of the final solution gives
us an idea of the region of validity of the Clauser-
Blume model. It also enables us to make contact
between the stochastic- and the many-body-theory
results for the line shape. We feel it is important
to establish such a connection between the two ap-



16 STOCHASTIC MODEL FOR CLASSICAL BATH VARIABLES. . .

parently different approaches to the theoretical
study of line shape.

Although the theory is developed here for Moss-
bauer spectra, it can readily be adapted to related
fields such as perturbed angular correlation of y
rays, electron and nuclear-spin resonance, and
other branches of optical spectroscopy. In a fu-
ture paper, we will discuss the application of our
formalism to the subject of perturbed angular cor-
relation of y rays.

It may be helpful to conclude with the following
brief remarks on the historical sequence in which
the stochastic theory of line shape has developed,
in order to put matters in' perspective. Anderson
and Kubo, "in first applying such ideas, assumed
that the characteristic frequencies of the radiating
system undergo random modulation due to inter-
action with the surroundings. This entirely clas-
sical theory was later generalized by Blume' to
include quantum-mechanical properties of the nu-
clear system although the surrounding electronic
system was still treated classically. The need for
such a generalization was motivated, in large part,

by experimental work which concerned, for exam-
ple, a nucleus which, because of electronic relaxa-
tion, or Jahn-Teller distortions, or jump diffusion
of interstitials, and vacancies, finds itself in an
electric field gradient that makes transitions be-
tween different axes." Later experiments" led
Clauser and Blume' to enlarge the subsystem treat-
ed in detail to the coupled quantum-mechanical nu-
cleus-ion system. Subsequent careful study has
now established the inadequacy of the Clauser-
Blume model, and the necessity of including fur-
ther degrees of freedom within the subsystem,
namely, the interaction of the ionic spin with its
environment. The theory presented in this paper
carries out this program. Presumably, more re-
fined experimental investigations will raise yet
unanswered questions, and it may be necessary to
treat the interaction of the ionic spin with its sur-
roundings, not merely in terms of effective fluc-
tuating fields, as done here, but in a much more
detailed manner. It is hoped that the scheme de-
veloped here provides the ground work for the con-
comitant ref inements the theory will have to under go.
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