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Theory of the electron-hole ylasma in highly excited Si and Get
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In a microscopic-model calculation the electron-hole system is treated as an interacting free-carrier system

in thermal equilibrium with a nonideal exciton gas. Renormalization of the excitons is approximately taken

into account. The chemical potential as a function of the total electron-hole density is discussed with respect

to possible unstable regions also in the low-density regime. Making simplifying assumptions, the phase

diagram for the metallic condensation is derived for Ge and Si and compared to experimental data.

I. INTRODUCTION

During the last couple of years the nonequili-
brium electron-hole system of highly excited
semiconductors has intensively been studied, es-
pecially in Ge' ' and Si."Most investigations
in that field have been prompted by the occurrence
of a gas-liquid type transition within the system of
elementary excitations, known to lead to metallic
electron-hole droplets (EHD). The basic mecha-
nism responsible for this cooperative effect can
be understood from a Fermi-liquid theory' '.
Theoretical values for the equilibrium density and

ground-state energy are in fairly good agreement
with experiment. Also critical density and criti-
cal temperature can be estimated by means of
low-temperature expansions'"; a complete Har-
tree-Fock calculation for finite temperatures has
been presented by Silver. "

These theories, however, do not allow a full
understanding of the coexisting phases, as they
are restricted to the high-density limit. In a
completely different approach by Reinecke et al."
the phase diagram has been related to surface
properties of the drop, making explicit use of
fluctuations. Like the phenomenological models
introduced in Refs. 13 and 14, this investigation
has to be based on the concept of simple fluids and

is, therefore, in principle restricted to the region
where the formation of excitons is less important.
Furthermore, not even the stability of the EHD
can be established, as this requires reference to
the properties of excitons in the low-density re-
gime. '

To avoid these limitations one might better go
back to the microscopically oriented theories,
but try to extend their range of validity. In Ref.
15 a model has been introduced, in which thermal
equilibrium was assumed between an ionized-car-
rier system and a screened-exciton system. From
the preliminary results it was argued that micro-
scopic properties, especially the band structure,
should strongly influence the phase diagram, even

qualitatively. The idea of two separate subsys-
tems has been applied by Haug" as a consequent
extension of Silver's work. "

The ionization equilibrium has been more rigor-
ously discussed by Kraeft and co-workers, "at the
cost of a rather crude approximation of the band

structure. They argued that in addition to the high-
density condensate, additional instabilities in the
intermediate-density regime might occur: This
relates to the problem of a separate, discontin-
uous Mott transition, "which is also expected to
depend sensitively on microscopic properties of
the system. It is, therefore, appealing to use
these properties as a starting point.

To the author's knowledge, the electron-hole
plasma in semiconductors is, so far, the only

system for which a first-principles calculation of

the phase diagram can approximately be carried
out. This will be the ma, in topic of the present
paper. Of course, this does not render the theo-
ries based on the universal aspect of critical
phenomena redundant. As will be seen, our ap-
proach will have to make use of a series of ap-
proximations, which limit its reliability because
of principle and numerical reasons especially near
the critical point.

II. SYSTEM OF ELEMENTARY EXCITATIONS

A. Basic assumptions

The electronic ground state of a semiconductor
at T = 0 is characterized by completely filled val-
ence bands and empty conduction bands. The ex-
cited states of this real interacting many-body

system of valence electrons will have to be con-
sidered now. They can as usual" be classified as
collective excitations like the plasma oscillation
and elementary excitations, which are separated
from the ground state by an energy gap E .

In the present case the elementary excitations
consist of electron-hole pairs, which are both
assumed to populate the respective band extrema
only. We can therefore apply the effective-mass
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approximation. As long as the density n„, of the
elementary excitations is very small (e.g. , at
small temperatures), they can be considered as
independent particles forming an ideal Boltzmann
gas. Appreciably higher densities can be obtained,
if the electronic system is coupled to an external
photon field of energy Itv& E~. This will introduce
two novel features.

First of all, the system of elementary excita-
tions will no longer be in thermal equilibrium,
and the distribution function of electrons and holes
might in principle be derived from a Boltzmann
equation, in the simplest case within the relaxa-
tion-time approximation. Now, the existence of
an energy gap allows us to define two different
relaxation times: the relaxation time of the elec-
trons and holes within their respective bands 7„
and the lifetime 7' of the excitations. If the condi-
tion

the other hand, the electron-hole multiple scat-
tering is of less importance, ' and the system may
be viewed as a two-component Fermi system.

This brief survey already indicates that a theory
for the correlations of a wide range of densities
will be very difficult. In fact, this problem is
far from being solved satisfactorily, so a number
of approximations are the prerequisites of any
theory.

Here the ground state of the many-body system
of elementary excitations at low effective temper-
atures will be studied only. However, one should
keep in mind that the highly degenerate conden-
sate will again have excited states such as collec-
tive excitations (e.g. , plasma oscillations of the
electron-hole system) and even elementary exci-
tations. These elementary excitations (of second
order) will not be separated from the ground state
by an energy gap, "so there should be no contin-
uation of this hierarchy.

nM, «a~~ -0.016.

Here a~~ is the Bohr radius of the unperturbed
exciton. nM, « is more generally defined by

E~(nt„, T)=0 for n„,&n~«(T},

(2)

where E, denotes the screened exciton binding
energy. For n„, «nM, «we expect a system of
interacting excitons, which, at least approximate-
ly, should obey Bose statistics. " Above n„,«, on

is satisfied, one can postulate a quasiequilibrium
distribution of electrons and holes characterized
by an effective temperature T. This temperature
will result from the combined effect of excitation
and dissipative processes, but wi11, as usual, be
treated as an external parameter here. This con-
cept allows us to use equilibrium thermodynamics.
Of course, stable states found in that way can at
most be metastable; whether these states will be
reached in an actual experiment, cannot be deci-
ded on these grounds.

Second, the elementary excitations will no longer
be independent, leading to cooperative properties
of the system. The correlations between the elec-
trons and holes are of two types: theyderive from
interparticle forces and from quantum statistics
(cf. Ref. 20). The interparticle forces are simply
Coulomb type, statically screened by the crystal
surroundings. Unfortunately there is a difficult
interplay between these correlations and the sta-
tistics. As is well known, " the electron-hole sys-
tem is unstable against formation of bound elec-
tron-hole pairs. So below a critical density exci-
tons are formed. ' As a qualitative measure for
this critical density the so-called Mott criterion
has widely been used

(4)

Violation of this condition also indicates a phase
transition. %'e will assume now that the system
decomposes into two subsystems: an exciton gas
of density n„and a two-component plasma of den-
sity n, for which electron-hole multiple scatter-
ing will be neglected

This assumption considerably simplifies the treat-
ment of the ionization equilibrium. Thermal equi-
librium between the subsystems requires

p,„(n,n„, T) = p, (n„,n, T), , (6}

where p„and p„are the chemical potentials of
the plasma and the exciton system, respectively.
Mutual interactions between the subsystems have
been formally included by letting the potentials
depend on both densities.

Equations (5) and (6) implicitly define n(n„, )
and n„(n„,) for any T, with

B. Unstable regions and model assumptions

Phase transitions are typical examples of co-
operative effects. There are various possibilities
to define such transitions in terms of character-
istic functions. For convenience, we choose the
particle density n„, as a function of the chemical
potential p. A gas-liquid type transition is then
characterized by a discontinuity of n„,(p) for a
given temperature. Our investigation will there-
fore require the approximate calculation of that
function or its inverse, p(n„„T). Thermodyna-
mic stability imposes the condition"
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Then, if (12) does not hold, a different type of
instability might occur for

By definition

n(n )=nMt. tot for + & gtot M(at t
n„(n„,)=0

(8)
&0 ~

In general we may use

g(n„„T)= p,,„(n(n„,),n„(n„,), T)

as the chemical potential of the electron-hole sys-
tem. This is the only thermodynamic function
physically relevant to our problem. The decom-
position into ionized and bound states only serve
as an approximate method of calculation. The ioni-
zation degree will be given by

The thermodynamic potentials remain continuous
where bound states disappear, "i.e. , for ~ -1.
According to Eq. (4), unstable regions arise when

In this case the high-density phase had the (rela-
tive) lower ionization degree, the Mott transition
should then occur at densities above the equili-
brium density of this "dielectric drop. " Up to
now there is no experimental evidence for such
a collectively bound exciton state. It was argued
in Ref. 6 that the attractive interaction between
excitons might be too weak. A final conclusion on
that will have to be based on a more careful study
of the exciton-exciton interaction. '~28

We will now introduce simplifying assumptions,
which will allow a straightforward theory for the
electron-hole system. When the excitons do not
influence the free-carrier system neither by a
contribution to the dielectric constant, by occupy-
ing parts of the electron and hole k spaces, nor
by scattering, we will have

The well-known instability leading to metallic
drops will be shown to be due to (ay, „/an)r „&0
in the intermediate density range. Additional in-
stabilities might occur at lower densities in spite
of (a p,„/an)r „&0. Two cases can be considered:
If

&p,

which is more restricting than

en, x enz ] + p (14)

discussed in Ref. 17. Inequality (14) is necessary,
but not sufficient for the existence of an additional
instability. This explains why Haug" could find
stability where condition (14) was satisfied.

The nature of the two coexisting phases follows
from Eq. (13). The high-density phase was char-
acterized by a high ionization degree, while the
low-density phase was exciton rich. Consequently,
a discontinuous metal-nonmetal transition could
be expected before the proper gas-liquid transi-
tion sets in.""

An additional instability could then occur only un-
der the condition of Eq. (15), i.e.,

(17)

which imPlies (an/an„, )r&0. Now, if we take
repulsive exciton-exciton interactions~ only, con-
dition (17) cannot be satisfied. On the contrary,
screening of excitons will guarantee (an/an„, )r
& P. So no additional instability can be expected.
At the same time exciton molecules will not be
formed, which is consistent with the basic idea of
our two-subsystem model. On the other hand, this
means —at least within this model —that the inclu-
sion of strong excitonic contributions to the dielec-
tric constant, to the Pauli exclusion and/or at-
tractive exciton-exciton interactions is necessary
to establish additional unstable regions.

In the following paragraphs we will approximate-
ly derive p,„(n, T) and p„(n „n, T). This will be
done in several steps; we first consider the in-
ternal energy of the free-carrier system.

III. TWO-COMPONENT PLASMA

A. Internal energy

The Hamiltonian of the 2N-particle system (N
electrons and N holes in a volume V) can be writ-
ten
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( 18)H"=HN +H"+Htia x cy

where H"„„denotes the kinetic, H", the exchange,
and H," the correlation part. The corresponding
energy E" may conveniently be defined in terms
of the mean energy per pair:

E,"= g N~E, ' = —Q N~(E, &', + W' ).
f

The long-range exchange energy is defined by

(30)

can calculate the respective energy shift by sec-
ond-order perturbation theory:

Eo(n, T) = E~& + E,+E,
E"=N [ED(n, T)+ E~].

The mean kinetic energy is obtained from

(»)
(20)

E&~&,= —g V,(k, q}ng&&~&~&,
9 Cia

and the Coulomb self-energy part by

(31)

E',(q) = g'q'/2m& (22)

of momentum q, spin o, and band index j. The
dispersion relation and the Fermi distribution
function allow us to determine the mean kinetic en-
ergy of the particles in band j and density n~
=N /V

1~
Ei&.= N ZNA&.(»

2'"m"
n p ff 0 exp[(e —&&'&)/ke T)+ 1

(23)

(24)

Eg&.= —Z Eg(q}n,'-".. (21)
qyay 5

n~~' is the occupation number of the single-particle
state

W&» =—P V,(k, q)n. i".,
S aeif

where

( 32)

V~(k, q) = (~ M& (k}I'/[K&;+ED~(k+ q) —E0~(q)]). (33)

(34)

Then one gets, according to Eq. (32),

Here n~=0 was assumed, i.e., no effective plas-
mons are present in the ground state.

It is known from the work of Bohm and Pines"
that the introduction of proper plasmons freezes
out the long-range part of the exchange and Cou-
lomb self-energy. Guided by this idea one may
define a cutoff wave vector K&~& such that

2»e'/e, Vk' for k~5,'~&,

0 fork&k&»

The parameters p,~ are implicitly defined by

n~= [2'+(m~keT}' ~/&&'g']1 (p, '/k T)

where J,(&&) denotes the Fermi integral

J,(x}=
8 + 1

The exchange term is given by"

(26)

(26)

W'~& = (e'/»e )k&~& (35)

(36)

This can only be true if

I M'»(k) I 'ni&,&

e'N, „-k~f+ E', (k+ q}—E', (q}

Equation (31) can now easily be combined with
Eq. (28) to give the short-range exchange energy
per particle in band j

E = —QN~E&&&,
f

(27)

2778
(28)

0 P, if, o

E, and E„„represent the Hartree-Fock approxi-
mation.

E, can be studied within different approaches, '~'"
which are largely equivalent. According to a mod-
el proposed by Overhauser" we describe the cor-
relation by the coupling of a single particle to one
effective plasmon mode ~-„:

ff", =2k &efnf+ g M(k (a}/+ a~)c 'j', ci~,'. -(29)
k if' fye S

Here the c~'~' are the creation operators of thet(f1

particles in state (22), af& the creation operator of
an effective plasmon, and nf =afa~. The form fac-
tor M~(k) and the mode &»1 itself are yet to be
determined. Treating H,"as a perturbation, one

2wg

C

For T=O this equation gives"

where

(38)

E&» E&» ~» E&»+E&»
XC XSg x c (40)

Y&=k,' '/k&, &2. (39)
k~~~' is the Fermi wave vector of the particles in
band j. The energy E,'~', turns out to be negligible
compared to W'~& for small densities (compare
Fig. 1), where the finite temperature becomes
important. So we may simply use this T =0 re-
sult for the total-density regime studied here.

The exchange-correlation energy E„,can now
alternatively be written
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~~ E/Eb

16--

0.8--

For T& 0 we have, instead of Eq. (44),"
k,'~' =k'g J,p,(uojk T)[J„g,(p'/k , T)]', (49)

where

10 10 10% 10~8
=n(cm 3)

k",„'=4wn~e'/eP, r (50)

0.8--

1 6--
Ge

2 4--

3 2--

FIG. 1. Contributions to the internal energy per pair
of the free-carrier system in Ge at T =5 K.

B. Determination of k~~'

The effective plasmon mode is supposed to ap-
proximate the dielectric response of the system,
characterized by

This energy is determined once we know k,'~'. Also
the temperature comes in only via 5,'~'.

is the classical Debye-Huckel screening wave vec-
tor. In the nondegenerate case, T» Tp~',

(f) I 2K 2/3 (»)
mg

k',~'(T) approaches kn'~„'(T).

The important range of k contributing to the cal-
culation of k~~' is roughly given by 0&k(k, . For
this range we have in the highly degenerate case

k/2k, ~k, (0)/2k -n '"-O- (52)

as well as for low densities at finite temperatures

k/2k, ~ k.(r)l2k, -n'16r-»- o (53)

i.e. , in both limits the lang-wavelength behavior
of e(k, T) dominates k,'~'. We may therefore ne-
glect the temperature dependence of Q(k) and
write e(k, T} in the factorized form

e (k, T) = 1+ 4w g c.,(k, T},

where n~ is the polarizability"

e,Vk' ~S,'(q) —S',(q+ &}+i5

At T=O one gets"

(41)

(42}

e (k, T) = 1+k ' p k,'~'(T)'Q~(k). (54)

(u,'= a&2~@(k, T)/[e (k, T) -1],
where

(55)

Requiring the single mode ~ to reproduce this
c(k, T) leads to the condition"

ni(k, o)= QI(k)k~~~i(0)~/4wkm (43)

with k',~'(0} being the Thomas-Fermi wave vector

k,"w~= 6wn e'/eP~ (44}

and E~~' the Fermi energy. The k-dependent term
is given by

4&8 ~ Sy
(dP =

Ep
(56)

~2 ~2 + Ck2+ ~ ~ ~P (57)

In order to demonstrate the properties of the dis-
persion relation (55}, one may consider a single-
component plasma for small k:

F(k/2k,'»)
1+S,(k/2k&~»)F(k/2k, '») ' (45)

In the nondegenerate case, T» T„ it is found

C=ksrjm, (58)
with

&( )=4+[(1-«'}/4 ]»l(1+z)j(1-")I (46}

Sq(w) = 2w'/(1+ 4w'+

iraq)

(47)
j. 2C=se

/pe (59)

as compared with C'= 3C for the proper plasma
mode. ' For T«Tp,

P~ —kTw/kw . (48)

S& classifies different levels of approximation for
the exchange-correlation corrections to the di-
electric response. The Lindhard formula with
S~= 0 neglects these corrections completely, with
Pz= 0, only exchange corrections in the Hubbard
scheme are considered, whereas with Pz+0 also
correlation effects are included. According to
Singwi" we adopt

Here

Z«. l(p.) .I'= ', (60)

pf = P e, exp(-ik. r, ) (61)

where now C' =9/5C. Here u~ is the Fermi velo-
city. The k dependence is obviously reduced.

M~(k) is determined with the help of the f sum
rule
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We now can proceed to calculate k,'»' according
to Eq. (36). It turns out that the q dependence can
be neglected, so that

-(,) ve, IM"'(k}I'
63}e' Icof+ i'fk/2 m/'

-g/) [e(k, T) —l](1 S/)~d-k

e(k, T)(1+g'k'/2mPcog}

It is easily proved that, for T» T,' ',

kc & ~kDH &

(g) l

so E,'~'- W'~' in this case is the classical Debye-
Hiickel energy" of an interacting system of point
charges:

(65)

W I~ =+ (e~/2&0)kD„.

is the Fourier transform of the charge density,
e, the charge of particle l, and E« the energy
difference between the ground state and any ex-
cited state t' of the system. If the single mode
{d-„ is required to fulfill this sum rule, one gets
in analogy to Overhauser~

M/{k) = e/(-2vff&o~/aP'&u, V,)'+[1 -S/(k/Pnrkr'/')].

(62}

y„=m„/m~, (V3)

which is a fundamental property of the Fermi
liquid and independent of interactions. The tem-
perature of degeneracy is the same in both bands
and denoted by To. For the calculation of E„,the
two hole bands are substituted by two isotropic
bands of mass'

m„"=-,' {1/m„,+ 1/m„). (V4)

Inter-valence-band coupling' is thus neglected.
m,„and m„are used to define the exciton Hyd-
berg energy E~.

D. Chemical potential

yl /6 sin 1(1 y }1l2/(1 y }1/3

The calculation of 5" is based on the optical mass.
The valence bands to be included here are a

heavy-hole band m~ and a light-hole band m~;
warping of the bands is neglected (compare Ref.
6). The Fermi wave vector kr, i.e., the maximum
momentum occupied at T=O, will be given by

k =[3v n/{1+y„' '}]' ', (V2}

with

k» is the total screening wave vector of the sys-
tem. As expected, in the high-density limit E,'»'

approaches the exchange energy as Y/ in Eq. (38)
goes to zero.

The free energy E~ is related to E"by"

(VS)

C. Band structure

so the chemical potential can be obtained from

We consider only the lowest conduction-band
minima, which consist of g=4(Ge) and g=6(gi)
equivalent valleys, respectively, characterized
by an anisotropic effective mass (m„m,]. With
n, = n/g the mean energy E' of an electron in any of
these valleys will be the same. Intervalley scat-
tering is not considered. From this anisotropic
mass the optical mass

u„(T)=f(T)+ Tu,'&(T),

where

f (T)=E,+s
Bn

(V6)

(V8)

m, ,'= —'{2/m, +1/m, ) (6V}

can be defined, and the density-of-states mass

m =m 'm ~
Ife t

(68)

which enters the kinetic energy, Eq. (24), and
T', according to Eq. (51). The exchange energy of
anisotropic bands has been studied in Ref. 7. It
turns out that the ellipsoidal Fermi volume can be
substituted by a sphere of radius

k' = (3v'n )'hg(y )

These expansions are, for T& T„
f(T)=a,T+ao+a, /, T '++ ~ ~ ~

which gives

(80)

and E~ is the mean energyperpairfor a given den-
sity, Eq. (19). This linear differential equation
can be solved numerically with the help of poly-
nomial expansions, asymptotically correct for
T&TO, and T& To, respectively.

T,= (TOZ O)'/~. (V8)

where

y, =m, /m, & 1

and

(VO)

u,,(T)=ao+a, Tln(TOT ')+ —',a, /, T ' '
and, for T&T„

f (T)~ aa+ a,T'+ a,T'+ ~ ~ ~,

(81)



l$58 GUNTER MAHLER AND JOSEPH L. BIRMAN l6

which leads to the solution

p~(T)=a, -a,T 's-s,T'-'". (83)

IV. EXCITON SYSTEM

A. Renormalization

According to our approximations any influence
of the exciton system on the free carriers is ne-
glected, but not vice versa. The renormalization
of the excitons is consistently described by a cou-
pling to the effective plasmon field

The coefficients a& are found by a numerical fit
of the function f (T) to the polynomials (80) or (82),
respectively. For low temperatures the last term
in Eq. (83) can be neglected. 6=a, for the equili-
brium density n, of the condensate has been con-
sidered by various authors. 5' Our result is given
in Table I. This completes the discussion of the
plasma subsystem.

MAh(k)2e 'l%'v'h

h&u-+ g'k'/2m (87}

If exchange is included, we expect E„';" instead of
S '". For weakly bound excitons it suffices to use
the dielectric function in the long-wavelength limit.
Equation (87}can then be solved analytically to
give

g2
I"'&(~ )= I+ " '" e"eh'se. h

2&Or,„ 1 —kgb'-a

from the experimental value E~. The reduced mass
will therefore be fit to reproduce E~.

Equation (84) is in complete analogy with the
Hamiltonian for an exciton in a polar medium. So
similar methods can be used to calculate the
ground-state energy. We apply a variational meth-

od first proposed by Haken, "which, however,
does not include exchange corrections. One gets
the effective Hamiltonian

(86)

a"'=a'"+ a~~-0

+ Q [M'(k)~e'f'e'+M"(k)a@'~'"]+ c.c., (84) with

c"eh-a
1-kP:,a

(88)

where
R, „=(g'/2m, P&u~)'I'. (88}

H~ '=I q', /2m„+8 q„'/2m „—e'/ey „ (85)

is the Hamiltonian of the unperturbed single exci-
ton, which defines the Rydberg energy E',. Owing
to the complicat:ed band structure, E,' deviates

This solution is identical with the Thomas-Fermi
result only for k~P', „-0, k, is the total wave vec-
tor according to Eq. (49). In general, (88) includes
"dynamical" effects, which make the screening
by light particles more effective, as they are

TABLE I. Results. @p is the ground-state energy per pair in the condensate; p is the

work function for T 0; &z is the Fermi energy in the condensate at & 0; 4 f/2 is the re-
combination half width; np is the equilibrium density of the condensate; n, is the critical
density; T, is the critical temperature; and for 6 see Eq. (83).

Theory Experiment Theory
Si

Experiment

+p(sp, 0) {meV)
q (meV)
Ey(np, 0) (meV)
Aiy2 (meV)
np (cm )
lac (cm )
T (K)
6 (meVK 2)

5.9
1.8
6 ' 12
3.24

2.26x10"
7x 10"

7
16x10 3

59
1.8 ~

6.43
3.4 '

2.38x1Q 7

8x10 68
65f

15.5X1Q

19.6
4.9

20 ~ 5
11.2

3 Qx10&8

4x10~~
20

3.6x10 3

8 2b
22.2 b

11
1018 b

x10 'lh

20' 33+ 6'
5.9x10-3b

See Ref. 39.
See Ref. 5.
G. A. Thomas, T. G. Phillips, T. M. Rice, and J. C. Hensel, Phys. Rev. Lett. 31, 386

(1973)~

C. Benoit 0 la Guillaume and M. Voos, Solid State Commun. 11, 1585 (1972).
R. E. Halliwell and R. R. Parsons, Solid State Commun. 13, 1245 (1973).
T. K. Lo, Solid State Commun. 15, 1231 (1974).

& See Ref. 3.
"V. S. Vavilov, E. L. Nolle, and A. Fazilov, Phys. Status Solidi B 64, 735 (1974).
' A. F. Dite, V. G. Lysenko, and V. B. Timofeev, Phys. Status Solidi B 66, 53 (1974).
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able to react instantaneously to the motion of the
particles under consideration. The binding energy
E,(n, T) is then calculated from Eq. (86) using a
hydrogenic trial wave function. The total poten-
tial energy is

Eo/Eb

Ge

E~,(n, T)= E»(-n, T)+ Ef,+ E»,.

B. Chemical potential

The chemical potential in the nondegenerate
case

(90)

(91)

0

-0.8--

-16--

-24--

n(cm 3j

(a)

will be given by"

i»„(n,n, T) = » ln(T;*/T) —2 '~»ke Te»(T, /T)'

+ E»(n, T)+ E„„(n„). (92)

The second term is a quantum correction and the
third term is given by Eq. (90). The last term
approximately describes the exciton-exciton in-
teraction due to exchange and Pauli repulsion'

E/EQ
b

0.8-

1012

0

-0.4"

-0.8.-

-1.2-

1020

n )em 3]

E „(n„)=»26vae n~». (93) (b)

This equation is expected to hold approximately
also for finite temperatures. Attractive contribu-
tions to the exciton-exciton interaction, mainly of
the Van der Waals type, are not considered, as
they might lead to additional instabilities. A study
of these requires a more elaborate treatment of
the exciton system than undertaken in this paper.

TABLE II. Input data.

mlh mhh Ef, (meV}

Ge 1.58 0.082 0.042 0.342 15.36
Si 0.916 0.1905 0.154 0.523 11.4

2.66
13.0

'See Ref. 6.

V. PHASE DIAGRAM

The calculation of the phase diagram is carried
out step by step in the following way: From the
input data given in Table II the mean kinetic energy
per pair, E«,(n, T) and E„(n,T), according to
Eq. (40) are calculated; results for Ge for T= 6 K
are shown in Fig. 1. As already discussed, E„„
is negligible for small densities, while E domi-
nates E„in the high-density limit. E,(n, T) ac-
cording to Eq. (19) is shown in Fig. 2 and exhibits
the minimum behavior typical for all the electron-
hole plasmas at low temperature, be it in Ge, Si
or any other semiconductor. T»s minimum, due
to a combined effect of attractive correlations and
the Pauli repulsion, is already present in a sim-

FIG. 2. Internal energy Eo(n, T) of the free-carrier
system as a function of density n. (a) Ge; (b) Si.

pie Hartree-Fock calculation. '4 If stable, the
equilibrium density n, of the condensate at T= 0
is just defined by eE»/en= 0. Obviously, this
condensation will strongly be influenced by quan-
tum statistics, and it may therefore be termed
quantum condensation. The classical condensation
(like the Van der Waals type instability} comes
about via direct interparticle forces, independent
of whether the constituent particles are bosons or
fermions (compare Hef. 20, also Hef. 6). This
Fermi condensation may therefore be discussed
in connection with the Bose-Einstein condensation
of interacting bosons. Originally, however, this
latter condensation has been introduced with re-
spect to ideal systems (for a recent review see
Hef. 36).

From E,(n, T) the corresponding chemical po-
tential p,»(n, T) is found using Eq. (77). The result
can be seen in Fig. 3. Below a critical tempera-
ture T, there is a density region for which (S p,»/
Sn)r & 0. Also in the presence of the exciton sys-
tem this fact is basic to the occurrence of the
metallic drop.

p„(n,n, T) can now be calculated according to
Eq. (92):

(n, , n, T)= p (n, , O, T)+E»(n, T)+E»(0, T).

(94}
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Of course, the regions of instability cannot be
removed in that way. So the Maxwell construction
is applied to this function p(n~, ~, T)

-1 0-

p(n„„T)dn„, = 0. (95)

Si

-2 5.
(b)

FIG. 3. Chemical potential p,,z(n, T) of the free-
carrier system as a function of density n. (a) Ge;
(b) Si.

This construction, which enforces the vapor pres-
sure to obey the Clausius-Clapeyron equation, is
asos1 sketched in Fig. 5. The resulting phase dia-

i 6. Itgrams for Ge and Si are presented in Fig. . I
is important to note that the inclusion of excitons
leaves the properties of the liquid phase of den-
sity n, (T) practically unchanged, at least in Ge
and Si. This may serve as a justification for the

E'* is shown in Fig. 4 for Ge. Contrary to E,(n, T)pot
this potential energy is almost independent of n, in
agreement with experiments on free-carrier
screened excitons. " Finally, the chemical poten-
tial p(n„„T) is constructed according to Eq. '(9).
For any n and fixed T n„ is derived from condition
(6). As y.„is a monotonic function of n„(under
the present approximations) this procedure unique-
ly determines n„t~n, corresponding to the value
p,~(n, T). As indicated in Fig. 5, the influence of
the excitons thus rescales the function p,~(n, T).
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0
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1010
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1P6 1p10 1p14

= n„, [cm-3]
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FIG. 4. Potential energy E~t(n) for Ge at 5 K.
=Exc+Eg.

FIG. 6. Phase diagram. The dotted line is the density
of the free-carrier gas in thermal equilibrium with the
condensate. The broken line is the limit according to
Eq. (97). (a) Ge, 0 experimental points (Ref. 35, com-
pare also Ref. 41); (b) Si.
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use of simple-fluid models. In general, this is
not true for other semiconductors, where drops
might form in a high-pressure exciton gas only."

The present result, obtained numerically, may
be compared with a simple approximation valid
for low densities of the gas phase. In this case,
n„,-n, and thermal equilibrium between gas and
liquid leads to the condition

g.,(n„„O,T) = p,~(n„T). (96)

q (T) = E,(0, T)+ P,„(no, T) (98)

is the work function, which in this limit and in a
homogeneous theory determines the condensation
curve, '

Unfortunately, an absolute determination of the
gaseous phase boundary is very difficult. Instead,
experimental data is usually interpreted on the
basis of simple models like E|l. (97). However, as
shown by Westervelt, "it tends to underestimate
p and overestimate n„, due to oversaturation.
Agreement between our theory and experiment"
is considerably improved, when surface and life-
time effects are included (see Fig. 6).

The ionization degree of the gas phase in Ge is
shown separately in Fig. 7. In agreement with
experiment'" the nature of the gas-phase changes
from an exciton gas at low temperatures to an
ionized plasma near T,.

Assuming further the exciton gas to be an ideal
Boltzmann gas this equation is equivalent to

n„,(T)=g„(ksTM, /2m8')'+ exp[y(T)/keT], (97)

where

p,,„(n,T) = -g. (99)

The result for Ge is shown in Fig. 8, the corre-
sponding phase diagram in Fig. 9. For T& T, the
discontinuity in the free-carrier density disap-
pears.

This model does not exclude the possibility of
an excitonic phase" in general. However, it
seems likely that even in semiconductors, where
the metallic condensate is not the stable state of
the carriers, the transition might finally be of this
type.

VII. SUMMARY AND DISCUSSION

In this paper a first-principles calculation of the
electron-hole phase diagram has been attempted.
The main purpose has been to get a theoretical
account of a number of characteristic parameters
of the diagram as they depend on the band struc-

VI. SEMICONDUCTOR-METAL TRANSITION

The relation of the EHD theory to the semicon-
ductor-metal transition has first been discussed
by Brinkman and Rice.' Contrary to the situation
discussed so far, the electrons and holes formed,
when the indirect energy gap is reduced, will be
in thermal equilibrium at the lattice temperature.
It was argued that, in Ge and Si, a first-order
transition directly to the metallic state should
occur, when the gap equals the ground-state ener-
gy per particle of the metallic phase. This idea
was adopted by Mott." This model would confirm
his original idea of a discontinuous change of the
conductivity at the transition point. As we cal-
culated the chemical potential of the electron-hole
plasma, we can easily derive the free-carrier
density as a function of the energy gap E~ from

n [cm 3]
18-..—10

10

-4
10

10~4

10

Tc j

10%-

10-6
-0.8

I I I I I I I I I

0 0.8 1.6 2.0 3.2 4.0
E'""

b O

E%0

6 T[K]
FIG. 7. Ionization degree of the gas phase as a func-

tion of temperature.

FIG. 8. Metal-semiconductor transition in Ge: the
free-carrier density as a function of the indirect energy
gap E, .
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FIG. 9. Phase diagram of the metal-semiconductor
transition in Ge.

ture. Improved studies in this direction will be
necessary to clarify more delicate features, e.g. ,
with respect to the Mott transition and the possible
occurrence of the Bose-Einstein condensation.
Here a number of approximations have been used,
which limit the applicability of our method and
will briefly be reviewed.

Our approach is based on a mean-field theory of
the chemical potential p(n~„T). Surface effects,
which necessarily come into play with the phase
separation, are neglected as well as lifetime ef-
fects. The equilibrium properties of the coexisting
phases are obtained by means of a Maxwell con-
struction.

The chemical potential is found assuming ther-
mal equilibrium between two interacting subsys-
tems, the ionized plasma and the exciton gas. The
influence of exciton molecules as well as of excited
exciton states is not taken into account. The exci-
tons are assumed to interact via net repulsive
forces due to exchange and Pauli principle. Re-
normalization of the excitons due to the presence
of the plasma is included approximately. The re-
sults are expected to be rather insensitive to this
renormalization procedure within the frame of
our model, where additional instabilities are ex-
cluded. The chemical potential is derived from

the respective internal energy E,(n, T) by means
of an interpolation scheme between the classical
and the quantum limit.

E'0(n, T) has been studied within the effective
plasmon approach, which allows a rather intuitive
interpretation of Coulomb correlations. These
depend on the dielectric constant, for which a
modified Hubbard function has been used. Con-
tributions from the exciton system are not con-
sidered. Multiple electron-hole scattering is
completely neglected in the high-density limit.
In the intermediate- and low-density regime this
type of correlation becomes increasingly more
important. In our model this effect is described
by an increasing part of the pairs residing in the
exciton subsystem. The instability leading to the
phase transition, however, is basically due to
the Fermi subsystem (Fermi condensation).

In addition to the figures some of the numerical
results are comprised in Table I. We see that
there is a good overall agreement between theory
and experiment (the excellent results for Ge may
be in part accidental), somewhat less good for Si.
This latter situation was found for practically all
theoretical investigations published so far' and
might be due to inconsistent input data for Si.
The resulting properties of the liquid are com-
parable to those found previously. '~ In addition
we get a consistent set of data characteristic for
the phase diagram.

It has thus been demonstrated that a first-prin-
ciples calculation can account for the known prop-
erties of the electron-hole system in semicon-
ductors, even quantitatively. The method, to be
sure, is not suitable for a detailed investigation
near the critical point, e.g. , a study of critical
exponents. An extension of the theory to include
additional instabilities is possible and will be dis-
cussed elsewhere.
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