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We develop a method to study electronic properties of planar and stepped semiconductor surfaces. The
method, based on the Bethe-Peierls approximation, deals with tight-binding Hamiltonians, and since it
works in a real-space representation, avoids numerical integrations in k space to get the density of states.
We calculate the electronic density of states at steps in the (11) surface in the honeycomb lattice as well as
in the (111) surface of a covalent semiconductor (Si,Ge). Our results in the latter case are in good
agreement with ultraviolet photoemission data.

I. INTRODUCTION

There are many situations in solid-state physics
in which the simplification provided by the use of
Bloch states cannot be incorporated in a simple
way in the calculations due to the lack of period-
icity in the problem. Among these situations we
can mention impurities, surfaces, vacancies,
amorphous systems, etc.

In this work we shall concentrate on the cal-
culation of the electronic density of states in a
situation in which these complications are patent,
namely, the study of stepped semiconductor sur-
faces. In addition to the problems inherent to the
study of surfaces, the two-dimensional periodicity
of the surface is broken by the presence of the
steps.

One way to handle these situations, taking ad-
vantage of the simplifications of the use of Bloch
states, has been to artificially repeat the local
deviation from periodicity to build up a periodic
structure, and then perform a band-structure cal-
culation. ' The main drawback of such an approach
is that the artificial periodicity can introduce
spurious structure in the density of states. In ad-
dition, the unit cell has to be very large and the
computation is very involved and lengthy. In spite
of these shortcomings this approach has been very
successful in the study of amorphous semicon-
ductors, ' surfaces, ' etc.

Another approach developed with the same purpose
has been proposed. This is the so-called recur-
sion method4 that takes advantage of the rapid con-
vergency of continued fractions and spans the
Green's function in a continued fraction such that
its coefficients are constant beyond a certain level.
This approximation has been very useful in the
study of "local" deviations from periodicity' (like
amorphous semiconductors). Using this, approxi
mation steps in transition-metal surfaces have

been studied. '
Finally, another way to study nonperiodic struc-

tures consists of picking up a cluster of atoms
which includes the local problem to be treated and
attaching at the cluster's surfaces the Bethe lat-
tice."' One then ends up with a cluster-Bethe-
lattice model. This approach, as it stands, does
not seem to be useful in the study of "extended"
perturbations like surfaces.

To overcome the inability of the cluster-Bethe-
lattice model to study delocalized perturbations,
we extend it in this work to study surfaces, ' with
the final aim of calculating densities of states at
steps in Si and Ge (111)surfaces. The way to solve
for the surface Bethe lattice is to reduce the three-
dimensional problem to a two-dimensional system
in such a way that one of its sides is connected to
the bulk Bethe lattice, whereas the other side is
kept free. The resulting system can be solved by
means of the transfer-matrix technique to get the
local Green's function and from it the density of
states is obtained immediately.

The format of this paper is as follows: To gain
some insight into the problem of steps in Si and Ge,
we study in Sec. II the density of states in a step
in the (11) surface of the honeycomb lattice. To
make the calculation simple, we focus our atten-
tion on a simple sp' Hamiltonian. In Sec. III we
work out in detail the case of a step in the (111)
surface of Si. In this case we work with a realistic
sp' Hamiltonian. Comparison with ultraviolet-
photoemission-spectroscopy experimental data
is also made. Finally, in Sec. IV, a summary of
the more relevant results that we have obtained is
made. Some conclusion remarks are presented as
well.

II. METHOD OF CALCULATION: HONEYCOMB LATTICE

In order to discuss the method of calculation and
at the same time to gain some insight into the
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which are the solutions of

(E —Vo)a = V, + V,aP, EP = V, +2voa P . (4)

Once we know how to solve the bulk, we proceed
to study the surface. A portion of the surface
Bethe lattice is drawn in Fig. 2. The generic
equations of the surface Bethe lattice are of the

following form:

(
V2 V2

E — gn-1, 0= V1g~-2 0+ V2+ E V ~ gV P ~
" s 1P

FIG. 1. Honeycomb Bethe lattice interaction diagram
for the Hamiltonian of Eq. {1). The circles represent
sp' orbitals, the double lines represent the interaction
V(, and the single lines represent the interaction V2.

problems of steps, we first study the (11) surface
of the honeycomb lattice. We focus our attention
on an sp Hamiltonian' analogous to the sp' Weaire-
Thorpe Hamiltonian. " This sp' Hamiltonian has
the following form:

V', V,
gn 0 2 E V R gff-10 1%+10 y

1P' 1~

~V ~V'

E go+1,0= V1g~O+ V2+ E g

(
V,' V

gff 4 2sO 2 E gn+ 1eo+ V1gfi ~S,O

(5)

We can solve (5) by defining the following transfer
functions

g0 0= + 1g1,0+ 2g2, 0 y

Eg1,0 = V1go, o+ 2V2gs 0,

g20 2g00 2g20 1g40
(2)

gn, O V2gn-z, O+ 2gn, O+ Vl gnarl, 0 &

Eg" 1,0= V1g~o+ 2V2g. ..,o

where g, 0 represents the matrix element of the
Green's function between the orbital labeled 0 and
the orbital labeled i. We then define the transfer
functions n and P by

where ij represents the sp2 orbital at atom i and
bond j. The sums in (1) are restricted to nearest-
neighbor atoms only. V, represents the intrabond
interaction, whereas V, represents the intra-
atomic interaction.

To solve for the bulk Bethe lattice we follow the
usual prescription. ' Looking at Fig. 1, we can
write the following set ef equations:

~et- I g in=
Zo+1qo/H~O1 gll+SyO/go+OyO

g + , o/gono+I, TOo Zo, o/Zn- l, o '

Substitution of these functions back into (5) yields
a simple equation for each transfer function.

Once the transfer functions are known, the
density of states at a particular orbital is ob-
tained immediately by means of the diagonal ma-
trix of the Green's function.

The local Green's function of, say, the dangling
orbital is then given by

(dg I
& Idg) = 1/[E 2v', /(E v, -v, r")] -(v)— .

Results for the density of states of an orbital at
the bulk and at various orbitals in the vicinity of
the surface are drawn in Fig. 3. In this case we
take for the parameters in the sp' Hamiltonian
V, = —6 eV and V, = —2 eV. We first notice the
presence af a 5-function contribution to the bulk
density of states; this corresponds to a noninter-
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FIQ. 2. Labeling of the pp orbitals used to solve the
honeycomb surface Bethe lattice.

acting p-bonding state. This zero-width band is
due to the neglect of the ppm interaction in the
Hamiltonian (l). The gap in the density of states
is between -4 and -2.5 eV.

The densities of states for orbitals in the vicinity
of the surface display several interesting features:

(i) The density of states of the dangling bond pre-
sents a band in the middle of the band gap. The
states associated with this band decay very rapidly
into the bulk [see the sequence Fig. 3(a), (b), and

(c)] . (ii) The states associated with this band a.re
sp in character. (iii) The shape of the dangling-
bond density of states is very similar to the exact
density of states. ' (iv) There is a surface con-
tribution to the density of states in the middle of
the valence band at - -7.0 eV. The states as-
sociated with this feature are mostly atomic s-like
states and correspond to the state discussed in de-
tail in Ref. 11. It is striking that even though the
Bethe lattice does not present gaps in the valence
band, true bona fide surface states can exist. This
can be even more clear working with a simple s-
state Hamiltonian. The state corresponding to the
peak at -7 eV in Fig. 3 appears as a peak with in-
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FIG. 3. Local densities of states at various sp orbitals in the vicinity of the (11) surface of the honeycomb lattice
v ithin the Bethe-lattice approximation. (a) Local density of states at the dangling bond (labeled 0 in Fig. 2). (b) Local,
density of states at orbital labeled 1 in Fig. 2. (c) Local density of states at orbital labeled 2 in Fig. 2. (d) Local den-
sity of states at an orbital in the bulk. The heavy vertical straight lines indicate the p-bonding band, and W represents
the corresponding weight. All the curves are normalized to one.
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finite height (i.e., no interaction with the bulk).

(v) The behavior of the p-like 5 function at -4 eV
is very similar to the exact behavior. '

The agreement between our approximated cal-
culation and the exact results gives us confidence
in the Bethe-lattice approximation. We can then
proceed to study the density of states associated
with a step in an otherwise planar surface.

The procedure to calculate the density of states
follows the cluster-Bethe-lattice method spirit. '
The step plays the role of the cluster and at its
edges we attach the corresponding Bethe lattice
(i.e., surface or bulk Bethe lattice). The cluster
we have taken is drawn in Fig. 4. We attach the
bulk Bethe lattice at orbitals labeled 8 and 10. On
the other hand, we attach the surface Bethe lattice
to the orbitals labeled 1 and 14. The problem then
has been reduced to finding the solution of a finite
system of linear equations.

Results of our calculations are drawn in Fig. 5.
We present local densities of states in Fig. 4 at
orbitals labeled 0, 4, and 13, respectively.
Looking at this figure we notice two important
facts. First, the dangling-bond band splits into
two 5 functions [see Fig. 5(a) and (b)], one above
the original dangling-bond band and the other one
below it. The states associated with these 5 func-
tions are localized in dangling bonds labeled 0 and
4 in Fig. 4. The origin of this behavior is the
stronger interaction between dangling bonds 0 and
4 than the nearest-neighbor dangling-bond inter-
action in the planar surface. This interaction gives
rise to a bonding-antibonding splitting. Second,
another interesting result of our calculation is the
change in the shape of the dangling-bond band in the
orbital labeled 13 in Fig. 4. This local density of
states shows an increase at the middle of the band
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FIG. 5. Local densities of states at various sp or-
bitals in the step drawn in Fig. 4. (a) Local densities
of states at orbital labeled 0 in Fig. 4. (b) Local density
of states at orbital labeled 4 in Fig. 4. (c) Local density
of states at orbital labeled 13 in Fig. 4. The heavy ver-
tical straight lines indicate i5-function contributions to the
density of states. Their corresponding weight is also
indicated in the drawings. All the curves are normalized
to one.

surface

Surfao

FIG. 4. Labeling of the gp orbitals in the step in the
(11) surface of the honeycomb lattice.

[see Fig. 5(c)] and a disappearance of the band-
edge singularity. This behavior is due to the end
of the one-dimensional chain of dangling bonds due
to the presence of the steps.

We see that the presence of the step in the sur-
face gives rise to very pronounced changes in the
density of states at atoms in the step. Whether or
not these results have some relation to the actual
density of states at steps in semiconductors will
be apparent when discussing more realistic mod-
els. We would just like to advance that the afore-
mentioned results are very similar in essence to
those obtained in a realistic calculation.
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III. DIAMOND LATTICE: REALISTIC HAMILTONIAN

To study the electronic structure of planar and

stepped semiconductor surfaces we shall use in
this section a realistic tight-binding Hamiltonian
which takes into account all possible interactions
between s and p atomic orbitals in nearest-neigh-
bor atoms. The Hamiltonian includes then the
sso, spo, ppe, and ppm interactions in the Koster-
Slater notation. " Since the Hamiltonian has been
described elsewhere, ""we will not go into de-
tails. The parameters we have taken in our cal-
culations are given in Table I. They are appropri-
ate to both Si and Qe. Since we are not aiming for
a very accurate calculation, our parameters serve
as a prototype for group-IV covalence semicon-
duc tor s.

In our calculations we work with the directed sp3

hybridized orbitals. As we did in Sec. II, we first
solve the bulk and then the surface. The solution
of the bulk has been published elsewhere, "so we

just give an outline of it. We call 1, 2, 3, and 4
the four bond directions in the diamond structure,
and T„T2, T„and T4 the corresponding transfer
matrices in the Bethe lattice. The local Green' s
function at an atom (labeled 0) in the bulk is given
by the solution of

4

(1E Up}Gp p= 1+ Q U, M, ' T, M, 'Gp o, (8)

where the matrix U, (i = 1, 2, 3, 4} is formed by the
matrix elements of the Hamiltonian between the
sp3 orbitals in one atom and those in its nearer-
neighbor atom along the direction of the bond Oj.
The matrix UO contains the intra- atomic interac-
tion between sp3 orbitals in an atom. The matrices
M j correspond to the symmetry operation of the

diamond structure. The transfer matrix T, is
given by

(1E —Up) T, = U, + Q U, M, 'T, 'M, 'T;. (9)
j =2

Once we know the bulk transfer matrix, the solu-
tion of the surface follows the steps described in
Sec. II for the honeycomb lattice. We assume that
the (111) surface is normal to the bonds labeled l.
If we label the atoms at the surface in the way

FIQ. 6. Portion of the (111) surface Bethe lattice for
the diamond structure. The circles indicate the atoms.
Numbers in the bonds indicate bond direction.

shown in Fig. 6, we get the following infinite set
of equations for the matrix elements of the Green's
function:

(1o)
whe re U 0 indicates that the intra- atomic interac-
tions at the surface might be different from the
corresponding interactions in the bulk.

To solve the system of linear equations (10) we
define, as we did in the case of the honeycomb
lattice, the following transfer matrices:

q-io =Gs s 4, /Gs s,4) 1
2s3s4 f fO ~ fsO

+ out —g2s3s4 ~ (Q2&3s4$ I
2s3s4 fsO 4 fssQ I

(1la)

(1lb)

where j and j' are nearest- neighbor atoms, j being
even and j', odd. Insertion of (lla) and (lib) in
(10) gives us the following equations for s."and
&out ~

7s' = (1E —Up —U, .Ti —U,

U, S-l, ~out, S ).-1, U4 j 3 1

& '"' = (1E —U ' —U ~ s."—U ~ S ' ~ T "~ S ) i ~ U,3 0 2 2 4 2 2 2 3

(12)
The other transfer matrices ~3'n4'"' are obtained
from v2" '"' by applying the symmetry operations
of the (111) surface of the diamond structure:

(IE - Uo) 'Go, o= I+ Us ~ Gt, o+ Us 'Gs, o+ U. ~ Gs, o

(lE —Up —Ui Ti) 'Gi p-—Us GQ Q+ Us'Gs p+ U4 ~ Gs p t

(lE —U o} ' Gs, o
= Us ' G x, o+ Us ' Gv o+ U4 ' Ns o t

TABLE I. Values (in eV) of the tight-binding Hamilto-
nian used to study the covalent semiconductor surface.

&in, out g - I ~ &in, out, g3 3 2 3

Tin, out g - 1 ~ +in, out ~ g4 2 2 2

E E

8.000

SSo'

-1.650 -2.&65

pp&

-3.350 -1.000

The local Green' s functi on of an atom at the sur-
face is then given by

G' =(1E—U*-U 'Tts —U '~Tip —U 'Tts) i . (14)
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FIG. 7. Local densities of states at various gp orbitals in the vicinity of the (ill) surface of the diamond lattice

within Bethe-lattice approximation. (a) Local density of states at the dangling bond. (b) Local density of states at the
back sp orbitals of the surface atoms. (c) Local density of states at the zp orbitals forming a bond with the previous
ones. (d) Local density of states at an orbital in the bulk (solid line). Crystal density of states (broken line) for the
same Hamiltonian. All the curves are normalized to one.

We obtain similar equations for atoms in different
layers. Once the local Green's function is known,
the local density of states is given by the standard
equation

s,(E)= —II 'Im(Tr[G, (E)]] . (15)

In our calculation of the density of states at the
surface we shift downward the sp' orbital energy
at the surface atoms by 0.5 eV in order to get
charge neutrality. "

Results of our calculation are shown in Fig. 7,
where we have drawn the local densities of states
at various layers near the surface and at the bulk.
In this figure we note (i) There is a dangling-bond
band in the middle of the gap [See Fig. 7(a}]; the
states associated with this band are mostly (al-
most 100%}localized in the dangling sp' orbital
pointing out from the surface. (ii) There is a band

of surface states in the middle of the valence band
[ see Fig. 7(a) and (b)] at energies where the crys-
tal density of states presents a dip [ see Fig. 7(d)].
These states are s states localized in the first
layer with almost zero weight in the second layer.
This behavior is very similar to the behavior found
in an exact calculation. " (iii) There is an enhance-
ment of the p-like peak in the atoms in the layer
underneath the surface layer [Figure 7(c)]; the
states corresponding to this feature are the so-
called back bonds. All the features we have been
discussing are in agreement with more detailed
calculations" as well as with experimental data
obtained by means of ultraviolet photoemission. "
The only discrepancy with experimental results is
the nonappearance in our calculation of a peak at
the bottom of the valence band. The states as-
sociated with this peak might be originated by an
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FIG. 8. Sketch of the step in the (111) surface in the
diamond structure viewed along the step's edge. Num-
bers in the bonds indicate the bond direction.

TABLE II. Shift of the atomic energies (in eV) intro-
duced in the step atoms to obtain charge neutrality.

40

-0.5 -1.4 0.0 0.0 -0.5

inward relaxation of the outermost layer or by a
reconstruction parallel to the surface. In the cal-
culations corresponding to Fig. 7 we have not in-
cluded these possibilities. However, if we relax
inwards the surface Layer we obtain the aforemen-
tioned state below the bottom of the valence band
without a substantial change of the other surface
states.

Ne can proceed now to study the density of states
in a step in an otherwise perfect planar surface.
The procedure is very similar to that described
in Sec. II when discussing the honeycomb lattice.
Here, in the case of the diamond lattice, we can
distinguish two kinds of steps. 2o One kind of step
presents one dangling bond per edge atom, where-
as the other kind of step has two dangling bonds
per edge atom. Experimentally it has been ob-
served~ that only steps of the second kind are
present. Then we will focus our attention in steps
with two dangling bonds per edge atom (see Fig.
8). In our calculations we shift the atomic poten-
tial" at atoms in the step by the amounts given in
Table II. This is done to obtain charge neutrality.
Results of our calculation are drawn in Figs. S-12.
Looking at these figures we can conclude:

(i) The dangling-bond band at the gap splits into
two bands located at --1.3 and 0.6 eV, respective-
ly, [see Figs. 9(a) and (b); 10(a), (b), and (c)].

This splitting, as in the case of the honeycomb
lattice, is due to the presence of two dangling
bonds whose interaction is stronger than the inter-
action of nearest-neighbor dangling bonds in the
perfect planar surface.

(ii) There is an enhancement of the bulk p-like
peak at --2.8 eV [Fig. 11(a)].

(iii) There is a filling up to the dangling-bond
band at -0 eV—compare Fig. 12(a) with Fig. 7(a).
The reason for this behavior, as in the case of
the honeycomb lattice, is that the dangling bond at
the atom labeled 4 in Fig. 8 has two nearest-
neighbor dangling bonds less than a dangling bond
in a planar surface.

(iv) Analysis of the integrated density of states
reveals that the Fermi level at a stepped surface is
approximately 0.12 eV below the Fermi level at a
planar surface.

All these results are in good agreement with the
experimental findings. " In order to make a more
detailed comparison with the experiments we will
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FIG. 9. Local densities of states at sp3 orbitals in the
atom labeled 0 in Fig. 8. (a) Local density of states
corresponding to the orbital along the direction labeled
1 (see Fig. 8). (b) Local density of states corresponding
to the orbital in the direction labeled 2. (c) Local den-
sity of states corresponding to the orbitals in the direc-
tion labeled 3 and 4. Al.l the curves are normalized to
one.
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parameters.
Before we conclude this section, we would like

to compare our results with other calculations.
To our knowledge the only two published calcula-
tions of the density of states in stepped semicon-
ductor surfaces use the technique mentioned in the
introduction based in an artificial periodic struc-
ture. The introduction of this periodicity entails
the presence of both "physical" and "nonphysical"
steps. Rajan and Falicov" deal with a surface
unit cell of six atoms. The Hamiltonian in the
calculation is the sp' %eaire- Thorpe Hamilto-
nian. ' Comparison to their results can only be
qualitative. Even though the difference in the
Hamiltonian used and the different ways to cal-
culate the density of states, there is qualitative
agreement between our calculation and Rajan and
Falicov's one. Schluter et al. ,~ on the other hand,
perform a self-consistent calculation on a stepped
surface such that the unit cell has four atoms.
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FIG. 10. Local densities of states at orbitals in atom
label, ed 1 in Fig. 8. (a) Local density of states corre-
sponding to the orbital along the direction labeled 1 {see
Fig. 8). (b) Local density of states corresponding to the
orbital along the direction labeled 2. (c) Local density
of states corresponding to the directions labeled 3 and
4. The solid vertical straight line represents a 6-func-
tion contribution to the density of states.

- I I -9 "7

look in detail at the density of states close to the
Fermi level. Since the states at those energies do
not interact with the bulk states, the experimental
resolution" is much higher. In order to compare
with experiments we have calculated the total
density at the surface and at a step in the surface.
To do this we sum the contribution to the density
of states corresponding to surface atoms and
atoms immediately below them. %e then obtain
the difference between these densities of states
after aligning" the Fermi level to its position at
the step. Results of this calculation along with
the experimental curve' are drawn in Fig. 13. %'e
notice an excellent agreement between theory and
experiments as far as the position of the peaks is
concerned. This agreement might be to some ex-
tent fortuituous. Nevertheless we find that if we
change the surface parameters, the position of
the peaks is scarcely affected. Moreover, the
physical origin of these peaks makes their
existence stable against changes in the surface
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FIG. 11. Local densities of states at orbitals in atom
labeled 3 in Fig. 8. (a) Local density of states corre-
sponding to the orbital al.ong the direction labeled 2. (b)
Local density of states corresponding to the orbital
along the direction labeled 1. (c) Local density of states
corresponding to the directions labeled 3 and 4. The
solid vertical straight line represents a 6-function con-
tribution to the density of states.
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The results of this calculation are also in agree-
ment with our results. A detailed comparison of
both calculations cannot be made due to the pres-
ence of "nonphysical" steps in the structure
studied by Schluter et al.~

IV. CONCLUDING REMARKS

We have developed a method to calculate elec-
tronic densities of states in stepped semicon-
ductor surfaces. The method, based on the Bethe-
Peierls approximation, neglects everything except
short-range order. The effects on the density of
states of the presence of steps in the surface ap-
pears very clearly against the density of states of
a planar surface. Since we work in the real-space
representation, there is no need of k-space in-
tegrations.

Results of our calculations are in very good
agreement with ultraviolet-photoemission-spec-
troscopy data on Si stepped surfaces. In spite of
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of states.

FIG. 13. Difference between the stepped and planar
surface density of states. (a) According to ultraviolet-
photoemission-spectroscopy data (see Ref. 18). (b) Re-
sults of our calculation.

this agreement the calculation can be improved in
several ways:

(i) The Hamiltonian only includes nearest-neigh-
bor interactions. It is known that more distant
overlaps provide a better description of the con-
duction band. '~'" Even more, for a more ap-
propriate description of the electronic structure
of group-IV semiconductors, it is necessary to
include d electrons 2~

(ii) Our approximation neglects the effects of the
presence of closed rings of bonds. Inclusion of
this effect would require studying clusters of
atoms.

(iii) We only change the atomic potentials at the
surface while keeping fixed the other Hamiltonian
parameters. This should be improved with a less
parametrized Hamiltonian.

(iv) In our calculation of the surface states we do
not include any reconstruction even though experi-
mentally" it is known that such reconstruction is
present.
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(v) In the calculation of electron states at the

step we neglect any relaxations, in spite of the fact
that such relaxation does exist." This relaxation
seems to originate the state at the bottom of the
valence band. %e have calculated the density of
states assuming a relaxation of the step's edge
atoms and we obtain a state below the bottom of

the valence band without a substantial change of
the other density-of-states features.

In spite of the limitations of our model we believe
that the obtained results are reliable because the
origin of the different features introduced in the
density of states by the presence of the step are
understood in rather clear physical grounds.

*Work supported in part by the Program of Cultural
Cooperation between the USA and Spain.
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