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Extended models of the effects of point-defect dragging on dislocation motion
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The theory of defect dragging is extended to describe several distinct physical situations: the internal friction

maximum due to discrete dissipative dragged defects or due to defects considered to be uniformly spread

along a dislocation line, the effects of an elastic restoring force on these defects, and the effects of the

variation of the dragging coefficient, particularly with temperature to yield a relaxation-type peak.

I. INTRODUCTION
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where co is the angular frequency of the applied
stress, A is the total length of dislocation line per
unit volume, B, is the viscous damping constant of
the dislocation line, / is the average length of dis-
location segments between pinning points, and n
is the number of pinning points added to the seg-
ments of initial length /0. Equations (1)-(3)pre-
dict that, during irradiation, the decrement mill
decrease and the modulus will increase, both
monotonically, as point defects are added to dis-
locations. We have reported recent experimental
data' ' which indicate that the above interpretation
of a shortening of the loop length during irradiation
is not correct at frequencies below a few kHz.
Evidence for this is most vividly demonstrated by
the observation that, at the onset of irradiation,
the decrement may increase, go through a maxi-
mum, and finally decrease to mell below its pre-

Dislocation motion due to an oscillatory stress
i.s usually described in terms of the mell-known

vibrating string model of Koehler and of Granato
and Lucke. ' ' Basically, the dislocation is given
the attributes of a string that is firmly anchor|. d

at various pinning points —dislocation nodes, jogs,
and point defects. The effect of irradiation,
quenching, and other experiments, which produce
point defects, results in a shortening of the average
free lengths of dislocation segments, in terms of
the usual Koehler-Granato-Lucke interpretation.
This phenomenon is called dislocation pinning.
The logarithmic decrement & and the modulus de-
fect rh, E/Erae sensitive indicators of the state of
dislocation pinning since, in the usual Koehler-
Granato-Lucke interpretation appropriate at low
frequencies and lom strain amplitude,

y( i ) b -I~t (4}ax'
where p is the displacement of the dislocation
from its equilibrium position at a position x at
time t; B& is the viscous drag associated mith the
line (but not necessarily the usual line damping
term —see the following discussion); B, is the
viscous drag coefficient of a point defect located
at x =x„C is the line tension; b is the magnitude
of the Burgers vector; and a, is the magnitude of
the applied stress of angular frequency ~. The
boundary conditions on Eq. (4} are

y(0, t) =y(l, t) =0. (5)

At this point it should be stressed that in our for-
mulation the loop length 1 remains fixed and the
addition of point defects is accounted for in the
viscous drag term,

irradiation value. Simultaneously, the modulus
increases monotonically. Simpson and Sosin pro-
posed that dislocations oscillating at fairly low
frequencies (around 1 kHz) can drag point de-
fects.' ' Such a dragging process is very "lossy"
and can thereby give rise to a peak in the decre-
ment as a function of irradiation time or, more
fundamentally, with an increase of point defects
on a dislocation line, as follows. The addition of
one point defect to the line adds significantly to the
energy losses. A second point defect adds an addi-
tional energy loss of its omn but decreases the
contribution of the first defect. At some point in
tQe addition of further defects, the new contribu-
tion is less than the reduction from previous de-
fects, and the energy loss maximum has been
reached.

To account for the drag of point defects, Simpson
and Sosin' modified the equation of motion of the
vibrating string, originally presented by Koehler,
by adding a viscous drag term as follows:

sy(x, t) ~, sy(x, t)
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The steady-state solution for the displacement, as
given by Simpson and Sosin, ' for one point defect

located at@=a&, is

y(x) =y, (x) —(B,/B, )y(x, )G(x, x,),
with

(6a)
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defect is assumed to be located at the center of
the line. In our plots we present the real and ima-
ginary parts of the normalized average displace-
ment g„which is

g„=—[C(coal') ']g
= (Z' sinhZ} '(sinhZ —2Z '(coshZ -1)

-Z '[ig, 'Z sinhZ+sinh'(zZ}] '

o.~ =i C/cuB, . (6e)
x [stnhZ —2 stnh (gZ )] }~ (7a}

To evaluate y(x, ), simply set x =x, in Eq. (6a).
In the original treatment of Simpson and Sosin,

emphasis was placed on showing that the peaking
effect in the decrement could be accounted for in
terms of the drag model. Now that this has been
firmly established experimentally, an extended
analysis of the consequences of defect dragging is
in order. This is a primary purpose of this paper.

Recently, Mizubayashi and Okuda' presented a
series of plots for the modulus defect and decre-
ment which were generated from Eqs. (6a)-(6e)
above. In a number of cases they obtained theo-
retical results which were physically unattainable,
as noted by them. This was due in part to their
choice of plotting parameters. It is also our pur-
pose to present here the theory in a form that
emphasizes those parameters which can be af-
fected most directly by experiment; i.e., emphasis
will be placed on the physical aspects of the theo-
ry. To achieve these purposes, we will analyze
Eqs. (4)-(6) under different interpretations and
transformations. It is important that the physical
interpretation of the parameters be clearly stated
and appreciated to obtain an understanding of the
phenomenological conclusions.

II. CALCULATIONS

A. Average displacement of the dislocation

The appropriate theoretical quantities of interest
in every case are the real and imaginary parts of
the average displacement g of the dislocations,
since the logarithmic decrement is proportional
to Im(y) and the modulus defect is proportional
to Re(y}. To simplify the analysis, one point

Z =—(—,'&uB, l'C ')+(I —i) g, ( —I i), (7b)

(7c)p, g =4)BgEC

In some cases, as noted by Mizubayashi and
Okuda, '~ it might be interesting to consider the
effects of a linear restoring force of magnitude
K6(x —x, )y(x, t) acting on a point defect at x =x„
where K is the force constant. When this term is
added to Eq. (4), the only change in the resulting
expression for g„ is to let

Pg Pg+&PK y

with

p, „-=KLC '

(sa)

(6b)

In this manner one can examine the effects of both
a linear restoring force and a viscous drag force
either simultaneously or separately.

For the work reported here, Eq. (7) was eval-
uated on a Univac 1108 computer which automati-
cally separated ($'„) into its real and imaginary
parts and generated the appropriate graphs of these
quantities. [For details on the mathematical pro-
cedure to go from y„ to (normalized) decrement
and (normalized) modulus, see Ref. 9.]

B. Case I: Viscous drag in the smeared-out limit

The normalized decrement, Im(g„), is plotted as
a function of p, , for various values of the drag pa-
rameter p.~ in Fig. 1. Of particular interest here
is the case of p~ =0. For this case, the point
defects are "smeared" out along the dislocation
line and B, is identified as the drag coefficient of
this ensemble of smeared-out defects. Then, on
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FIG. 1. Normalized decrement is plotted as a function
of the dislocation line damping parameter p&. The influ-
ence of the addition of discrete point defects to the line
is followed by observing the decrement at a fixed value
of the abscissa as ~ increases. However, the plot may
be read differently also, in the "smeared-out" limit,
using the p„=0 curve. In this case, the discrete points
are imagined to be spread uniformly along the disloca-
tion line, leading to an increase in p&. Accordingly,
the decrement is followed along the pz = 0 curve for in-
creasing p, &. Note that the p&= ~ curve can be translated
into the pz 0 curve by multiplying the abscissa values
by 2 and the ordinate values by 4.

0 I 2 3 „5 6 7 8

FIG. 2. Companion plot to Fig. 1 for the normalized
defect, instead of the decrement.

C. Case II: Viscous drag with discrete draggers

The general case of a nonzero finite p.~ shows
that, if p. , is low, the addition of a dragger always
increases the damping and decreases the modulus
defect. For p. , ~ 1.5 the modulus defect increases
in some cases on the addition of a dragger, an
effect we failed to observe originally but was noted
by Okuda and Mizubayashi. This is particularly
noticeable if the drag coefficient is infinite; i.e.,

Bg =B +nB', (9)

the addition of point defects, B, changes according
to

N
I
O
X
Co

a 0
0 I
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where B, is the viscous drag constant for defects
which produce the background (e.g. , pre-irradia-
tion) damping and nB' is the increment due to the
added defects. If ~, 1, c, and B, are of appropri-
ate magnitude (i.e., so that g, & 2.2) then the de-
crement will increase and go through a maximum
on the addition of draggers. This has been ob-
served experimentally a number of times.'
Depending on the magnitude of the initial value of
pt g the decrement can e ither increase or dec re ase .
However, as seen from Fig. 2, the modulus defect
always decreases for an increase in p, , for the
special case of p.„=0.

At the other limit, we have the case of p,, =.
In fact, these two extreme cases are basically the
same. When p, ~ =, we have two lines, each of
length &I, and the same previous comments made
about the results for p, ~ =0 apply here. The only
change is in the magnitude of the modulus defect
and the damping.
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FIG. 3. Normalized decrement is plotted as a func-
tion of the defect drag parameter p„ for several values
of dislocation line damping, given by p&. For p&&2.2
a peaking effect is produced; for p& & 2.2, the decrement
decreases monotonically as p„ increases. Note that pz
can vary due to several causes, as discussed in the text.



1492 H. M. SIMPSON AND A. SOSIN 16

OJ
(
O
7C

CO

W

K
Z
O Lo

lA

3~ lA
O
O

o&t
LLJ

X
K0 Nz

Pg
0 0
0 I

A 2.2

X 10

pa *0

04

o -i

Z
IJJ

L(Jrn--

O
QJ
CI

CI
LLJ N--
N

Z

I

(
I

0 I 3 4

Pk
D 0

I 1 1 I I I

5 6 7 8

0 2 4 6 8 % 12 14 16 18 20

OI
I0-
X 0 0

0 2

FIG. 4. Companion plot to Fig. 3 for the normalized
modulus defect, instead of the decrement.

a firm pinner. Experimental results of this nature

have been reported by Qkuda and Mizubayashi. "
In Figs. 3 and 4 we have plotted the normalized

decrement and modulus defect, respectively, as a
function of p.~ for various values of the parameter
p. „giving rise to a relaxation-type damping peak;
see further below. For a certain range of p, „ the

damping would go through a peak as (J.,(B~) varied.
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D. Linear restoring force and viscous drag

The presence of a linear restoring force (LRS)
on a dragged point defect will always cause the
decrement to be lower than it mould otherwise.
This is made evident in a comparison of the de-
crement curves of Figs. 5(a), 5(b), and 5(c), with

those of Fig. 1. An examination of Fig. 5(a) shows

that, for a fixed p.„ the decrement decreases as
p, , increases. However, if a viscous drag is also
present along with the LRS, the decrement can
either increase or decrease upon the addition of
a dragger to a dislocation line, depending on the
magnitude of p, ~, p, „and p,

For low values of p, „ the modulus defect is re-
duced mhen the dragger experiences a LRS. Phys-
ically, this is to be expected since the LRS simply
retards the motion of the point defect and thereby
also hinders the displacement of the dislocation
line. Evidence for this effect is given in Figs.
6(a), 6(b), and 6(c). At high values of p, one ob-
serves an anomalous increase in the modulus de-
fect as the LRS becomes larger. This is particu-
larly noticeable when the LRS becomes infinite;
i.e., the point defect is a firm pinner.

Earlier in this article, we presented an account
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FIG. 5. Influence of a linear restoring force, given
by the parameter p~, working on defects attached to a
dislocation on the normalized decrement.

of the physics which leads to an internal friction
maximum. The increase in the modulus defect
is more subtle. In the limit of high p.„the motion
of the dislocation line is 90' out of phase with the
driving force, giving rise to zero modulus defect
since the modulus defect arises from in-phase
motion. The anomalous modulus defect phenome-
non can be traced to enhanced in-phase motion
brought on by the addition of point defects on the
dislocation line. The effect is fundamentally one
of phase consideration and, accordingly, appears
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anomalous; one generally ascribes a modulus de-
fect to enhanced strain, accompanying dislocation
motion.
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E. Case IV: Temperature-dependent viscous drag

The mobility of a point defect on a dislocation
might be very temperature dependent. For exam-
ple, if the defect (point defect, jog, or kink) under-
goes stress-assisted diffusion when it is attached
to an oscillating dislocation, the drag coefficient
should be governed by a Boltzmann factor. At high
temperatures the mobility of the defect would be
so large that it would offer no viscous drag; how-
ever, at low temperature the defect would be
essentially frozen in place, thereby merely short-
ening the average length of dislocation segments.
Thus the damping would be low at low tempera-
tures, increase as the temperature is increased,
and finally approach a limiting value at high tem-
peratures. The high-temperature damping is due
to line damping. Such behavior of the damping as
a function of temperature would give a relaxation-
al-type internal friction peak.

To investigate the nature of the relaxation-type
peak due to a temperature-dependent drag coeffi-
cient we arbitrarily take p, =4X10 "exp(0.12/kT)
and p, =0. The appropriate decrement and modulus
plots are given in Figs. 7 and 8, respectively. As
expected, the damping goes through a peak at some
characteristic temperature. The damping is high
on the high-temperature side of the peak and con-
siderably reduced on the low-temperature side.
This behavior is typically observed in Bordoni-
type relaxation peaks.

The effects of irradiation on the relaxation peak
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FIG. 6. Companion plot to Fig. 5 for the normalized
modulus defect, instead of the decrement.

FIG. 7. Production of a relaxation-type peak in the
decrement, due to an Arrhenius temperature depen-
dence of the defect drag parameter p„.
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FIG. 8. Companion plot to Fig. 7 for the normalized
modulus defect.

can be understood by assuming that B, increases
as point defects are added to the dislocation. This,
of course, increases g, via Eq. (7b) and (9). For
this model to have merit, it is essential that an

intrinsic defect be present on the dislocation prior
to irradiation and that it be of a different type than

that introduced by the irradiation. Feltham" has
suggested that the d&+g of jogs, intrinsic to dis-
locations, could give rise to the Bordoni peak.

III. SUMMARY

In this paper we have presented a series of
graphs of the logarithmic decrement and modulus

defect as functions of various drag parameters.
The analytical solutions were based on extensions
of the Simpson-Sosin model of dislocation drag of
point defects, to include viscous drag of attached
defects and a linear restoring force on the point
defect. The model is sufficiently versatile that it
can easily account for (i) the peaking effect ob-
served in the decrement during irradiation, and

(ii) relaxation-type internal friction peaks such as
the Bordoni peak.
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