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A new microscopic method for the evaluation of reflected elastic intensities of low-energy electron

diA'raction from crystal surfaces is developed. This method divides layers of a crystal into subgroups. Layers

having small interlayer separations with their neighbors form a subgroup and are solved in the L-space
representation using iterations, matrix inversions, or a combination of both. Results of each subgroup are

transformed to the K-space representation. Multiple scattering between subgroups and other crystal layers

separated by larger interlayer spacings are solved in K space. The scheme is particularly useful in analyzing

surface structures where coplanar or near coplanar layers are mixed together with other layers having larger

separation distances. Some examples of these are the chemisorption of hydrogen and small gas atoms on

open crystal faces, the surface structures of reconstructed and unreconstructed semiconductors and layer

compounds, and the reconstructed faces of some transition metals, etc.

I. INTRODUCTION

The theoretical treatment of low-energy electron
diffraction from clean and chemisorbed crystal
layers sprouted a number of powerful microscopic
methods in the past few years. " Among them,
Beeby' formulated a T-matrix inversion method
based on evaluating and solving a system of layer-
scattering matrices expressed in the f. (angular
momentum) space representation. A parallel
treatment was developed by McRae,"who ex-
pressed the propagation and scattering of an elec-
tron between layers in K (linear momentum) space.
This second method was put into efficient use by
Jepsen, Marcus, and Jona,"who called their
version the layer-KKR (Korringa-Kohn-Rostoker)
method. Both the L-space and K-space methods
have been used to calculate intensity-voltage
curves of a number of clean and overlayer sys-
tems, and good agreement with experiment was ob-
tained. Since these two methods include inter-
atomic scattering events to all orders by exactly
solving systems of matrix equations, they do not
take advantage of the fact that an electron in the
20-400-eV range has only a short mean free path.
Within this short path length (4-12 A), only the
first few interatomic scattering events can be im-
portant.

Recognition of this fact leads to the development
of a number of "fast" methods. ' " The fast meth-
ods are based on including only a subset of inter-
atomic scattering events. If all important scat-
tering events are included in this subset, the re-
sulting method is computationally efficient and
numerically accurate. Two most successful fast
methods are the renormalized-forward-scattering
(RFS) method"" and the layer-doubling meth-
od, " ' originally developed by Pendry. Both meth-
ods start out with the exact layer-scattering ma-

trix in the K-space representation. In the RFS
scheme, forward interlayer scattering events are
iteratively accumulated and back interlayer scat-
tering events are summed sequentially. 'The sum-
mation over successive orders of back scattering
events is stopped if numerical convergence to a
desired accuracy is reached. Thus, wherever
there is convergence of the power-series expansion
of back scattering matrices, the RFS method is
fast and can be rapidly carried to a high degree
of numerical accuracy. The layer-doubling meth-
od, on the other hand, includes a larger set of
scattering events than RFS. It generates the exact
solutions of forward and back layer-scattering ma-
trices in the K-space representation for two lay-
ers. The procedure is then repeated to generate
the scattering matrices for four, eight, etc. , lay-
ers. 'This process converges in typically three to
four iterations.

II. NEED FOR FURTHER FAST COMPUTATION

SCHEMES

The RFS and layer-doubling methods have been
applied to the determination of surface structures
of clean and overlayer systems. They were fast
and produced numerically accurate results for a
large number of materials and crystal struc-
tures. "" However, there are important groups
of materials and overlayer systems whose surface
structures are not suitable for the application of
these methods. Some examples are the chemi-
sorption of gas atoms (e.g. , C, N, or 0) on open
faces of metals and semiconductors, the adsorp-
tion of hydrogen on all crystal faces, transition
metals with reconstructed layer s, reconstructed
and unreconstructed faces of semiconductors, and
layer compounds. This is because RFS and layer
doubling, as well as the layer-KKR exact method, de-
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scribe interlayer scattering by matrices M'~N whose
dimension isg, the number of plane-wave compon-
ents. At small interlayer distances, the number g
can get very big. The number of plane-wave compon-
ents g increases roughly as d ', where d is the
interlayer separation. An estimate of the number
of plane waves which must be included is given in
the Appendix. It is equal to

g = AE/2&&+ (A/4&&)(lnf/d}',

where E is the energy (in hartrees, i.e., double
rydbergs), A is the unit-cell area (in square Bohr
radii), d is the interlayer spacing (in Bohr radii),
and t is the desired fractional decay of exponential
waves over the interlayer spacing d. Thus the di-
mension of Mz, z increases rapidly as d gets small
[e.g. , for d =0.3 A, at E = 100 eV and f = 0.002,
g ~ 200 in j. x j. structures and g & 800 in 2 & 2
structures]. Overtruncation of the number of g
to manageable dimensions 6f MN, I often leads to
numerically unstable results. It is estimated that
under normal conditions, RFS becomes numerical-
ly unreliable at about d ~ 0.9 A, the layer-KKR
and l.ayer-doubling methods at about d~ 0.5 A. It
is true that such numerical instability may be
avoided by the use of a bigger computer with more
core space (thus allowing the dimension of Mr'z
to increase) and better accuracy (so it can handle
accurately large-sized matrix operations}. How-
ever, when g gets big (g~ 200), methods based
on the K-space representation become increasing-
ly cumbersome and numerically unreliable.

III. L-SPACE ITERATION SCHEME

An obvious solution of treating crystal structures
with near coplanar layers is to go back to the
angular momentum representation. In the L-space
representation, the layer -scattering matrices
hgve dimensions independent of g. This is because
an explicit sum over plane waves is carried out.
The resulting scattering matrices have dimension
L =N', where N is the number of phase shifts
necessary for proper representation of the atomic
scattering. Qn the other hand, it is usually more
convenient to express electron propagation be-
tween layers in terms of plane waves, because
this choice leads to diagonal interlayer propaga-
tion matrices R';5;;„however, the use of plane
waves requires good convergence of the plane-
wave expansion. Such convergence is difficult
to achieve where the interlayer spacing is small.

TheT-matrix inversion method of Beeby' is an
L-space method, where multiple-scattering events
among a finite number of atomic layers are in-
cluded to all scattering orders. However, while
this method is conceptually sound, its computation

procedure is not suitable for an actual structure
determination. This is because a final matrix
equation solution, the most time-consuming step
of the procedure, involving all atomic layers of
the crystal, must be carried out repeatedly for
each trial structure. Zimmer and Holland" pro-
posed a faster scheme based on iterations of Bee-
by's formulas. They named this scheme the re-
verse-scattering-perturbation method, which we
shall briefly describe here.

Starting with Beeby's formula, if we define layer
scattering vectors

T&~(k '(5))= Q Tgg.(k '(0))Yak'(0)) (2)

and

r&~{k'(5})=Q v~&~. (k'(Oj)YI*,,(k (5)), (3}

T,~ {k'(5)) = v,~(k'(5))+ '[T;~"'(k'($})y T&z"'(k'($))] .
n=

(5}

fn Eq. (5), T',~&"&(k'(0)) are results of electron am-
plitudes at plane i after n iterations. The lowest
order (n = 0) contains at least two scattering
events, i.e. , 2nd order in ~~&~. (k'(5)). The (-)
sign is for scattering into deeper layers, the (+)
sign for outward scattering, with index n denoting
the number of times the electron path has changed
directions, i.e., from (+) to (-) or vice versa (n
is also the iteration order}. The iteration rela-
tions are'"

1"'"'(k'(5))

and

= Z rr, g&(k'(&)) Q G" (k'(&))
L),L2 f&k

x [T;&"&(k gj)) + T»"-"(k'(5))]
2

(6}

then the final reflected amplitude may be written'

T(k (g),(k'(0))

(8) Q [ &&k+&0& 1 &g&l. it&T (k (0))]' rk', g

(4)

where i is the atomic plane index, k'(5) and k (g)
are the incident and reflected directions, respec-
tively, and r, = -(8&&'i/A)(2m/g')F(k, ). Usually,
F(k,) is set equal to unity. The electron amplitude
at the ith plane is expressed in the vector T&~(k'(5})
obtained from'
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T„~»"'(k'(0))

(k'(0)) Q G (k'(0))

x [T»q" {k'($))+ T»1 "(k'(0))].

The initial conditions are'"

T, z,
"'(k'(0))= 0, )»= 0, 1, 2. . . ,

T'„»g)(k'(5})= 0, n = 0, 1, 2. . . ,

(8)

because no electron amplitude can be scattered
from above the top layer (i = 1) or below the deep-
est layer (i=N). Also, we must put the starting
conditions as

T,~» "(k'(5))=r»~(k'(0)), i = 2, 3, . . . , N, (10)

and

T;~» "(k'(5})=w»~{k'(0)), i=1,2, . . . , N —1, (11)

T, »~ "(k'(0})= T'„' "(k (0))= 0.
This is because the incident electron can propagate
to any layer i with no scattering and one must in-
clude the initial scattering v»~(k'(0)) at the fth
layer.

The sum over iteration order s in Eq. (5) is car-
ried until numerical convergence is achieved.
Usually, this occurs at about five iterations.
Evaluation of the vectors T'»~»")(k'(5}) in Eqs. (8)
and (V) involves first generating interlayer struc-
ture propagators G~~.(k'(5)) defined by Beeby. '

The method of Zimmer and Holland" contains
no matrix of dimension g. The layer vectors
T»'~(k'(0)) and matrices G~»»~,(k'(5)) have dimension
L. For almost all practical materials, nine phase
shifts in the energy range 0-300 eV seem to do
an adequate job. Thus, this L-space iteration
method has a cl,ear advantage in speed and numeri-
cal reliability over K-space methods (e.g., RFS,
layer doubling, layer KKR) when the number of
beams gets much larger than 81.

However, there is an undesirable feature of this
method which restricts its being generally used in
structure analysis. The method calls for the evalu-
ation and storage of interlayer propagation ma-
trices G~~.(k'(5})which are square matrices.
There are a total of N(N —1) such matrices for N
layers of a lattice. For varying the interlayer
spacings of three surface layers of a 10-layer
crystal, 48 L x L square matrices must be recal-
culated at each new geometry. Clearly, this meth-
od is computationally unattractive when such large
numbers of G~'~. (k'(0)) must be recalculated at
each structure.

T„(k'(g))=g T' (k'(g))y,*(k'(g))
L

(12)

r„(k'(g)) = Q &~~ (k'(o))yf;{k'(g}}
L'

(13)

Then the interlayer matrices Gz~z, .{k'(g)) are de-
fined for general incident directions

G»' .(k~(gq)= e »i'»»»)»a» i~)G-»», (k'(g)-),

where'

G ~»~~. (k'(0))

g g& i '»a(LL'L))h)»" (ko ~P+d» —d, ~}i
x y (p+d d )&-»1+»o)~ P (15)

IV. COMBINED SPACE METHOD

From the foregoing discussions, it is clear that
in the K-space representation, the main advantage
is that interlayer propagators R;5;;, are diagonal
in form and only depend on d = d,.„-d;, the inter-
layer vector between successive layers. Another
attractive feature is that symmetry of the lattice
can be exploited rather easily to cut down computa-
tion time and core storage. The L-space repre-
sentation avoids matrices with dimension g, the
price to pay is dealing with square matrices
G~»»»;,(k'(t))) which depend on distances d,. —d» be
tween each pair of layers. In systems of practical
importance, such as the chemisorption of small
gas atoms or the rearrangement of some semicon-
ductor and transition metal surfaces, it is general-
ly true that only a few (two or three) surface lay-
ers are closely spaced or coplanar, while deeper
layers remain at larger, bulk spacings. To treat
the entire crystal with an L-space method would
involve evaluating the many G~»~.(k~((})}matrices.
Similarly, RFS, layer-doubling, or the layer-KKR
method would be inadequate because of the large
number of beams associated with the small sur-
face spacings. The best solution is a method which
combines the strong features of each representa-
tion and applies each representation to the regime
it is best suited for, L space for small d spacings
(&1.0 A} and K space for larger, bulklike spacings
(~1.0 A). We shall call such a formulation the
combined space method and present it in the

following.
First, we define vectors for incident beams

k'(g) from above [the (+) sign] and below [the (-) sign]
on the ith layer
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elk+(I&) ~ (8g-dy)

G~~,(k'(0)) = y, Q
Cg

kg(g) )

y,*(k'(g,)) (k'(g, )). (16)

k'(g) = (k„,+ g; +[(2m/g')[E —Z(E)]

-(k„,+ g)']' ~'e, ), (19)

d, is the surface interlayer spacing, and e, a
unit vector pointing inwards normal to the surface.
The transmission and reflection matrices for the
two-layer composite are

(M. ..,)~;= y, Q, , [R(g"}Tit{k'(g))yt, {k'(g'))
I 0 y+ gl

+ Ti„.i(k'(g))R(g')],

(20)

In Eq. (15), X= 4vi-(2m/tt')F(k, ), F(k,) =1, and
hI" (x) is the spherical Hankel function. In Eq.
(16), the (+) sign in the sum over g, is for (d, -di),
&0 and the (-}sign for (d, —di},&0. Within closely
spaced layers i and j, the number of required
beams g, is large [e.g., over 200 beams for
(d, -di},=0.3 A]. But the matrices G~~~. (k')
have dimension L, independent of the number g, .
The sum over real space in Eq. (15) is valid
whether (d, -di), =0 or not, and this sum can be
advantageously used in cases where the summa-
tion over g, in Eq. (16) [which is valid only for
(d, -d, ), 40] requires an excessive number of
beams.

The layer vectors T,~(k'(g)) are first solved
for the closely spaced layers (say i = 1, 2, 3, etc. )
using, for example, the L-space iteration method
given in Eqs. (5)-(11), properly extended for gen-
eral incident directions k'(g). Then transmission
and reflection matrices are formed in K space for
the group (or groups} of closely spaced layers.
For illustration, let us take a specific example
of two closely spaced layers (i and i+ 1), shown
in Fig. 1. In the figure, we have chosen i =1. e
define propagation vectors

R(g+} sit+(8) Kg

R(g ) s ik (g) d8-.
where'

Layer

4s

4B
FIG. 1. Schematic dia-

gram of two surface layers,
separated by interlayer
spacing de and bulk layers,
separated by dp.

(M, ,„);;=y, Q ', [Tip(k (g)}R(g ))i+ ), I'g 0

+R(g' )T,„, (k (g)}1,

(22)

I. k; g'

x R(g-)+ T,„~(k (g))]

(23}

V. COMBINED SPACE METHOD
WITH MATRIX INVERSION

The L-space iterations for a set of closely
spaced layers i, j, k, etc. , essentially group
power-series expansions with terms of the form

i'(k'(5))G' (k'(g))r'(k'(5))

G "(k'(g)) '(k'(0)) y'(k'(g)), (24)

where

for beams k (g) incident from below. It is import-
ant to note that g corresponds to the beam set of
the larger d spacing of the solid (da in Fig. 1). The
number g is substantially smaller than g„ the lat-
ter being the number of beams for the closely
spaced surface layers (typically, for 1 x 1 struc-
tures, g=21 and g, & 200 for d, =0.3 A and d~

0=1.I A). The transmission and reflection matrices
[Eqs. (20)-(23)] defined for the set of closely
spaced layers are then used to solve for the re-
flectivity of the crystal using any one of the es-
tablished K-space schemes (e.g. , RFS, layer
doubling, or layer-KKR method, etc.). Although
Eqs. (20)-(23) are written explicitly for the case
of two layers (i and i+ 1), their extension to three
or more closely spaced layers is straightforward,
involving essentially kinematiclike relations be-
tween the set of layer vectors T,z {k'(g)).

(Mi.'i.));~e=yo Z ', , [Tig(k'(g)}+R(g' }
~ Y~(k (g'))

k;(g')

x Ti„.~(k'(g)}R (g')]

for beams k'(g) incident from above, and

(21)

r'(k'(5}) = ti[1 —G'~{k'(5))t,] ' (25)

is the usual planar scattering matrix defined in the
L-space representation. ' Insomuch as the power-
series expansion in ~'(k'(5}}and G "(k'(g)) conver-
ges, the iteration procedure is applicable for all
interlayer distances, including coplanar layers.
However, it is possible that the expansion could
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diverge for, say, a pair of strong scattering lay-
ers i and j, coplanar or otherwise. In other words,
an expansion like

~'(k'(o))G" (k'(g)) '(k'(0))

x G~'(k'(g))r (k'(0))Y*(k'(gQ) + ~ ~ ~, (26)

etc. , diverges. Wherever this happens, a new
procedure must be used to properly treat multiple
scatterings between layers i and j. Such a treat-
ment is given below.

It should be noted that failures of expansions like
Eq. (26) to converge upon iteration, or similar
failures where RFS diverges upon iteration, do
not mean the basic premise, that a low-energy
electron has a, short mean free path, becomes
invalid for scatterings in layers i and j. It only
means that the particular way of packaging, that
of grouping scattering events between atoms into
layer-scattering matrices ~~~.(k'(ll)) (or Mp;, in
RFS), and then expanding them in a power series,
would no longer produce numerical results repre-
sentative of the actual physical process. The phy-
sical process of a low-energy electron scattering
among atoms always has a short mean free path
(except near the Fermi level where there is no
inelastic damping). It is rather the numerical
packaging that sometimes fails. When this numer-
ical failure occurs, a different computation pro-
cedure must be sought.

Let us envision the following surface structure
(Fig. 2). Layers 1-4 are closely spaced and should
be treated in L space. Of these, layers 2 and 3
are strong scatterers and have a particularly small
interlayer separation. Let us assume they cannot
be summed by L-space iteration and must be treat-
ed by another method. Layers 5-N have the larg-
er bulk-type spacings (e.g. , ds= 1.7 A). The pro-
cedure is as follows: Scattering events between

layer

4 YX/'/ ll/ /'8/'/'/'/ /

S)

FIG. 2. Schematic diagram of four surface layers,
with interlayer separations d, &, d», d, 3 and bulk layers
with separation d~.

x G~ ~ (k'(g))T~ ~,(k'(g)), q= 2 or 3.

layers 2 and 3 are first summed to form subgroup
A. Then layer 1, subgroup A, and layer 4 are
summed by L-space iterations to form subgroup
B. Finally, subgroup B, layers 5-N are treated
in K space to obtain reflected intensities. In Fig.
2, the layers are shown as noncoplanar. However,
the formulas given below are general and may be
applied to different combinations of coplanar and
noncoplanar layers in each subgroup. Also, the
number s of layers in subgroups A and B are ar-
bitrary, not necessarily restricted to 2 and 4, as
given in this example.

Multiple scattering events in layers 2 and 3 are
first treated by matrix inversion. To do this,
we form matrices T'I~~ (k'(g)) for f,j = 2, 3 by

Explicitly, T"(k'(g)) have the following form (i = 2 in this example):

( T"(k'(g)) T' ~ '"(k'(g)) ) ( 1 -r'(k '(0))G "'(k'(g))) '(r'(k'(0}) 0
lT""(k'(g})T"'"'(k'(g})J (- '"(k'(5))G "'(k'(g)) 1 J ( 0 "(k'(0)))

(28)

At first glance, solution of Eq. (28) seems to require 2g matrix inversions, due to the dependence of
G'~(k'(g)) on k'(g). One can avoid this dilemma by noticing in Eq. (14) that G "(k'(g)) may be written

and

G,",.(k (g})= [R'(g')] 'R'(g'}G g'g (k'(o))

Gii. (k (g))=R'(g )[R~(g )] '6'~z, .(k'(0)).

(29)

(30)

The k'(g) dependence in Eq. (28} then factors out as
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( 7"(k'Qg) 7'"'(k (g})) (R'(g'}1

(7'"'(k'(g)) 7'""(k'(g))) ( 0

0 )' ( 1

R "(g')1 ) I, —
' (k'(5)}G +'' (k'(5))

r'(k'(0))G"'(k'(5))h

)

and

(v'(k'(5)} 0 /R'(g') 1

0 &"(k'(0)) ( 0

0

R "(a')4 )
(31)

&7"~ '(k-0) 7'"{k-(g)) ~R'(g)1
l7""'{k(g)) T""{k(g)}

0 1

R"(g )1) -~"(k'(o)}G"'(k'(0))
-"(k (0)}G""(k'(o))& '

( v'(k'(5)) 0 /R'(g }1
7' (k.(5)) I R'"(g )1f

(32)

and

+ T,","(k'(g))]F,*.(k'(g)) (33)

T;„g(k'(g})=Q [Tg'g {k'(g))

+ T,", '(k'(g))]yg (k'(g}).

The matrices T~~~~{k'(g)) an, d vector T«(k'(g)) for
i,j = 2, 3 contains all multiple-scattering events
that occur in layers 2 and 3. They form the ele-
ments of subgroup A. The difference between
quantities T;~(k'(g)} and T~~J~.(k'(g)) can be ex-
pressed in terms of the scattering paths that these
quantities describe. T~~~~. (k'(g)) includes all scat-
tering paths starting at layer j and terminating
at layer i with any number (including zero) of in-
termediate scatterings off the layers. T«{k'(g)),

The matrix inversions in Eqs. (31) and (32) involve
the identical matrix independent of g and only one
inversion is necessary. 'The next step is to form
layer vectors (i = 2)

7'(g(k'(g))= Z [Tg'g (k'(g))
L'

on the other hand, includes all scattering paths that
terminate at layer i, regardless of their origins.

The following step is to treat scattering events
among layer 1, subgroup A and layer 4. The L
space iteration procedure given in Eqs. (5)-(l)
must now be changed due to the fact that multiple
scattering events between layers 2 and 3 have al-
ready been summed. The vectors T«(k'(g)) are
given by

T«{k'(g)}

= T(g{k'(g}}+Q [T)1"'(k'(g)) + T)I" {k'(g))],
n=o

i=i or 4 (35)

T,~(k'Qg)

= T(,(k'(g))+ Q [T«"'(k'(g)) + T«"'{k'(g}}]

i=2 or 3. (36)

For layers 1 and 4, the new iteration relations for
T«'"'(k'(g}) are the same as before,

T«'"'(k'(g))= g ~~~ (k'(5)) P G~ ~ (k'(g)) [T~""'{k'(g))+T~&'" "(k'(g))], i = 1 or 4.
&j 12 2 2

j&j

For layers 2 and 3, T',~"'(k'(g}) have the following different forms (i = 2}:

T';g"'(k'(g)) = Q Q [T" (k'(g)}Gg'g (k'(g))+ T,""{k'(g)}G'"'(k'(g))][T«"'(k'(g})+ T«""(k'(g))]
L,L2 )&j

g&i+1

(38)

T),",],(k'(g)}= Q Q [T~~"(k'(g))G~ ~ (k'(g))+T~~' "(k'(g))G~"g {k'(g))][T«"'(k'(g))+T«" "(k'(g))]. (39)
LgL2 f&j

LyL2 LLy

j&j+1
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T,~&"'(k'(g))=0, n=0, 1, 2, . . . ,

T'J,"~(k'(g))=0, n=0, 1, 2, . . . ; N'=4.

'The new starting conditions are

T,~& "(k'(g))= ~,~(k'(0)),

T;~ "(k'(g)) = f,~(k'(0)),

and

(40)

(41)

(42)

(43)

T-&-"(k'(g))= Z"& "(k'( ))

=T,~(k'(g)}, i=2 or 3. (44)

After convergence in the L-space iterations
[Eqs. (37)-(39)] is reached, the layer vectors
T;~(k'(g)) given in Eqs. (35) and (36) are used to
f rorm K-space transmission and reflection matrices
Mp& for the 4-layer complex [see Eqs. (20)-(23)].
Scattering between the complex (layers 1-4) and

deeper layers 5-N are solved in K space, since
the remaining interlayer separations are assumed
to be large.

VI. TEST CASE: CHEMISORPTION OF H ON Ni(001)

We have programmed this method to include the
features mentioned. 'The summations involved
in calculating G~~,(k'(g)} are done in two ways,
either in g space or r space, depending on the re-
lative computation speed. Also, the program is
designed such that L-space iteration, matrix in-
version, or a combination of both may be chosen
to treat groups of closely spaced layers, depend-
ing on the material and crystal structure. Sym-
metries are exploited in K space, considerably re-
ducing the size of M', ; and thereby the computa-
tional effort required in producing these matrices.
Since a structure search involves calculations done
for a series of geometries, the program is de-
signed to save time-consuming quantities that are
not altered in a geometry change [e.g. , man of
the matrices G~~(k'(g)} may not be affected by a
structure change and therefore need not be recom-
puted]. As a test case, the combined space meth-
od is applied to the situation of a 1X1 monolamono ayer
o hydrogen atoms on the (001}face of nickel.
We allow the hydrogen monolayer to get very close
to the top nickel substrate layer, from an inter-
layer separation of 1.05 A down to as small as
0.05 A. To treat the small separation of 0.05 A
in K space would require as many as 8000 beams
which iw ic is clearly unrealistic to dot In our method,
the hydrogen monolayer and top nickel substrate

In Eqs. (37)-(39), the upper signs correspond to the

upper sum over j (e.g., j&i) and vice versa .The
initial conditions Eqs. (8) and (9) are unchanged,
except for extension to general incident directions
k'(g)

(I x l) H - Ni(00l)
(00)Beam 8=0' T=500 K

25.0-

22.5-

20.0-
'f2= l75-
Vl
UJ

E l 5.0-
CO

w l2.5-
I-
Z'

IO.O----

7.5-

5.0-

2.5-

d spaclr)9

(A)

005

.0.25
-clean

0.45

0.65

0.85

FIG. 3. (1 & 1)H-Ni(001)
calculated intens ity-voltage
(I-V ) curves for different
d spacings between the H

monolayer and the top
nickel layer. The (00)beam
is shown. The curve in
broken line is the cor-
responding beam for clean
Ni(001). The vertical
scale of the clean Ni(001)
curve is arbitrary. The
hydrogen atom sits in a
four-fold (hollow) site.
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FIG. 4. Same as in
Fig. 3, the (11) beam
is shown.
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layer are first treated by L-space iterations. Then
transmission and reflection matrices for the double
layer complex are found according to Eqs. (20)-
(23). Scattering among deeper nickel layers and
the double layer complex are treated by the RFS
method. Reflected intensities for the (00), (11),
and (20) beams for various hydrogen overlayer-
nickel substrate separations are shown in Figs.
3-5. Phase shifts for hydrogen are obtained from
a Hartree-Fock potential. The dynamical inputs
(electron damping, vibration amplitudes, inner
potential, phase shifts) for nickel are taken from
those used in previous calculations of clean
Ni(001).""We found that even at the smallest
interlayer spacing, the L-space iterations con-
verge rapidly and satisfactorily, and there is no
need for matrix inversion in this case. This is
probably due to the rather weak scattering of the
hydrogen overlayer. Our test case cannot be com-
pared to experiment, as no experimental data now
exist for this system. However, it does serve as
a valuable illustration of the ability of the com-
bined space method in handling layers with very
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0.5™ 0.85

(I x I)H-Ni(OOI)

(20)ee e=o T=300 K

FIG. 5. Same as in
Fig. 3, the (20) beam
is shown.

We wish to point out that in combining scattering
contributions from coplanar or near coplanar lay-
ers by Eqs. (20)-(23), the dimension of the ma-
trices and vectors used is L. This is different
from the conventional treatment of many atoms
per unit cell in K-space methods, e.g. , layer KKR,
HFS, or layer doubling. In the K-space methods,
multiple scatterings among different atoms in a
unit cell of a layer are summed by inverting a
matrix of form (1 —x)~'r ~,». . The dimension of
this matrix is L &K, where K is the number of
atoms in the unit cell. For the same coplanar or
near coplanar lattice structure, for formulation
given here is faster.

Q.Q I I I Iw I lQ5
20 60 I 00

ENERGY (eV)

small separation distances. A further test cal-
culation was made in which a monolayer of Nt(111)
was divided into four coplanar sublayers of 2 x 2
periodicity. ~ L-space iterations were carried
out, as well as matrix inversion on two sublayers
combined with layer iterations, and matrix in-
version on all four sublayers. Results of the
three procedures converge well to each other.

VII. CONCLUSION

We have presented the formulation of a unified
method for the evaluation of reQected low-energy
electron diffraction intensities based on an ef-
ficient coupling of L-space and K-space represen-
tations. 'The method is particularly useful in
structural systems such as the reconstructed sur-
faces of transition metals, hydrogen or other gas
atom chemisorption forming coplanar or near co-
planar adsorbate layers, reconstructed or unre-
constructed surfaces of semiconductors, "layer
compounds, "'"etc., where groups of closely
spaced layers are joined to other layers with larg-
er separations. In the discussion in Sec. V, we
picked an example having one group of closely
spaced layers only. However, a lattice structure
with various groups of closely spaced layers joined
mutually or to other layers with larger interlayer
spacings may similarly be treated.

APPENDIX

To obtain Eq. (1), one requires that the beams
that are to be included in the calculation are all
those that decay by at most a factor t from one
layer to the next. In the plane-wave representa-
tion, the propagation perpendicular to the surface
through an interlayer distance d involves decay.
These beams must satisfy the condition lexp[ik'N}
~ d] l&t, where k'(g) is the complex wave vector of
each beam. This condition will of course be satis-
fied by all "propagating beams, " for which lk'„(g) l'
—2E (a.u.}. For evanescent beams, k;(g) has a
large imaginary part, with an absolute value of
[ k

~~ (g) l
2E] ~ '.Our criterion for inclusion becomes

[ %;,pg) l' —2E]'~' & (Int)/d. This condition defines
a circle in k„sps,ce and we wish to find the number

g of reciprocal-lattice points included inside this
circle. The number is given by the ratio of the
area of the circle to the area of the unit cell in
reciprocal space. The radius of the circle is ob-
tained by replacing the inequality by the corre-
sponding equality, yielding for the radius squared
lac~~(g) l'= 2E+ [(lnt)/d]'. If A is the unit cell area
in direct space, then the unit cell area in recip-
rocal space is (2v)'/A. So the required ratio,
i.e. , the number of beams to be included, becomes

Ik;, (gg l
A lnf

(2v)'/A 4v

which is Eq. (1}
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